| /* |
| * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com> |
| * |
| * membarrier system call |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/syscalls.h> |
| #include <linux/membarrier.h> |
| #include <linux/tick.h> |
| #include <linux/cpumask.h> |
| #include <linux/atomic.h> |
| |
| #include "sched.h" /* for cpu_rq(). */ |
| |
| /* |
| * Bitmask made from a "or" of all commands within enum membarrier_cmd, |
| * except MEMBARRIER_CMD_QUERY. |
| */ |
| #define MEMBARRIER_CMD_BITMASK \ |
| (MEMBARRIER_CMD_SHARED | MEMBARRIER_CMD_PRIVATE_EXPEDITED \ |
| | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED) |
| |
| static void ipi_mb(void *info) |
| { |
| smp_mb(); /* IPIs should be serializing but paranoid. */ |
| } |
| |
| static int membarrier_private_expedited(void) |
| { |
| int cpu; |
| bool fallback = false; |
| cpumask_var_t tmpmask; |
| |
| if (!(atomic_read(¤t->mm->membarrier_state) |
| & MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY)) |
| return -EPERM; |
| |
| if (num_online_cpus() == 1) |
| return 0; |
| |
| /* |
| * Matches memory barriers around rq->curr modification in |
| * scheduler. |
| */ |
| smp_mb(); /* system call entry is not a mb. */ |
| |
| /* |
| * Expedited membarrier commands guarantee that they won't |
| * block, hence the GFP_NOWAIT allocation flag and fallback |
| * implementation. |
| */ |
| if (!zalloc_cpumask_var(&tmpmask, GFP_NOWAIT)) { |
| /* Fallback for OOM. */ |
| fallback = true; |
| } |
| |
| cpus_read_lock(); |
| for_each_online_cpu(cpu) { |
| struct task_struct *p; |
| |
| /* |
| * Skipping the current CPU is OK even through we can be |
| * migrated at any point. The current CPU, at the point |
| * where we read raw_smp_processor_id(), is ensured to |
| * be in program order with respect to the caller |
| * thread. Therefore, we can skip this CPU from the |
| * iteration. |
| */ |
| if (cpu == raw_smp_processor_id()) |
| continue; |
| rcu_read_lock(); |
| p = task_rcu_dereference(&cpu_rq(cpu)->curr); |
| if (p && p->mm == current->mm) { |
| if (!fallback) |
| __cpumask_set_cpu(cpu, tmpmask); |
| else |
| smp_call_function_single(cpu, ipi_mb, NULL, 1); |
| } |
| rcu_read_unlock(); |
| } |
| if (!fallback) { |
| smp_call_function_many(tmpmask, ipi_mb, NULL, 1); |
| free_cpumask_var(tmpmask); |
| } |
| cpus_read_unlock(); |
| |
| /* |
| * Memory barrier on the caller thread _after_ we finished |
| * waiting for the last IPI. Matches memory barriers around |
| * rq->curr modification in scheduler. |
| */ |
| smp_mb(); /* exit from system call is not a mb */ |
| return 0; |
| } |
| |
| static void membarrier_register_private_expedited(void) |
| { |
| struct task_struct *p = current; |
| struct mm_struct *mm = p->mm; |
| |
| /* |
| * We need to consider threads belonging to different thread |
| * groups, which use the same mm. (CLONE_VM but not |
| * CLONE_THREAD). |
| */ |
| if (atomic_read(&mm->membarrier_state) |
| & MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY) |
| return; |
| atomic_or(MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY, |
| &mm->membarrier_state); |
| } |
| |
| /** |
| * sys_membarrier - issue memory barriers on a set of threads |
| * @cmd: Takes command values defined in enum membarrier_cmd. |
| * @flags: Currently needs to be 0. For future extensions. |
| * |
| * If this system call is not implemented, -ENOSYS is returned. If the |
| * command specified does not exist, not available on the running |
| * kernel, or if the command argument is invalid, this system call |
| * returns -EINVAL. For a given command, with flags argument set to 0, |
| * this system call is guaranteed to always return the same value until |
| * reboot. |
| * |
| * All memory accesses performed in program order from each targeted thread |
| * is guaranteed to be ordered with respect to sys_membarrier(). If we use |
| * the semantic "barrier()" to represent a compiler barrier forcing memory |
| * accesses to be performed in program order across the barrier, and |
| * smp_mb() to represent explicit memory barriers forcing full memory |
| * ordering across the barrier, we have the following ordering table for |
| * each pair of barrier(), sys_membarrier() and smp_mb(): |
| * |
| * The pair ordering is detailed as (O: ordered, X: not ordered): |
| * |
| * barrier() smp_mb() sys_membarrier() |
| * barrier() X X O |
| * smp_mb() X O O |
| * sys_membarrier() O O O |
| */ |
| SYSCALL_DEFINE2(membarrier, int, cmd, int, flags) |
| { |
| if (unlikely(flags)) |
| return -EINVAL; |
| switch (cmd) { |
| case MEMBARRIER_CMD_QUERY: |
| { |
| int cmd_mask = MEMBARRIER_CMD_BITMASK; |
| |
| if (tick_nohz_full_enabled()) |
| cmd_mask &= ~MEMBARRIER_CMD_SHARED; |
| return cmd_mask; |
| } |
| case MEMBARRIER_CMD_SHARED: |
| /* MEMBARRIER_CMD_SHARED is not compatible with nohz_full. */ |
| if (tick_nohz_full_enabled()) |
| return -EINVAL; |
| if (num_online_cpus() > 1) |
| synchronize_sched(); |
| return 0; |
| case MEMBARRIER_CMD_PRIVATE_EXPEDITED: |
| return membarrier_private_expedited(); |
| case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED: |
| membarrier_register_private_expedited(); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |