| /* |
| * Copyright (C) 2011, 2012 STRATO. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/ratelimit.h> |
| #include <linux/sched/mm.h> |
| #include "ctree.h" |
| #include "volumes.h" |
| #include "disk-io.h" |
| #include "ordered-data.h" |
| #include "transaction.h" |
| #include "backref.h" |
| #include "extent_io.h" |
| #include "dev-replace.h" |
| #include "check-integrity.h" |
| #include "rcu-string.h" |
| #include "raid56.h" |
| |
| /* |
| * This is only the first step towards a full-features scrub. It reads all |
| * extent and super block and verifies the checksums. In case a bad checksum |
| * is found or the extent cannot be read, good data will be written back if |
| * any can be found. |
| * |
| * Future enhancements: |
| * - In case an unrepairable extent is encountered, track which files are |
| * affected and report them |
| * - track and record media errors, throw out bad devices |
| * - add a mode to also read unallocated space |
| */ |
| |
| struct scrub_block; |
| struct scrub_ctx; |
| |
| /* |
| * the following three values only influence the performance. |
| * The last one configures the number of parallel and outstanding I/O |
| * operations. The first two values configure an upper limit for the number |
| * of (dynamically allocated) pages that are added to a bio. |
| */ |
| #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ |
| #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ |
| #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ |
| |
| /* |
| * the following value times PAGE_SIZE needs to be large enough to match the |
| * largest node/leaf/sector size that shall be supported. |
| * Values larger than BTRFS_STRIPE_LEN are not supported. |
| */ |
| #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ |
| |
| struct scrub_recover { |
| refcount_t refs; |
| struct btrfs_bio *bbio; |
| u64 map_length; |
| }; |
| |
| struct scrub_page { |
| struct scrub_block *sblock; |
| struct page *page; |
| struct btrfs_device *dev; |
| struct list_head list; |
| u64 flags; /* extent flags */ |
| u64 generation; |
| u64 logical; |
| u64 physical; |
| u64 physical_for_dev_replace; |
| atomic_t refs; |
| struct { |
| unsigned int mirror_num:8; |
| unsigned int have_csum:1; |
| unsigned int io_error:1; |
| }; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| |
| struct scrub_recover *recover; |
| }; |
| |
| struct scrub_bio { |
| int index; |
| struct scrub_ctx *sctx; |
| struct btrfs_device *dev; |
| struct bio *bio; |
| blk_status_t status; |
| u64 logical; |
| u64 physical; |
| #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO |
| struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; |
| #else |
| struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; |
| #endif |
| int page_count; |
| int next_free; |
| struct btrfs_work work; |
| }; |
| |
| struct scrub_block { |
| struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; |
| int page_count; |
| atomic_t outstanding_pages; |
| refcount_t refs; /* free mem on transition to zero */ |
| struct scrub_ctx *sctx; |
| struct scrub_parity *sparity; |
| struct { |
| unsigned int header_error:1; |
| unsigned int checksum_error:1; |
| unsigned int no_io_error_seen:1; |
| unsigned int generation_error:1; /* also sets header_error */ |
| |
| /* The following is for the data used to check parity */ |
| /* It is for the data with checksum */ |
| unsigned int data_corrected:1; |
| }; |
| struct btrfs_work work; |
| }; |
| |
| /* Used for the chunks with parity stripe such RAID5/6 */ |
| struct scrub_parity { |
| struct scrub_ctx *sctx; |
| |
| struct btrfs_device *scrub_dev; |
| |
| u64 logic_start; |
| |
| u64 logic_end; |
| |
| int nsectors; |
| |
| u64 stripe_len; |
| |
| refcount_t refs; |
| |
| struct list_head spages; |
| |
| /* Work of parity check and repair */ |
| struct btrfs_work work; |
| |
| /* Mark the parity blocks which have data */ |
| unsigned long *dbitmap; |
| |
| /* |
| * Mark the parity blocks which have data, but errors happen when |
| * read data or check data |
| */ |
| unsigned long *ebitmap; |
| |
| unsigned long bitmap[0]; |
| }; |
| |
| struct scrub_ctx { |
| struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; |
| struct btrfs_fs_info *fs_info; |
| int first_free; |
| int curr; |
| atomic_t bios_in_flight; |
| atomic_t workers_pending; |
| spinlock_t list_lock; |
| wait_queue_head_t list_wait; |
| u16 csum_size; |
| struct list_head csum_list; |
| atomic_t cancel_req; |
| int readonly; |
| int pages_per_rd_bio; |
| |
| int is_dev_replace; |
| |
| struct scrub_bio *wr_curr_bio; |
| struct mutex wr_lock; |
| int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ |
| struct btrfs_device *wr_tgtdev; |
| bool flush_all_writes; |
| |
| /* |
| * statistics |
| */ |
| struct btrfs_scrub_progress stat; |
| spinlock_t stat_lock; |
| |
| /* |
| * Use a ref counter to avoid use-after-free issues. Scrub workers |
| * decrement bios_in_flight and workers_pending and then do a wakeup |
| * on the list_wait wait queue. We must ensure the main scrub task |
| * doesn't free the scrub context before or while the workers are |
| * doing the wakeup() call. |
| */ |
| refcount_t refs; |
| }; |
| |
| struct scrub_fixup_nodatasum { |
| struct scrub_ctx *sctx; |
| struct btrfs_device *dev; |
| u64 logical; |
| struct btrfs_root *root; |
| struct btrfs_work work; |
| int mirror_num; |
| }; |
| |
| struct scrub_nocow_inode { |
| u64 inum; |
| u64 offset; |
| u64 root; |
| struct list_head list; |
| }; |
| |
| struct scrub_copy_nocow_ctx { |
| struct scrub_ctx *sctx; |
| u64 logical; |
| u64 len; |
| int mirror_num; |
| u64 physical_for_dev_replace; |
| struct list_head inodes; |
| struct btrfs_work work; |
| }; |
| |
| struct scrub_warning { |
| struct btrfs_path *path; |
| u64 extent_item_size; |
| const char *errstr; |
| sector_t sector; |
| u64 logical; |
| struct btrfs_device *dev; |
| }; |
| |
| struct full_stripe_lock { |
| struct rb_node node; |
| u64 logical; |
| u64 refs; |
| struct mutex mutex; |
| }; |
| |
| static void scrub_pending_bio_inc(struct scrub_ctx *sctx); |
| static void scrub_pending_bio_dec(struct scrub_ctx *sctx); |
| static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); |
| static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); |
| static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock, |
| struct scrub_block *sblocks_for_recheck); |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info, |
| struct scrub_block *sblock, |
| int retry_failed_mirror); |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock); |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good); |
| static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good, |
| int page_num, int force_write); |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); |
| static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, |
| int page_num); |
| static int scrub_checksum_data(struct scrub_block *sblock); |
| static int scrub_checksum_tree_block(struct scrub_block *sblock); |
| static int scrub_checksum_super(struct scrub_block *sblock); |
| static void scrub_block_get(struct scrub_block *sblock); |
| static void scrub_block_put(struct scrub_block *sblock); |
| static void scrub_page_get(struct scrub_page *spage); |
| static void scrub_page_put(struct scrub_page *spage); |
| static void scrub_parity_get(struct scrub_parity *sparity); |
| static void scrub_parity_put(struct scrub_parity *sparity); |
| static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, |
| struct scrub_page *spage); |
| static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, |
| u64 physical, struct btrfs_device *dev, u64 flags, |
| u64 gen, int mirror_num, u8 *csum, int force, |
| u64 physical_for_dev_replace); |
| static void scrub_bio_end_io(struct bio *bio); |
| static void scrub_bio_end_io_worker(struct btrfs_work *work); |
| static void scrub_block_complete(struct scrub_block *sblock); |
| static void scrub_remap_extent(struct btrfs_fs_info *fs_info, |
| u64 extent_logical, u64 extent_len, |
| u64 *extent_physical, |
| struct btrfs_device **extent_dev, |
| int *extent_mirror_num); |
| static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, |
| struct scrub_page *spage); |
| static void scrub_wr_submit(struct scrub_ctx *sctx); |
| static void scrub_wr_bio_end_io(struct bio *bio); |
| static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); |
| static int write_page_nocow(struct scrub_ctx *sctx, |
| u64 physical_for_dev_replace, struct page *page); |
| static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, |
| struct scrub_copy_nocow_ctx *ctx); |
| static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, |
| int mirror_num, u64 physical_for_dev_replace); |
| static void copy_nocow_pages_worker(struct btrfs_work *work); |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); |
| static void scrub_put_ctx(struct scrub_ctx *sctx); |
| |
| |
| static void scrub_pending_bio_inc(struct scrub_ctx *sctx) |
| { |
| refcount_inc(&sctx->refs); |
| atomic_inc(&sctx->bios_in_flight); |
| } |
| |
| static void scrub_pending_bio_dec(struct scrub_ctx *sctx) |
| { |
| atomic_dec(&sctx->bios_in_flight); |
| wake_up(&sctx->list_wait); |
| scrub_put_ctx(sctx); |
| } |
| |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| { |
| while (atomic_read(&fs_info->scrub_pause_req)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrub_pause_req) == 0); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| } |
| |
| static void scrub_pause_on(struct btrfs_fs_info *fs_info) |
| { |
| atomic_inc(&fs_info->scrubs_paused); |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| static void scrub_pause_off(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| __scrub_blocked_if_needed(fs_info); |
| atomic_dec(&fs_info->scrubs_paused); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| { |
| scrub_pause_on(fs_info); |
| scrub_pause_off(fs_info); |
| } |
| |
| /* |
| * Insert new full stripe lock into full stripe locks tree |
| * |
| * Return pointer to existing or newly inserted full_stripe_lock structure if |
| * everything works well. |
| * Return ERR_PTR(-ENOMEM) if we failed to allocate memory |
| * |
| * NOTE: caller must hold full_stripe_locks_root->lock before calling this |
| * function |
| */ |
| static struct full_stripe_lock *insert_full_stripe_lock( |
| struct btrfs_full_stripe_locks_tree *locks_root, |
| u64 fstripe_logical) |
| { |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| struct full_stripe_lock *entry; |
| struct full_stripe_lock *ret; |
| |
| WARN_ON(!mutex_is_locked(&locks_root->lock)); |
| |
| p = &locks_root->root.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct full_stripe_lock, node); |
| if (fstripe_logical < entry->logical) { |
| p = &(*p)->rb_left; |
| } else if (fstripe_logical > entry->logical) { |
| p = &(*p)->rb_right; |
| } else { |
| entry->refs++; |
| return entry; |
| } |
| } |
| |
| /* Insert new lock */ |
| ret = kmalloc(sizeof(*ret), GFP_KERNEL); |
| if (!ret) |
| return ERR_PTR(-ENOMEM); |
| ret->logical = fstripe_logical; |
| ret->refs = 1; |
| mutex_init(&ret->mutex); |
| |
| rb_link_node(&ret->node, parent, p); |
| rb_insert_color(&ret->node, &locks_root->root); |
| return ret; |
| } |
| |
| /* |
| * Search for a full stripe lock of a block group |
| * |
| * Return pointer to existing full stripe lock if found |
| * Return NULL if not found |
| */ |
| static struct full_stripe_lock *search_full_stripe_lock( |
| struct btrfs_full_stripe_locks_tree *locks_root, |
| u64 fstripe_logical) |
| { |
| struct rb_node *node; |
| struct full_stripe_lock *entry; |
| |
| WARN_ON(!mutex_is_locked(&locks_root->lock)); |
| |
| node = locks_root->root.rb_node; |
| while (node) { |
| entry = rb_entry(node, struct full_stripe_lock, node); |
| if (fstripe_logical < entry->logical) |
| node = node->rb_left; |
| else if (fstripe_logical > entry->logical) |
| node = node->rb_right; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Helper to get full stripe logical from a normal bytenr. |
| * |
| * Caller must ensure @cache is a RAID56 block group. |
| */ |
| static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, |
| u64 bytenr) |
| { |
| u64 ret; |
| |
| /* |
| * Due to chunk item size limit, full stripe length should not be |
| * larger than U32_MAX. Just a sanity check here. |
| */ |
| WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); |
| |
| /* |
| * round_down() can only handle power of 2, while RAID56 full |
| * stripe length can be 64KiB * n, so we need to manually round down. |
| */ |
| ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * |
| cache->full_stripe_len + cache->key.objectid; |
| return ret; |
| } |
| |
| /* |
| * Lock a full stripe to avoid concurrency of recovery and read |
| * |
| * It's only used for profiles with parities (RAID5/6), for other profiles it |
| * does nothing. |
| * |
| * Return 0 if we locked full stripe covering @bytenr, with a mutex held. |
| * So caller must call unlock_full_stripe() at the same context. |
| * |
| * Return <0 if encounters error. |
| */ |
| static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, |
| bool *locked_ret) |
| { |
| struct btrfs_block_group_cache *bg_cache; |
| struct btrfs_full_stripe_locks_tree *locks_root; |
| struct full_stripe_lock *existing; |
| u64 fstripe_start; |
| int ret = 0; |
| |
| *locked_ret = false; |
| bg_cache = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!bg_cache) { |
| ASSERT(0); |
| return -ENOENT; |
| } |
| |
| /* Profiles not based on parity don't need full stripe lock */ |
| if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| goto out; |
| locks_root = &bg_cache->full_stripe_locks_root; |
| |
| fstripe_start = get_full_stripe_logical(bg_cache, bytenr); |
| |
| /* Now insert the full stripe lock */ |
| mutex_lock(&locks_root->lock); |
| existing = insert_full_stripe_lock(locks_root, fstripe_start); |
| mutex_unlock(&locks_root->lock); |
| if (IS_ERR(existing)) { |
| ret = PTR_ERR(existing); |
| goto out; |
| } |
| mutex_lock(&existing->mutex); |
| *locked_ret = true; |
| out: |
| btrfs_put_block_group(bg_cache); |
| return ret; |
| } |
| |
| /* |
| * Unlock a full stripe. |
| * |
| * NOTE: Caller must ensure it's the same context calling corresponding |
| * lock_full_stripe(). |
| * |
| * Return 0 if we unlock full stripe without problem. |
| * Return <0 for error |
| */ |
| static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, |
| bool locked) |
| { |
| struct btrfs_block_group_cache *bg_cache; |
| struct btrfs_full_stripe_locks_tree *locks_root; |
| struct full_stripe_lock *fstripe_lock; |
| u64 fstripe_start; |
| bool freeit = false; |
| int ret = 0; |
| |
| /* If we didn't acquire full stripe lock, no need to continue */ |
| if (!locked) |
| return 0; |
| |
| bg_cache = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!bg_cache) { |
| ASSERT(0); |
| return -ENOENT; |
| } |
| if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| goto out; |
| |
| locks_root = &bg_cache->full_stripe_locks_root; |
| fstripe_start = get_full_stripe_logical(bg_cache, bytenr); |
| |
| mutex_lock(&locks_root->lock); |
| fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); |
| /* Unpaired unlock_full_stripe() detected */ |
| if (!fstripe_lock) { |
| WARN_ON(1); |
| ret = -ENOENT; |
| mutex_unlock(&locks_root->lock); |
| goto out; |
| } |
| |
| if (fstripe_lock->refs == 0) { |
| WARN_ON(1); |
| btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", |
| fstripe_lock->logical); |
| } else { |
| fstripe_lock->refs--; |
| } |
| |
| if (fstripe_lock->refs == 0) { |
| rb_erase(&fstripe_lock->node, &locks_root->root); |
| freeit = true; |
| } |
| mutex_unlock(&locks_root->lock); |
| |
| mutex_unlock(&fstripe_lock->mutex); |
| if (freeit) |
| kfree(fstripe_lock); |
| out: |
| btrfs_put_block_group(bg_cache); |
| return ret; |
| } |
| |
| /* |
| * used for workers that require transaction commits (i.e., for the |
| * NOCOW case) |
| */ |
| static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| |
| refcount_inc(&sctx->refs); |
| /* |
| * increment scrubs_running to prevent cancel requests from |
| * completing as long as a worker is running. we must also |
| * increment scrubs_paused to prevent deadlocking on pause |
| * requests used for transactions commits (as the worker uses a |
| * transaction context). it is safe to regard the worker |
| * as paused for all matters practical. effectively, we only |
| * avoid cancellation requests from completing. |
| */ |
| mutex_lock(&fs_info->scrub_lock); |
| atomic_inc(&fs_info->scrubs_running); |
| atomic_inc(&fs_info->scrubs_paused); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| /* |
| * check if @scrubs_running=@scrubs_paused condition |
| * inside wait_event() is not an atomic operation. |
| * which means we may inc/dec @scrub_running/paused |
| * at any time. Let's wake up @scrub_pause_wait as |
| * much as we can to let commit transaction blocked less. |
| */ |
| wake_up(&fs_info->scrub_pause_wait); |
| |
| atomic_inc(&sctx->workers_pending); |
| } |
| |
| /* used for workers that require transaction commits */ |
| static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| |
| /* |
| * see scrub_pending_trans_workers_inc() why we're pretending |
| * to be paused in the scrub counters |
| */ |
| mutex_lock(&fs_info->scrub_lock); |
| atomic_dec(&fs_info->scrubs_running); |
| atomic_dec(&fs_info->scrubs_paused); |
| mutex_unlock(&fs_info->scrub_lock); |
| atomic_dec(&sctx->workers_pending); |
| wake_up(&fs_info->scrub_pause_wait); |
| wake_up(&sctx->list_wait); |
| scrub_put_ctx(sctx); |
| } |
| |
| static void scrub_free_csums(struct scrub_ctx *sctx) |
| { |
| while (!list_empty(&sctx->csum_list)) { |
| struct btrfs_ordered_sum *sum; |
| sum = list_first_entry(&sctx->csum_list, |
| struct btrfs_ordered_sum, list); |
| list_del(&sum->list); |
| kfree(sum); |
| } |
| } |
| |
| static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) |
| { |
| int i; |
| |
| if (!sctx) |
| return; |
| |
| /* this can happen when scrub is cancelled */ |
| if (sctx->curr != -1) { |
| struct scrub_bio *sbio = sctx->bios[sctx->curr]; |
| |
| for (i = 0; i < sbio->page_count; i++) { |
| WARN_ON(!sbio->pagev[i]->page); |
| scrub_block_put(sbio->pagev[i]->sblock); |
| } |
| bio_put(sbio->bio); |
| } |
| |
| for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { |
| struct scrub_bio *sbio = sctx->bios[i]; |
| |
| if (!sbio) |
| break; |
| kfree(sbio); |
| } |
| |
| kfree(sctx->wr_curr_bio); |
| scrub_free_csums(sctx); |
| kfree(sctx); |
| } |
| |
| static void scrub_put_ctx(struct scrub_ctx *sctx) |
| { |
| if (refcount_dec_and_test(&sctx->refs)) |
| scrub_free_ctx(sctx); |
| } |
| |
| static noinline_for_stack |
| struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) |
| { |
| struct scrub_ctx *sctx; |
| int i; |
| struct btrfs_fs_info *fs_info = dev->fs_info; |
| |
| sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); |
| if (!sctx) |
| goto nomem; |
| refcount_set(&sctx->refs, 1); |
| sctx->is_dev_replace = is_dev_replace; |
| sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; |
| sctx->curr = -1; |
| sctx->fs_info = dev->fs_info; |
| for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { |
| struct scrub_bio *sbio; |
| |
| sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); |
| if (!sbio) |
| goto nomem; |
| sctx->bios[i] = sbio; |
| |
| sbio->index = i; |
| sbio->sctx = sctx; |
| sbio->page_count = 0; |
| btrfs_init_work(&sbio->work, btrfs_scrub_helper, |
| scrub_bio_end_io_worker, NULL, NULL); |
| |
| if (i != SCRUB_BIOS_PER_SCTX - 1) |
| sctx->bios[i]->next_free = i + 1; |
| else |
| sctx->bios[i]->next_free = -1; |
| } |
| sctx->first_free = 0; |
| atomic_set(&sctx->bios_in_flight, 0); |
| atomic_set(&sctx->workers_pending, 0); |
| atomic_set(&sctx->cancel_req, 0); |
| sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); |
| INIT_LIST_HEAD(&sctx->csum_list); |
| |
| spin_lock_init(&sctx->list_lock); |
| spin_lock_init(&sctx->stat_lock); |
| init_waitqueue_head(&sctx->list_wait); |
| |
| WARN_ON(sctx->wr_curr_bio != NULL); |
| mutex_init(&sctx->wr_lock); |
| sctx->wr_curr_bio = NULL; |
| if (is_dev_replace) { |
| WARN_ON(!fs_info->dev_replace.tgtdev); |
| sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; |
| sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; |
| sctx->flush_all_writes = false; |
| } |
| |
| return sctx; |
| |
| nomem: |
| scrub_free_ctx(sctx); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, |
| void *warn_ctx) |
| { |
| u64 isize; |
| u32 nlink; |
| int ret; |
| int i; |
| unsigned nofs_flag; |
| struct extent_buffer *eb; |
| struct btrfs_inode_item *inode_item; |
| struct scrub_warning *swarn = warn_ctx; |
| struct btrfs_fs_info *fs_info = swarn->dev->fs_info; |
| struct inode_fs_paths *ipath = NULL; |
| struct btrfs_root *local_root; |
| struct btrfs_key root_key; |
| struct btrfs_key key; |
| |
| root_key.objectid = root; |
| root_key.type = BTRFS_ROOT_ITEM_KEY; |
| root_key.offset = (u64)-1; |
| local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); |
| if (IS_ERR(local_root)) { |
| ret = PTR_ERR(local_root); |
| goto err; |
| } |
| |
| /* |
| * this makes the path point to (inum INODE_ITEM ioff) |
| */ |
| key.objectid = inum; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); |
| if (ret) { |
| btrfs_release_path(swarn->path); |
| goto err; |
| } |
| |
| eb = swarn->path->nodes[0]; |
| inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], |
| struct btrfs_inode_item); |
| isize = btrfs_inode_size(eb, inode_item); |
| nlink = btrfs_inode_nlink(eb, inode_item); |
| btrfs_release_path(swarn->path); |
| |
| /* |
| * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub |
| * uses GFP_NOFS in this context, so we keep it consistent but it does |
| * not seem to be strictly necessary. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| ipath = init_ipath(4096, local_root, swarn->path); |
| memalloc_nofs_restore(nofs_flag); |
| if (IS_ERR(ipath)) { |
| ret = PTR_ERR(ipath); |
| ipath = NULL; |
| goto err; |
| } |
| ret = paths_from_inode(inum, ipath); |
| |
| if (ret < 0) |
| goto err; |
| |
| /* |
| * we deliberately ignore the bit ipath might have been too small to |
| * hold all of the paths here |
| */ |
| for (i = 0; i < ipath->fspath->elem_cnt; ++i) |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", |
| swarn->errstr, swarn->logical, |
| rcu_str_deref(swarn->dev->name), |
| (unsigned long long)swarn->sector, |
| root, inum, offset, |
| min(isize - offset, (u64)PAGE_SIZE), nlink, |
| (char *)(unsigned long)ipath->fspath->val[i]); |
| |
| free_ipath(ipath); |
| return 0; |
| |
| err: |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", |
| swarn->errstr, swarn->logical, |
| rcu_str_deref(swarn->dev->name), |
| (unsigned long long)swarn->sector, |
| root, inum, offset, ret); |
| |
| free_ipath(ipath); |
| return 0; |
| } |
| |
| static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) |
| { |
| struct btrfs_device *dev; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_path *path; |
| struct btrfs_key found_key; |
| struct extent_buffer *eb; |
| struct btrfs_extent_item *ei; |
| struct scrub_warning swarn; |
| unsigned long ptr = 0; |
| u64 extent_item_pos; |
| u64 flags = 0; |
| u64 ref_root; |
| u32 item_size; |
| u8 ref_level = 0; |
| int ret; |
| |
| WARN_ON(sblock->page_count < 1); |
| dev = sblock->pagev[0]->dev; |
| fs_info = sblock->sctx->fs_info; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return; |
| |
| swarn.sector = (sblock->pagev[0]->physical) >> 9; |
| swarn.logical = sblock->pagev[0]->logical; |
| swarn.errstr = errstr; |
| swarn.dev = NULL; |
| |
| ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, |
| &flags); |
| if (ret < 0) |
| goto out; |
| |
| extent_item_pos = swarn.logical - found_key.objectid; |
| swarn.extent_item_size = found_key.offset; |
| |
| eb = path->nodes[0]; |
| ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| do { |
| ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, |
| item_size, &ref_root, |
| &ref_level); |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu", |
| errstr, swarn.logical, |
| rcu_str_deref(dev->name), |
| (unsigned long long)swarn.sector, |
| ref_level ? "node" : "leaf", |
| ret < 0 ? -1 : ref_level, |
| ret < 0 ? -1 : ref_root); |
| } while (ret != 1); |
| btrfs_release_path(path); |
| } else { |
| btrfs_release_path(path); |
| swarn.path = path; |
| swarn.dev = dev; |
| iterate_extent_inodes(fs_info, found_key.objectid, |
| extent_item_pos, 1, |
| scrub_print_warning_inode, &swarn); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| } |
| |
| static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) |
| { |
| struct page *page = NULL; |
| unsigned long index; |
| struct scrub_fixup_nodatasum *fixup = fixup_ctx; |
| int ret; |
| int corrected = 0; |
| struct btrfs_key key; |
| struct inode *inode = NULL; |
| struct btrfs_fs_info *fs_info; |
| u64 end = offset + PAGE_SIZE - 1; |
| struct btrfs_root *local_root; |
| int srcu_index; |
| |
| key.objectid = root; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| fs_info = fixup->root->fs_info; |
| srcu_index = srcu_read_lock(&fs_info->subvol_srcu); |
| |
| local_root = btrfs_read_fs_root_no_name(fs_info, &key); |
| if (IS_ERR(local_root)) { |
| srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); |
| return PTR_ERR(local_root); |
| } |
| |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.objectid = inum; |
| key.offset = 0; |
| inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); |
| srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| |
| index = offset >> PAGE_SHIFT; |
| |
| page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); |
| if (!page) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| if (PageUptodate(page)) { |
| if (PageDirty(page)) { |
| /* |
| * we need to write the data to the defect sector. the |
| * data that was in that sector is not in memory, |
| * because the page was modified. we must not write the |
| * modified page to that sector. |
| * |
| * TODO: what could be done here: wait for the delalloc |
| * runner to write out that page (might involve |
| * COW) and see whether the sector is still |
| * referenced afterwards. |
| * |
| * For the meantime, we'll treat this error |
| * incorrectable, although there is a chance that a |
| * later scrub will find the bad sector again and that |
| * there's no dirty page in memory, then. |
| */ |
| ret = -EIO; |
| goto out; |
| } |
| ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE, |
| fixup->logical, page, |
| offset - page_offset(page), |
| fixup->mirror_num); |
| unlock_page(page); |
| corrected = !ret; |
| } else { |
| /* |
| * we need to get good data first. the general readpage path |
| * will call repair_io_failure for us, we just have to make |
| * sure we read the bad mirror. |
| */ |
| ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, |
| EXTENT_DAMAGED); |
| if (ret) { |
| /* set_extent_bits should give proper error */ |
| WARN_ON(ret > 0); |
| if (ret > 0) |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, |
| btrfs_get_extent, |
| fixup->mirror_num); |
| wait_on_page_locked(page); |
| |
| corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, |
| end, EXTENT_DAMAGED, 0, NULL); |
| if (!corrected) |
| clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, |
| EXTENT_DAMAGED); |
| } |
| |
| out: |
| if (page) |
| put_page(page); |
| |
| iput(inode); |
| |
| if (ret < 0) |
| return ret; |
| |
| if (ret == 0 && corrected) { |
| /* |
| * we only need to call readpage for one of the inodes belonging |
| * to this extent. so make iterate_extent_inodes stop |
| */ |
| return 1; |
| } |
| |
| return -EIO; |
| } |
| |
| static void scrub_fixup_nodatasum(struct btrfs_work *work) |
| { |
| struct btrfs_fs_info *fs_info; |
| int ret; |
| struct scrub_fixup_nodatasum *fixup; |
| struct scrub_ctx *sctx; |
| struct btrfs_trans_handle *trans = NULL; |
| struct btrfs_path *path; |
| int uncorrectable = 0; |
| |
| fixup = container_of(work, struct scrub_fixup_nodatasum, work); |
| sctx = fixup->sctx; |
| fs_info = fixup->root->fs_info; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| spin_lock(&sctx->stat_lock); |
| ++sctx->stat.malloc_errors; |
| spin_unlock(&sctx->stat_lock); |
| uncorrectable = 1; |
| goto out; |
| } |
| |
| trans = btrfs_join_transaction(fixup->root); |
| if (IS_ERR(trans)) { |
| uncorrectable = 1; |
| goto out; |
| } |
| |
| /* |
| * the idea is to trigger a regular read through the standard path. we |
| * read a page from the (failed) logical address by specifying the |
| * corresponding copynum of the failed sector. thus, that readpage is |
| * expected to fail. |
| * that is the point where on-the-fly error correction will kick in |
| * (once it's finished) and rewrite the failed sector if a good copy |
| * can be found. |
| */ |
| ret = iterate_inodes_from_logical(fixup->logical, fs_info, path, |
| scrub_fixup_readpage, fixup); |
| if (ret < 0) { |
| uncorrectable = 1; |
| goto out; |
| } |
| WARN_ON(ret != 1); |
| |
| spin_lock(&sctx->stat_lock); |
| ++sctx->stat.corrected_errors; |
| spin_unlock(&sctx->stat_lock); |
| |
| out: |
| if (trans && !IS_ERR(trans)) |
| btrfs_end_transaction(trans); |
| if (uncorrectable) { |
| spin_lock(&sctx->stat_lock); |
| ++sctx->stat.uncorrectable_errors; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_dev_replace_stats_inc( |
| &fs_info->dev_replace.num_uncorrectable_read_errors); |
| btrfs_err_rl_in_rcu(fs_info, |
| "unable to fixup (nodatasum) error at logical %llu on dev %s", |
| fixup->logical, rcu_str_deref(fixup->dev->name)); |
| } |
| |
| btrfs_free_path(path); |
| kfree(fixup); |
| |
| scrub_pending_trans_workers_dec(sctx); |
| } |
| |
| static inline void scrub_get_recover(struct scrub_recover *recover) |
| { |
| refcount_inc(&recover->refs); |
| } |
| |
| static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, |
| struct scrub_recover *recover) |
| { |
| if (refcount_dec_and_test(&recover->refs)) { |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_put_bbio(recover->bbio); |
| kfree(recover); |
| } |
| } |
| |
| /* |
| * scrub_handle_errored_block gets called when either verification of the |
| * pages failed or the bio failed to read, e.g. with EIO. In the latter |
| * case, this function handles all pages in the bio, even though only one |
| * may be bad. |
| * The goal of this function is to repair the errored block by using the |
| * contents of one of the mirrors. |
| */ |
| static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) |
| { |
| struct scrub_ctx *sctx = sblock_to_check->sctx; |
| struct btrfs_device *dev; |
| struct btrfs_fs_info *fs_info; |
| u64 length; |
| u64 logical; |
| unsigned int failed_mirror_index; |
| unsigned int is_metadata; |
| unsigned int have_csum; |
| struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ |
| struct scrub_block *sblock_bad; |
| int ret; |
| int mirror_index; |
| int page_num; |
| int success; |
| bool full_stripe_locked; |
| static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| |
| BUG_ON(sblock_to_check->page_count < 1); |
| fs_info = sctx->fs_info; |
| if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { |
| /* |
| * if we find an error in a super block, we just report it. |
| * They will get written with the next transaction commit |
| * anyway |
| */ |
| spin_lock(&sctx->stat_lock); |
| ++sctx->stat.super_errors; |
| spin_unlock(&sctx->stat_lock); |
| return 0; |
| } |
| length = sblock_to_check->page_count * PAGE_SIZE; |
| logical = sblock_to_check->pagev[0]->logical; |
| BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); |
| failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; |
| is_metadata = !(sblock_to_check->pagev[0]->flags & |
| BTRFS_EXTENT_FLAG_DATA); |
| have_csum = sblock_to_check->pagev[0]->have_csum; |
| dev = sblock_to_check->pagev[0]->dev; |
| |
| /* |
| * For RAID5/6, race can happen for a different device scrub thread. |
| * For data corruption, Parity and Data threads will both try |
| * to recovery the data. |
| * Race can lead to doubly added csum error, or even unrecoverable |
| * error. |
| */ |
| ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); |
| if (ret < 0) { |
| spin_lock(&sctx->stat_lock); |
| if (ret == -ENOMEM) |
| sctx->stat.malloc_errors++; |
| sctx->stat.read_errors++; |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return ret; |
| } |
| |
| if (sctx->is_dev_replace && !is_metadata && !have_csum) { |
| sblocks_for_recheck = NULL; |
| goto nodatasum_case; |
| } |
| |
| /* |
| * read all mirrors one after the other. This includes to |
| * re-read the extent or metadata block that failed (that was |
| * the cause that this fixup code is called) another time, |
| * page by page this time in order to know which pages |
| * caused I/O errors and which ones are good (for all mirrors). |
| * It is the goal to handle the situation when more than one |
| * mirror contains I/O errors, but the errors do not |
| * overlap, i.e. the data can be repaired by selecting the |
| * pages from those mirrors without I/O error on the |
| * particular pages. One example (with blocks >= 2 * PAGE_SIZE) |
| * would be that mirror #1 has an I/O error on the first page, |
| * the second page is good, and mirror #2 has an I/O error on |
| * the second page, but the first page is good. |
| * Then the first page of the first mirror can be repaired by |
| * taking the first page of the second mirror, and the |
| * second page of the second mirror can be repaired by |
| * copying the contents of the 2nd page of the 1st mirror. |
| * One more note: if the pages of one mirror contain I/O |
| * errors, the checksum cannot be verified. In order to get |
| * the best data for repairing, the first attempt is to find |
| * a mirror without I/O errors and with a validated checksum. |
| * Only if this is not possible, the pages are picked from |
| * mirrors with I/O errors without considering the checksum. |
| * If the latter is the case, at the end, the checksum of the |
| * repaired area is verified in order to correctly maintain |
| * the statistics. |
| */ |
| |
| sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, |
| sizeof(*sblocks_for_recheck), GFP_NOFS); |
| if (!sblocks_for_recheck) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| sctx->stat.read_errors++; |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| goto out; |
| } |
| |
| /* setup the context, map the logical blocks and alloc the pages */ |
| ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); |
| if (ret) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors++; |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| goto out; |
| } |
| BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); |
| sblock_bad = sblocks_for_recheck + failed_mirror_index; |
| |
| /* build and submit the bios for the failed mirror, check checksums */ |
| scrub_recheck_block(fs_info, sblock_bad, 1); |
| |
| if (!sblock_bad->header_error && !sblock_bad->checksum_error && |
| sblock_bad->no_io_error_seen) { |
| /* |
| * the error disappeared after reading page by page, or |
| * the area was part of a huge bio and other parts of the |
| * bio caused I/O errors, or the block layer merged several |
| * read requests into one and the error is caused by a |
| * different bio (usually one of the two latter cases is |
| * the cause) |
| */ |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.unverified_errors++; |
| sblock_to_check->data_corrected = 1; |
| spin_unlock(&sctx->stat_lock); |
| |
| if (sctx->is_dev_replace) |
| scrub_write_block_to_dev_replace(sblock_bad); |
| goto out; |
| } |
| |
| if (!sblock_bad->no_io_error_seen) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors++; |
| spin_unlock(&sctx->stat_lock); |
| if (__ratelimit(&_rs)) |
| scrub_print_warning("i/o error", sblock_to_check); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| } else if (sblock_bad->checksum_error) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.csum_errors++; |
| spin_unlock(&sctx->stat_lock); |
| if (__ratelimit(&_rs)) |
| scrub_print_warning("checksum error", sblock_to_check); |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| } else if (sblock_bad->header_error) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.verify_errors++; |
| spin_unlock(&sctx->stat_lock); |
| if (__ratelimit(&_rs)) |
| scrub_print_warning("checksum/header error", |
| sblock_to_check); |
| if (sblock_bad->generation_error) |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_GENERATION_ERRS); |
| else |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| } |
| |
| if (sctx->readonly) { |
| ASSERT(!sctx->is_dev_replace); |
| goto out; |
| } |
| |
| if (!is_metadata && !have_csum) { |
| struct scrub_fixup_nodatasum *fixup_nodatasum; |
| |
| WARN_ON(sctx->is_dev_replace); |
| |
| nodatasum_case: |
| |
| /* |
| * !is_metadata and !have_csum, this means that the data |
| * might not be COWed, that it might be modified |
| * concurrently. The general strategy to work on the |
| * commit root does not help in the case when COW is not |
| * used. |
| */ |
| fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); |
| if (!fixup_nodatasum) |
| goto did_not_correct_error; |
| fixup_nodatasum->sctx = sctx; |
| fixup_nodatasum->dev = dev; |
| fixup_nodatasum->logical = logical; |
| fixup_nodatasum->root = fs_info->extent_root; |
| fixup_nodatasum->mirror_num = failed_mirror_index + 1; |
| scrub_pending_trans_workers_inc(sctx); |
| btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, |
| scrub_fixup_nodatasum, NULL, NULL); |
| btrfs_queue_work(fs_info->scrub_workers, |
| &fixup_nodatasum->work); |
| goto out; |
| } |
| |
| /* |
| * now build and submit the bios for the other mirrors, check |
| * checksums. |
| * First try to pick the mirror which is completely without I/O |
| * errors and also does not have a checksum error. |
| * If one is found, and if a checksum is present, the full block |
| * that is known to contain an error is rewritten. Afterwards |
| * the block is known to be corrected. |
| * If a mirror is found which is completely correct, and no |
| * checksum is present, only those pages are rewritten that had |
| * an I/O error in the block to be repaired, since it cannot be |
| * determined, which copy of the other pages is better (and it |
| * could happen otherwise that a correct page would be |
| * overwritten by a bad one). |
| */ |
| for (mirror_index = 0; |
| mirror_index < BTRFS_MAX_MIRRORS && |
| sblocks_for_recheck[mirror_index].page_count > 0; |
| mirror_index++) { |
| struct scrub_block *sblock_other; |
| |
| if (mirror_index == failed_mirror_index) |
| continue; |
| sblock_other = sblocks_for_recheck + mirror_index; |
| |
| /* build and submit the bios, check checksums */ |
| scrub_recheck_block(fs_info, sblock_other, 0); |
| |
| if (!sblock_other->header_error && |
| !sblock_other->checksum_error && |
| sblock_other->no_io_error_seen) { |
| if (sctx->is_dev_replace) { |
| scrub_write_block_to_dev_replace(sblock_other); |
| goto corrected_error; |
| } else { |
| ret = scrub_repair_block_from_good_copy( |
| sblock_bad, sblock_other); |
| if (!ret) |
| goto corrected_error; |
| } |
| } |
| } |
| |
| if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) |
| goto did_not_correct_error; |
| |
| /* |
| * In case of I/O errors in the area that is supposed to be |
| * repaired, continue by picking good copies of those pages. |
| * Select the good pages from mirrors to rewrite bad pages from |
| * the area to fix. Afterwards verify the checksum of the block |
| * that is supposed to be repaired. This verification step is |
| * only done for the purpose of statistic counting and for the |
| * final scrub report, whether errors remain. |
| * A perfect algorithm could make use of the checksum and try |
| * all possible combinations of pages from the different mirrors |
| * until the checksum verification succeeds. For example, when |
| * the 2nd page of mirror #1 faces I/O errors, and the 2nd page |
| * of mirror #2 is readable but the final checksum test fails, |
| * then the 2nd page of mirror #3 could be tried, whether now |
| * the final checksum succeeds. But this would be a rare |
| * exception and is therefore not implemented. At least it is |
| * avoided that the good copy is overwritten. |
| * A more useful improvement would be to pick the sectors |
| * without I/O error based on sector sizes (512 bytes on legacy |
| * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one |
| * mirror could be repaired by taking 512 byte of a different |
| * mirror, even if other 512 byte sectors in the same PAGE_SIZE |
| * area are unreadable. |
| */ |
| success = 1; |
| for (page_num = 0; page_num < sblock_bad->page_count; |
| page_num++) { |
| struct scrub_page *page_bad = sblock_bad->pagev[page_num]; |
| struct scrub_block *sblock_other = NULL; |
| |
| /* skip no-io-error page in scrub */ |
| if (!page_bad->io_error && !sctx->is_dev_replace) |
| continue; |
| |
| /* try to find no-io-error page in mirrors */ |
| if (page_bad->io_error) { |
| for (mirror_index = 0; |
| mirror_index < BTRFS_MAX_MIRRORS && |
| sblocks_for_recheck[mirror_index].page_count > 0; |
| mirror_index++) { |
| if (!sblocks_for_recheck[mirror_index]. |
| pagev[page_num]->io_error) { |
| sblock_other = sblocks_for_recheck + |
| mirror_index; |
| break; |
| } |
| } |
| if (!sblock_other) |
| success = 0; |
| } |
| |
| if (sctx->is_dev_replace) { |
| /* |
| * did not find a mirror to fetch the page |
| * from. scrub_write_page_to_dev_replace() |
| * handles this case (page->io_error), by |
| * filling the block with zeros before |
| * submitting the write request |
| */ |
| if (!sblock_other) |
| sblock_other = sblock_bad; |
| |
| if (scrub_write_page_to_dev_replace(sblock_other, |
| page_num) != 0) { |
| btrfs_dev_replace_stats_inc( |
| &fs_info->dev_replace.num_write_errors); |
| success = 0; |
| } |
| } else if (sblock_other) { |
| ret = scrub_repair_page_from_good_copy(sblock_bad, |
| sblock_other, |
| page_num, 0); |
| if (0 == ret) |
| page_bad->io_error = 0; |
| else |
| success = 0; |
| } |
| } |
| |
| if (success && !sctx->is_dev_replace) { |
| if (is_metadata || have_csum) { |
| /* |
| * need to verify the checksum now that all |
| * sectors on disk are repaired (the write |
| * request for data to be repaired is on its way). |
| * Just be lazy and use scrub_recheck_block() |
| * which re-reads the data before the checksum |
| * is verified, but most likely the data comes out |
| * of the page cache. |
| */ |
| scrub_recheck_block(fs_info, sblock_bad, 1); |
| if (!sblock_bad->header_error && |
| !sblock_bad->checksum_error && |
| sblock_bad->no_io_error_seen) |
| goto corrected_error; |
| else |
| goto did_not_correct_error; |
| } else { |
| corrected_error: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.corrected_errors++; |
| sblock_to_check->data_corrected = 1; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "fixed up error at logical %llu on dev %s", |
| logical, rcu_str_deref(dev->name)); |
| } |
| } else { |
| did_not_correct_error: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "unable to fixup (regular) error at logical %llu on dev %s", |
| logical, rcu_str_deref(dev->name)); |
| } |
| |
| out: |
| if (sblocks_for_recheck) { |
| for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; |
| mirror_index++) { |
| struct scrub_block *sblock = sblocks_for_recheck + |
| mirror_index; |
| struct scrub_recover *recover; |
| int page_index; |
| |
| for (page_index = 0; page_index < sblock->page_count; |
| page_index++) { |
| sblock->pagev[page_index]->sblock = NULL; |
| recover = sblock->pagev[page_index]->recover; |
| if (recover) { |
| scrub_put_recover(fs_info, recover); |
| sblock->pagev[page_index]->recover = |
| NULL; |
| } |
| scrub_page_put(sblock->pagev[page_index]); |
| } |
| } |
| kfree(sblocks_for_recheck); |
| } |
| |
| ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); |
| if (ret < 0) |
| return ret; |
| return 0; |
| } |
| |
| static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) |
| { |
| if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) |
| return 2; |
| else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) |
| return 3; |
| else |
| return (int)bbio->num_stripes; |
| } |
| |
| static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, |
| u64 *raid_map, |
| u64 mapped_length, |
| int nstripes, int mirror, |
| int *stripe_index, |
| u64 *stripe_offset) |
| { |
| int i; |
| |
| if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| /* RAID5/6 */ |
| for (i = 0; i < nstripes; i++) { |
| if (raid_map[i] == RAID6_Q_STRIPE || |
| raid_map[i] == RAID5_P_STRIPE) |
| continue; |
| |
| if (logical >= raid_map[i] && |
| logical < raid_map[i] + mapped_length) |
| break; |
| } |
| |
| *stripe_index = i; |
| *stripe_offset = logical - raid_map[i]; |
| } else { |
| /* The other RAID type */ |
| *stripe_index = mirror; |
| *stripe_offset = 0; |
| } |
| } |
| |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock, |
| struct scrub_block *sblocks_for_recheck) |
| { |
| struct scrub_ctx *sctx = original_sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u64 length = original_sblock->page_count * PAGE_SIZE; |
| u64 logical = original_sblock->pagev[0]->logical; |
| u64 generation = original_sblock->pagev[0]->generation; |
| u64 flags = original_sblock->pagev[0]->flags; |
| u64 have_csum = original_sblock->pagev[0]->have_csum; |
| struct scrub_recover *recover; |
| struct btrfs_bio *bbio; |
| u64 sublen; |
| u64 mapped_length; |
| u64 stripe_offset; |
| int stripe_index; |
| int page_index = 0; |
| int mirror_index; |
| int nmirrors; |
| int ret; |
| |
| /* |
| * note: the two members refs and outstanding_pages |
| * are not used (and not set) in the blocks that are used for |
| * the recheck procedure |
| */ |
| |
| while (length > 0) { |
| sublen = min_t(u64, length, PAGE_SIZE); |
| mapped_length = sublen; |
| bbio = NULL; |
| |
| /* |
| * with a length of PAGE_SIZE, each returned stripe |
| * represents one mirror |
| */ |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, |
| logical, &mapped_length, &bbio); |
| if (ret || !bbio || mapped_length < sublen) { |
| btrfs_put_bbio(bbio); |
| btrfs_bio_counter_dec(fs_info); |
| return -EIO; |
| } |
| |
| recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); |
| if (!recover) { |
| btrfs_put_bbio(bbio); |
| btrfs_bio_counter_dec(fs_info); |
| return -ENOMEM; |
| } |
| |
| refcount_set(&recover->refs, 1); |
| recover->bbio = bbio; |
| recover->map_length = mapped_length; |
| |
| BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); |
| |
| nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); |
| |
| for (mirror_index = 0; mirror_index < nmirrors; |
| mirror_index++) { |
| struct scrub_block *sblock; |
| struct scrub_page *page; |
| |
| sblock = sblocks_for_recheck + mirror_index; |
| sblock->sctx = sctx; |
| |
| page = kzalloc(sizeof(*page), GFP_NOFS); |
| if (!page) { |
| leave_nomem: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| scrub_put_recover(fs_info, recover); |
| return -ENOMEM; |
| } |
| scrub_page_get(page); |
| sblock->pagev[page_index] = page; |
| page->sblock = sblock; |
| page->flags = flags; |
| page->generation = generation; |
| page->logical = logical; |
| page->have_csum = have_csum; |
| if (have_csum) |
| memcpy(page->csum, |
| original_sblock->pagev[0]->csum, |
| sctx->csum_size); |
| |
| scrub_stripe_index_and_offset(logical, |
| bbio->map_type, |
| bbio->raid_map, |
| mapped_length, |
| bbio->num_stripes - |
| bbio->num_tgtdevs, |
| mirror_index, |
| &stripe_index, |
| &stripe_offset); |
| page->physical = bbio->stripes[stripe_index].physical + |
| stripe_offset; |
| page->dev = bbio->stripes[stripe_index].dev; |
| |
| BUG_ON(page_index >= original_sblock->page_count); |
| page->physical_for_dev_replace = |
| original_sblock->pagev[page_index]-> |
| physical_for_dev_replace; |
| /* for missing devices, dev->bdev is NULL */ |
| page->mirror_num = mirror_index + 1; |
| sblock->page_count++; |
| page->page = alloc_page(GFP_NOFS); |
| if (!page->page) |
| goto leave_nomem; |
| |
| scrub_get_recover(recover); |
| page->recover = recover; |
| } |
| scrub_put_recover(fs_info, recover); |
| length -= sublen; |
| logical += sublen; |
| page_index++; |
| } |
| |
| return 0; |
| } |
| |
| struct scrub_bio_ret { |
| struct completion event; |
| blk_status_t status; |
| }; |
| |
| static void scrub_bio_wait_endio(struct bio *bio) |
| { |
| struct scrub_bio_ret *ret = bio->bi_private; |
| |
| ret->status = bio->bi_status; |
| complete(&ret->event); |
| } |
| |
| static inline int scrub_is_page_on_raid56(struct scrub_page *page) |
| { |
| return page->recover && |
| (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); |
| } |
| |
| static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, |
| struct bio *bio, |
| struct scrub_page *page) |
| { |
| struct scrub_bio_ret done; |
| int ret; |
| |
| init_completion(&done.event); |
| done.status = 0; |
| bio->bi_iter.bi_sector = page->logical >> 9; |
| bio->bi_private = &done; |
| bio->bi_end_io = scrub_bio_wait_endio; |
| |
| ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, |
| page->recover->map_length, |
| page->mirror_num, 0); |
| if (ret) |
| return ret; |
| |
| wait_for_completion_io(&done.event); |
| if (done.status) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /* |
| * this function will check the on disk data for checksum errors, header |
| * errors and read I/O errors. If any I/O errors happen, the exact pages |
| * which are errored are marked as being bad. The goal is to enable scrub |
| * to take those pages that are not errored from all the mirrors so that |
| * the pages that are errored in the just handled mirror can be repaired. |
| */ |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info, |
| struct scrub_block *sblock, |
| int retry_failed_mirror) |
| { |
| int page_num; |
| |
| sblock->no_io_error_seen = 1; |
| |
| for (page_num = 0; page_num < sblock->page_count; page_num++) { |
| struct bio *bio; |
| struct scrub_page *page = sblock->pagev[page_num]; |
| |
| if (page->dev->bdev == NULL) { |
| page->io_error = 1; |
| sblock->no_io_error_seen = 0; |
| continue; |
| } |
| |
| WARN_ON(!page->page); |
| bio = btrfs_io_bio_alloc(1); |
| bio_set_dev(bio, page->dev->bdev); |
| |
| bio_add_page(bio, page->page, PAGE_SIZE, 0); |
| if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) { |
| if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) { |
| page->io_error = 1; |
| sblock->no_io_error_seen = 0; |
| } |
| } else { |
| bio->bi_iter.bi_sector = page->physical >> 9; |
| bio_set_op_attrs(bio, REQ_OP_READ, 0); |
| |
| if (btrfsic_submit_bio_wait(bio)) { |
| page->io_error = 1; |
| sblock->no_io_error_seen = 0; |
| } |
| } |
| |
| bio_put(bio); |
| } |
| |
| if (sblock->no_io_error_seen) |
| scrub_recheck_block_checksum(sblock); |
| } |
| |
| static inline int scrub_check_fsid(u8 fsid[], |
| struct scrub_page *spage) |
| { |
| struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; |
| int ret; |
| |
| ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| return !ret; |
| } |
| |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock) |
| { |
| sblock->header_error = 0; |
| sblock->checksum_error = 0; |
| sblock->generation_error = 0; |
| |
| if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) |
| scrub_checksum_data(sblock); |
| else |
| scrub_checksum_tree_block(sblock); |
| } |
| |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good) |
| { |
| int page_num; |
| int ret = 0; |
| |
| for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { |
| int ret_sub; |
| |
| ret_sub = scrub_repair_page_from_good_copy(sblock_bad, |
| sblock_good, |
| page_num, 1); |
| if (ret_sub) |
| ret = ret_sub; |
| } |
| |
| return ret; |
| } |
| |
| static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good, |
| int page_num, int force_write) |
| { |
| struct scrub_page *page_bad = sblock_bad->pagev[page_num]; |
| struct scrub_page *page_good = sblock_good->pagev[page_num]; |
| struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; |
| |
| BUG_ON(page_bad->page == NULL); |
| BUG_ON(page_good->page == NULL); |
| if (force_write || sblock_bad->header_error || |
| sblock_bad->checksum_error || page_bad->io_error) { |
| struct bio *bio; |
| int ret; |
| |
| if (!page_bad->dev->bdev) { |
| btrfs_warn_rl(fs_info, |
| "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); |
| return -EIO; |
| } |
| |
| bio = btrfs_io_bio_alloc(1); |
| bio_set_dev(bio, page_bad->dev->bdev); |
| bio->bi_iter.bi_sector = page_bad->physical >> 9; |
| bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
| |
| ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); |
| if (PAGE_SIZE != ret) { |
| bio_put(bio); |
| return -EIO; |
| } |
| |
| if (btrfsic_submit_bio_wait(bio)) { |
| btrfs_dev_stat_inc_and_print(page_bad->dev, |
| BTRFS_DEV_STAT_WRITE_ERRS); |
| btrfs_dev_replace_stats_inc( |
| &fs_info->dev_replace.num_write_errors); |
| bio_put(bio); |
| return -EIO; |
| } |
| bio_put(bio); |
| } |
| |
| return 0; |
| } |
| |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) |
| { |
| struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; |
| int page_num; |
| |
| /* |
| * This block is used for the check of the parity on the source device, |
| * so the data needn't be written into the destination device. |
| */ |
| if (sblock->sparity) |
| return; |
| |
| for (page_num = 0; page_num < sblock->page_count; page_num++) { |
| int ret; |
| |
| ret = scrub_write_page_to_dev_replace(sblock, page_num); |
| if (ret) |
| btrfs_dev_replace_stats_inc( |
| &fs_info->dev_replace.num_write_errors); |
| } |
| } |
| |
| static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, |
| int page_num) |
| { |
| struct scrub_page *spage = sblock->pagev[page_num]; |
| |
| BUG_ON(spage->page == NULL); |
| if (spage->io_error) { |
| void *mapped_buffer = kmap_atomic(spage->page); |
| |
| clear_page(mapped_buffer); |
| flush_dcache_page(spage->page); |
| kunmap_atomic(mapped_buffer); |
| } |
| return scrub_add_page_to_wr_bio(sblock->sctx, spage); |
| } |
| |
| static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, |
| struct scrub_page *spage) |
| { |
| struct scrub_bio *sbio; |
| int ret; |
| |
| mutex_lock(&sctx->wr_lock); |
| again: |
| if (!sctx->wr_curr_bio) { |
| sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), |
| GFP_KERNEL); |
| if (!sctx->wr_curr_bio) { |
| mutex_unlock(&sctx->wr_lock); |
| return -ENOMEM; |
| } |
| sctx->wr_curr_bio->sctx = sctx; |
| sctx->wr_curr_bio->page_count = 0; |
| } |
| sbio = sctx->wr_curr_bio; |
| if (sbio->page_count == 0) { |
| struct bio *bio; |
| |
| sbio->physical = spage->physical_for_dev_replace; |
| sbio->logical = spage->logical; |
| sbio->dev = sctx->wr_tgtdev; |
| bio = sbio->bio; |
| if (!bio) { |
| bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); |
| sbio->bio = bio; |
| } |
| |
| bio->bi_private = sbio; |
| bio->bi_end_io = scrub_wr_bio_end_io; |
| bio_set_dev(bio, sbio->dev->bdev); |
| bio->bi_iter.bi_sector = sbio->physical >> 9; |
| bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
| sbio->status = 0; |
| } else if (sbio->physical + sbio->page_count * PAGE_SIZE != |
| spage->physical_for_dev_replace || |
| sbio->logical + sbio->page_count * PAGE_SIZE != |
| spage->logical) { |
| scrub_wr_submit(sctx); |
| goto again; |
| } |
| |
| ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); |
| if (ret != PAGE_SIZE) { |
| if (sbio->page_count < 1) { |
| bio_put(sbio->bio); |
| sbio->bio = NULL; |
| mutex_unlock(&sctx->wr_lock); |
| return -EIO; |
| } |
| scrub_wr_submit(sctx); |
| goto again; |
| } |
| |
| sbio->pagev[sbio->page_count] = spage; |
| scrub_page_get(spage); |
| sbio->page_count++; |
| if (sbio->page_count == sctx->pages_per_wr_bio) |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| return 0; |
| } |
| |
| static void scrub_wr_submit(struct scrub_ctx *sctx) |
| { |
| struct scrub_bio *sbio; |
| |
| if (!sctx->wr_curr_bio) |
| return; |
| |
| sbio = sctx->wr_curr_bio; |
| sctx->wr_curr_bio = NULL; |
| WARN_ON(!sbio->bio->bi_disk); |
| scrub_pending_bio_inc(sctx); |
| /* process all writes in a single worker thread. Then the block layer |
| * orders the requests before sending them to the driver which |
| * doubled the write performance on spinning disks when measured |
| * with Linux 3.5 */ |
| btrfsic_submit_bio(sbio->bio); |
| } |
| |
| static void scrub_wr_bio_end_io(struct bio *bio) |
| { |
| struct scrub_bio *sbio = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sbio->dev->fs_info; |
| |
| sbio->status = bio->bi_status; |
| sbio->bio = bio; |
| |
| btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, |
| scrub_wr_bio_end_io_worker, NULL, NULL); |
| btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); |
| } |
| |
| static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) |
| { |
| struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); |
| struct scrub_ctx *sctx = sbio->sctx; |
| int i; |
| |
| WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); |
| if (sbio->status) { |
| struct btrfs_dev_replace *dev_replace = |
| &sbio->sctx->fs_info->dev_replace; |
| |
| for (i = 0; i < sbio->page_count; i++) { |
| struct scrub_page *spage = sbio->pagev[i]; |
| |
| spage->io_error = 1; |
| btrfs_dev_replace_stats_inc(&dev_replace-> |
| num_write_errors); |
| } |
| } |
| |
| for (i = 0; i < sbio->page_count; i++) |
| scrub_page_put(sbio->pagev[i]); |
| |
| bio_put(sbio->bio); |
| kfree(sbio); |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static int scrub_checksum(struct scrub_block *sblock) |
| { |
| u64 flags; |
| int ret; |
| |
| /* |
| * No need to initialize these stats currently, |
| * because this function only use return value |
| * instead of these stats value. |
| * |
| * Todo: |
| * always use stats |
| */ |
| sblock->header_error = 0; |
| sblock->generation_error = 0; |
| sblock->checksum_error = 0; |
| |
| WARN_ON(sblock->page_count < 1); |
| flags = sblock->pagev[0]->flags; |
| ret = 0; |
| if (flags & BTRFS_EXTENT_FLAG_DATA) |
| ret = scrub_checksum_data(sblock); |
| else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| ret = scrub_checksum_tree_block(sblock); |
| else if (flags & BTRFS_EXTENT_FLAG_SUPER) |
| (void)scrub_checksum_super(sblock); |
| else |
| WARN_ON(1); |
| if (ret) |
| scrub_handle_errored_block(sblock); |
| |
| return ret; |
| } |
| |
| static int scrub_checksum_data(struct scrub_block *sblock) |
| { |
| struct scrub_ctx *sctx = sblock->sctx; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| u8 *on_disk_csum; |
| struct page *page; |
| void *buffer; |
| u32 crc = ~(u32)0; |
| u64 len; |
| int index; |
| |
| BUG_ON(sblock->page_count < 1); |
| if (!sblock->pagev[0]->have_csum) |
| return 0; |
| |
| on_disk_csum = sblock->pagev[0]->csum; |
| page = sblock->pagev[0]->page; |
| buffer = kmap_atomic(page); |
| |
| len = sctx->fs_info->sectorsize; |
| index = 0; |
| for (;;) { |
| u64 l = min_t(u64, len, PAGE_SIZE); |
| |
| crc = btrfs_csum_data(buffer, crc, l); |
| kunmap_atomic(buffer); |
| len -= l; |
| if (len == 0) |
| break; |
| index++; |
| BUG_ON(index >= sblock->page_count); |
| BUG_ON(!sblock->pagev[index]->page); |
| page = sblock->pagev[index]->page; |
| buffer = kmap_atomic(page); |
| } |
| |
| btrfs_csum_final(crc, csum); |
| if (memcmp(csum, on_disk_csum, sctx->csum_size)) |
| sblock->checksum_error = 1; |
| |
| return sblock->checksum_error; |
| } |
| |
| static int scrub_checksum_tree_block(struct scrub_block *sblock) |
| { |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_header *h; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| u8 on_disk_csum[BTRFS_CSUM_SIZE]; |
| struct page *page; |
| void *mapped_buffer; |
| u64 mapped_size; |
| void *p; |
| u32 crc = ~(u32)0; |
| u64 len; |
| int index; |
| |
| BUG_ON(sblock->page_count < 1); |
| page = sblock->pagev[0]->page; |
| mapped_buffer = kmap_atomic(page); |
| h = (struct btrfs_header *)mapped_buffer; |
| memcpy(on_disk_csum, h->csum, sctx->csum_size); |
| |
| /* |
| * we don't use the getter functions here, as we |
| * a) don't have an extent buffer and |
| * b) the page is already kmapped |
| */ |
| if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) |
| sblock->header_error = 1; |
| |
| if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { |
| sblock->header_error = 1; |
| sblock->generation_error = 1; |
| } |
| |
| if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) |
| sblock->header_error = 1; |
| |
| if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, |
| BTRFS_UUID_SIZE)) |
| sblock->header_error = 1; |
| |
| len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; |
| mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; |
| p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; |
| index = 0; |
| for (;;) { |
| u64 l = min_t(u64, len, mapped_size); |
| |
| crc = btrfs_csum_data(p, crc, l); |
| kunmap_atomic(mapped_buffer); |
| len -= l; |
| if (len == 0) |
| break; |
| index++; |
| BUG_ON(index >= sblock->page_count); |
| BUG_ON(!sblock->pagev[index]->page); |
| page = sblock->pagev[index]->page; |
| mapped_buffer = kmap_atomic(page); |
| mapped_size = PAGE_SIZE; |
| p = mapped_buffer; |
| } |
| |
| btrfs_csum_final(crc, calculated_csum); |
| if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) |
| sblock->checksum_error = 1; |
| |
| return sblock->header_error || sblock->checksum_error; |
| } |
| |
| static int scrub_checksum_super(struct scrub_block *sblock) |
| { |
| struct btrfs_super_block *s; |
| struct scrub_ctx *sctx = sblock->sctx; |
| u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| u8 on_disk_csum[BTRFS_CSUM_SIZE]; |
| struct page *page; |
| void *mapped_buffer; |
| u64 mapped_size; |
| void *p; |
| u32 crc = ~(u32)0; |
| int fail_gen = 0; |
| int fail_cor = 0; |
| u64 len; |
| int index; |
| |
| BUG_ON(sblock->page_count < 1); |
| page = sblock->pagev[0]->page; |
| mapped_buffer = kmap_atomic(page); |
| s = (struct btrfs_super_block *)mapped_buffer; |
| memcpy(on_disk_csum, s->csum, sctx->csum_size); |
| |
| if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) |
| ++fail_cor; |
| |
| if (sblock->pagev[0]->generation != btrfs_super_generation(s)) |
| ++fail_gen; |
| |
| if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) |
| ++fail_cor; |
| |
| len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; |
| mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; |
| p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; |
| index = 0; |
| for (;;) { |
| u64 l = min_t(u64, len, mapped_size); |
| |
| crc = btrfs_csum_data(p, crc, l); |
| kunmap_atomic(mapped_buffer); |
| len -= l; |
| if (len == 0) |
| break; |
| index++; |
| BUG_ON(index >= sblock->page_count); |
| BUG_ON(!sblock->pagev[index]->page); |
| page = sblock->pagev[index]->page; |
| mapped_buffer = kmap_atomic(page); |
| mapped_size = PAGE_SIZE; |
| p = mapped_buffer; |
| } |
| |
| btrfs_csum_final(crc, calculated_csum); |
| if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) |
| ++fail_cor; |
| |
| if (fail_cor + fail_gen) { |
| /* |
| * if we find an error in a super block, we just report it. |
| * They will get written with the next transaction commit |
| * anyway |
| */ |
| spin_lock(&sctx->stat_lock); |
| ++sctx->stat.super_errors; |
| spin_unlock(&sctx->stat_lock); |
| if (fail_cor) |
| btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, |
| BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| else |
| btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, |
| BTRFS_DEV_STAT_GENERATION_ERRS); |
| } |
| |
| return fail_cor + fail_gen; |
| } |
| |
| static void scrub_block_get(struct scrub_block *sblock) |
| { |
| refcount_inc(&sblock->refs); |
| } |
| |
| static void scrub_block_put(struct scrub_block *sblock) |
| { |
| if (refcount_dec_and_test(&sblock->refs)) { |
| int i; |
| |
| if (sblock->sparity) |
| scrub_parity_put(sblock->sparity); |
| |
| for (i = 0; i < sblock->page_count; i++) |
| scrub_page_put(sblock->pagev[i]); |
| kfree(sblock); |
| } |
| } |
| |
| static void scrub_page_get(struct scrub_page *spage) |
| { |
| atomic_inc(&spage->refs); |
| } |
| |
| static void scrub_page_put(struct scrub_page *spage) |
| { |
| if (atomic_dec_and_test(&spage->refs)) { |
| if (spage->page) |
| __free_page(spage->page); |
| kfree(spage); |
| } |
| } |
| |
| static void scrub_submit(struct scrub_ctx *sctx) |
| { |
| struct scrub_bio *sbio; |
| |
| if (sctx->curr == -1) |
| return; |
| |
| sbio = sctx->bios[sctx->curr]; |
| sctx->curr = -1; |
| scrub_pending_bio_inc(sctx); |
| btrfsic_submit_bio(sbio->bio); |
| } |
| |
| static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, |
| struct scrub_page *spage) |
| { |
| struct scrub_block *sblock = spage->sblock; |
| struct scrub_bio *sbio; |
| int ret; |
| |
| again: |
| /* |
| * grab a fresh bio or wait for one to become available |
| */ |
| while (sctx->curr == -1) { |
| spin_lock(&sctx->list_lock); |
| sctx->curr = sctx->first_free; |
| if (sctx->curr != -1) { |
| sctx->first_free = sctx->bios[sctx->curr]->next_free; |
| sctx->bios[sctx->curr]->next_free = -1; |
| sctx->bios[sctx->curr]->page_count = 0; |
| spin_unlock(&sctx->list_lock); |
| } else { |
| spin_unlock(&sctx->list_lock); |
| wait_event(sctx->list_wait, sctx->first_free != -1); |
| } |
| } |
| sbio = sctx->bios[sctx->curr]; |
| if (sbio->page_count == 0) { |
| struct bio *bio; |
| |
| sbio->physical = spage->physical; |
| sbio->logical = spage->logical; |
| sbio->dev = spage->dev; |
| bio = sbio->bio; |
| if (!bio) { |
| bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); |
| sbio->bio = bio; |
| } |
| |
| bio->bi_private = sbio; |
| bio->bi_end_io = scrub_bio_end_io; |
| bio_set_dev(bio, sbio->dev->bdev); |
| bio->bi_iter.bi_sector = sbio->physical >> 9; |
| bio_set_op_attrs(bio, REQ_OP_READ, 0); |
| sbio->status = 0; |
| } else if (sbio->physical + sbio->page_count * PAGE_SIZE != |
| spage->physical || |
| sbio->logical + sbio->page_count * PAGE_SIZE != |
| spage->logical || |
| sbio->dev != spage->dev) { |
| scrub_submit(sctx); |
| goto again; |
| } |
| |
| sbio->pagev[sbio->page_count] = spage; |
| ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); |
| if (ret != PAGE_SIZE) { |
| if (sbio->page_count < 1) { |
| bio_put(sbio->bio); |
| sbio->bio = NULL; |
| return -EIO; |
| } |
| scrub_submit(sctx); |
| goto again; |
| } |
| |
| scrub_block_get(sblock); /* one for the page added to the bio */ |
| atomic_inc(&sblock->outstanding_pages); |
| sbio->page_count++; |
| if (sbio->page_count == sctx->pages_per_rd_bio) |
| scrub_submit(sctx); |
| |
| return 0; |
| } |
| |
| static void scrub_missing_raid56_end_io(struct bio *bio) |
| { |
| struct scrub_block *sblock = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; |
| |
| if (bio->bi_status) |
| sblock->no_io_error_seen = 0; |
| |
| bio_put(bio); |
| |
| btrfs_queue_work(fs_info->scrub_workers, &sblock->work); |
| } |
| |
| static void scrub_missing_raid56_worker(struct btrfs_work *work) |
| { |
| struct scrub_block *sblock = container_of(work, struct scrub_block, work); |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u64 logical; |
| struct btrfs_device *dev; |
| |
| logical = sblock->pagev[0]->logical; |
| dev = sblock->pagev[0]->dev; |
| |
| if (sblock->no_io_error_seen) |
| scrub_recheck_block_checksum(sblock); |
| |
| if (!sblock->no_io_error_seen) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "IO error rebuilding logical %llu for dev %s", |
| logical, rcu_str_deref(dev->name)); |
| } else if (sblock->header_error || sblock->checksum_error) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "failed to rebuild valid logical %llu for dev %s", |
| logical, rcu_str_deref(dev->name)); |
| } else { |
| scrub_write_block_to_dev_replace(sblock); |
| } |
| |
| scrub_block_put(sblock); |
| |
| if (sctx->is_dev_replace && sctx->flush_all_writes) { |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| } |
| |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static void scrub_missing_raid56_pages(struct scrub_block *sblock) |
| { |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u64 length = sblock->page_count * PAGE_SIZE; |
| u64 logical = sblock->pagev[0]->logical; |
| struct btrfs_bio *bbio = NULL; |
| struct bio *bio; |
| struct btrfs_raid_bio *rbio; |
| int ret; |
| int i; |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, |
| &length, &bbio); |
| if (ret || !bbio || !bbio->raid_map) |
| goto bbio_out; |
| |
| if (WARN_ON(!sctx->is_dev_replace || |
| !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { |
| /* |
| * We shouldn't be scrubbing a missing device. Even for dev |
| * replace, we should only get here for RAID 5/6. We either |
| * managed to mount something with no mirrors remaining or |
| * there's a bug in scrub_remap_extent()/btrfs_map_block(). |
| */ |
| goto bbio_out; |
| } |
| |
| bio = btrfs_io_bio_alloc(0); |
| bio->bi_iter.bi_sector = logical >> 9; |
| bio->bi_private = sblock; |
| bio->bi_end_io = scrub_missing_raid56_end_io; |
| |
| rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); |
| if (!rbio) |
| goto rbio_out; |
| |
| for (i = 0; i < sblock->page_count; i++) { |
| struct scrub_page *spage = sblock->pagev[i]; |
| |
| raid56_add_scrub_pages(rbio, spage->page, spage->logical); |
| } |
| |
| btrfs_init_work(&sblock->work, btrfs_scrub_helper, |
| scrub_missing_raid56_worker, NULL, NULL); |
| scrub_block_get(sblock); |
| scrub_pending_bio_inc(sctx); |
| raid56_submit_missing_rbio(rbio); |
| return; |
| |
| rbio_out: |
| bio_put(bio); |
| bbio_out: |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_put_bbio(bbio); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| } |
| |
| static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, |
| u64 physical, struct btrfs_device *dev, u64 flags, |
| u64 gen, int mirror_num, u8 *csum, int force, |
| u64 physical_for_dev_replace) |
| { |
| struct scrub_block *sblock; |
| int index; |
| |
| sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); |
| if (!sblock) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return -ENOMEM; |
| } |
| |
| /* one ref inside this function, plus one for each page added to |
| * a bio later on */ |
| refcount_set(&sblock->refs, 1); |
| sblock->sctx = sctx; |
| sblock->no_io_error_seen = 1; |
| |
| for (index = 0; len > 0; index++) { |
| struct scrub_page *spage; |
| u64 l = min_t(u64, len, PAGE_SIZE); |
| |
| spage = kzalloc(sizeof(*spage), GFP_KERNEL); |
| if (!spage) { |
| leave_nomem: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| scrub_block_put(sblock); |
| return -ENOMEM; |
| } |
| BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); |
| scrub_page_get(spage); |
| sblock->pagev[index] = spage; |
| spage->sblock = sblock; |
| spage->dev = dev; |
| spage->flags = flags; |
| spage->generation = gen; |
| spage->logical = logical; |
| spage->physical = physical; |
| spage->physical_for_dev_replace = physical_for_dev_replace; |
| spage->mirror_num = mirror_num; |
| if (csum) { |
| spage->have_csum = 1; |
| memcpy(spage->csum, csum, sctx->csum_size); |
| } else { |
| spage->have_csum = 0; |
| } |
| sblock->page_count++; |
| spage->page = alloc_page(GFP_KERNEL); |
| if (!spage->page) |
| goto leave_nomem; |
| len -= l; |
| logical += l; |
| physical += l; |
| physical_for_dev_replace += l; |
| } |
| |
| WARN_ON(sblock->page_count == 0); |
| if (dev->missing) { |
| /* |
| * This case should only be hit for RAID 5/6 device replace. See |
| * the comment in scrub_missing_raid56_pages() for details. |
| */ |
| scrub_missing_raid56_pages(sblock); |
| } else { |
| for (index = 0; index < sblock->page_count; index++) { |
| struct scrub_page *spage = sblock->pagev[index]; |
| int ret; |
| |
| ret = scrub_add_page_to_rd_bio(sctx, spage); |
| if (ret) { |
| scrub_block_put(sblock); |
| return ret; |
| } |
| } |
| |
| if (force) |
| scrub_submit(sctx); |
| } |
| |
| /* last one frees, either here or in bio completion for last page */ |
| scrub_block_put(sblock); |
| return 0; |
| } |
| |
| static void scrub_bio_end_io(struct bio *bio) |
| { |
| struct scrub_bio *sbio = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sbio->dev->fs_info; |
| |
| sbio->status = bio->bi_status; |
| sbio->bio = bio; |
| |
| btrfs_queue_work(fs_info->scrub_workers, &sbio->work); |
| } |
| |
| static void scrub_bio_end_io_worker(struct btrfs_work *work) |
| { |
| struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); |
| struct scrub_ctx *sctx = sbio->sctx; |
| int i; |
| |
| BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); |
| if (sbio->status) { |
| for (i = 0; i < sbio->page_count; i++) { |
| struct scrub_page *spage = sbio->pagev[i]; |
| |
| spage->io_error = 1; |
| spage->sblock->no_io_error_seen = 0; |
| } |
| } |
| |
| /* now complete the scrub_block items that have all pages completed */ |
| for (i = 0; i < sbio->page_count; i++) { |
| struct scrub_page *spage = sbio->pagev[i]; |
| struct scrub_block *sblock = spage->sblock; |
| |
| if (atomic_dec_and_test(&sblock->outstanding_pages)) |
| scrub_block_complete(sblock); |
| scrub_block_put(sblock); |
| } |
| |
| bio_put(sbio->bio); |
| sbio->bio = NULL; |
| spin_lock(&sctx->list_lock); |
| sbio->next_free = sctx->first_free; |
| sctx->first_free = sbio->index; |
| spin_unlock(&sctx->list_lock); |
| |
| if (sctx->is_dev_replace && sctx->flush_all_writes) { |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| } |
| |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, |
| unsigned long *bitmap, |
| u64 start, u64 len) |
| { |
| u64 offset; |
| u64 nsectors64; |
| u32 nsectors; |
| int sectorsize = sparity->sctx->fs_info->sectorsize; |
| |
| if (len >= sparity->stripe_len) { |
| bitmap_set(bitmap, 0, sparity->nsectors); |
| return; |
| } |
| |
| start -= sparity->logic_start; |
| start = div64_u64_rem(start, sparity->stripe_len, &offset); |
| offset = div_u64(offset, sectorsize); |
| nsectors64 = div_u64(len, sectorsize); |
| |
| ASSERT(nsectors64 < UINT_MAX); |
| nsectors = (u32)nsectors64; |
| |
| if (offset + nsectors <= sparity->nsectors) { |
| bitmap_set(bitmap, offset, nsectors); |
| return; |
| } |
| |
| bitmap_set(bitmap, offset, sparity->nsectors - offset); |
| bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); |
| } |
| |
| static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, |
| u64 start, u64 len) |
| { |
| __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); |
| } |
| |
| static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, |
| u64 start, u64 len) |
| { |
| __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); |
| } |
| |
| static void scrub_block_complete(struct scrub_block *sblock) |
| { |
| int corrupted = 0; |
| |
| if (!sblock->no_io_error_seen) { |
| corrupted = 1; |
| scrub_handle_errored_block(sblock); |
| } else { |
| /* |
| * if has checksum error, write via repair mechanism in |
| * dev replace case, otherwise write here in dev replace |
| * case. |
| */ |
| corrupted = scrub_checksum(sblock); |
| if (!corrupted && sblock->sctx->is_dev_replace) |
| scrub_write_block_to_dev_replace(sblock); |
| } |
| |
| if (sblock->sparity && corrupted && !sblock->data_corrected) { |
| u64 start = sblock->pagev[0]->logical; |
| u64 end = sblock->pagev[sblock->page_count - 1]->logical + |
| PAGE_SIZE; |
| |
| scrub_parity_mark_sectors_error(sblock->sparity, |
| start, end - start); |
| } |
| } |
| |
| static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) |
| { |
| struct btrfs_ordered_sum *sum = NULL; |
| unsigned long index; |
| unsigned long num_sectors; |
| |
| while (!list_empty(&sctx->csum_list)) { |
| sum = list_first_entry(&sctx->csum_list, |
| struct btrfs_ordered_sum, list); |
| if (sum->bytenr > logical) |
| return 0; |
| if (sum->bytenr + sum->len > logical) |
| break; |
| |
| ++sctx->stat.csum_discards; |
| list_del(&sum->list); |
| kfree(sum); |
| sum = NULL; |
| } |
| if (!sum) |
| return 0; |
| |
| index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); |
| ASSERT(index < UINT_MAX); |
| |
| num_sectors = sum->len / sctx->fs_info->sectorsize; |
| memcpy(csum, sum->sums + index, sctx->csum_size); |
| if (index == num_sectors - 1) { |
| list_del(&sum->list); |
| kfree(sum); |
| } |
| return 1; |
| } |
| |
| /* scrub extent tries to collect up to 64 kB for each bio */ |
| static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, |
| u64 physical, struct btrfs_device *dev, u64 flags, |
| u64 gen, int mirror_num, u64 physical_for_dev_replace) |
| { |
| int ret; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| u32 blocksize; |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| blocksize = sctx->fs_info->sectorsize; |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.data_extents_scrubbed++; |
| sctx->stat.data_bytes_scrubbed += len; |
| spin_unlock(&sctx->stat_lock); |
| } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| blocksize = sctx->fs_info->nodesize; |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.tree_extents_scrubbed++; |
| sctx->stat.tree_bytes_scrubbed += len; |
| spin_unlock(&sctx->stat_lock); |
| } else { |
| blocksize = sctx->fs_info->sectorsize; |
| WARN_ON(1); |
| } |
| |
| while (len) { |
| u64 l = min_t(u64, len, blocksize); |
| int have_csum = 0; |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| /* push csums to sbio */ |
| have_csum = scrub_find_csum(sctx, logical, csum); |
| if (have_csum == 0) |
| ++sctx->stat.no_csum; |
| if (sctx->is_dev_replace && !have_csum) { |
| ret = copy_nocow_pages(sctx, logical, l, |
| mirror_num, |
| physical_for_dev_replace); |
| goto behind_scrub_pages; |
| } |
| } |
| ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, |
| mirror_num, have_csum ? csum : NULL, 0, |
| physical_for_dev_replace); |
| behind_scrub_pages: |
| if (ret) |
| return ret; |
| len -= l; |
| logical += l; |
| physical += l; |
| physical_for_dev_replace += l; |
| } |
| return 0; |
| } |
| |
| static int scrub_pages_for_parity(struct scrub_parity *sparity, |
| u64 logical, u64 len, |
| u64 physical, struct btrfs_device *dev, |
| u64 flags, u64 gen, int mirror_num, u8 *csum) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| struct scrub_block *sblock; |
| int index; |
| |
| sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); |
| if (!sblock) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return -ENOMEM; |
| } |
| |
| /* one ref inside this function, plus one for each page added to |
| * a bio later on */ |
| refcount_set(&sblock->refs, 1); |
| sblock->sctx = sctx; |
| sblock->no_io_error_seen = 1; |
| sblock->sparity = sparity; |
| scrub_parity_get(sparity); |
| |
| for (index = 0; len > 0; index++) { |
| struct scrub_page *spage; |
| u64 l = min_t(u64, len, PAGE_SIZE); |
| |
| spage = kzalloc(sizeof(*spage), GFP_KERNEL); |
| if (!spage) { |
| leave_nomem: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| scrub_block_put(sblock); |
| return -ENOMEM; |
| } |
| BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); |
| /* For scrub block */ |
| scrub_page_get(spage); |
| sblock->pagev[index] = spage; |
| /* For scrub parity */ |
| scrub_page_get(spage); |
| list_add_tail(&spage->list, &sparity->spages); |
| spage->sblock = sblock; |
| spage->dev = dev; |
| spage->flags = flags; |
| spage->generation = gen; |
| spage->logical = logical; |
| spage->physical = physical; |
| spage->mirror_num = mirror_num; |
| if (csum) { |
| spage->have_csum = 1; |
| memcpy(spage->csum, csum, sctx->csum_size); |
| } else { |
| spage->have_csum = 0; |
| } |
| sblock->page_count++; |
| spage->page = alloc_page(GFP_KERNEL); |
| if (!spage->page) |
| goto leave_nomem; |
| len -= l; |
| logical += l; |
| physical += l; |
| } |
| |
| WARN_ON(sblock->page_count == 0); |
| for (index = 0; index < sblock->page_count; index++) { |
| struct scrub_page *spage = sblock->pagev[index]; |
| int ret; |
| |
| ret = scrub_add_page_to_rd_bio(sctx, spage); |
| if (ret) { |
| scrub_block_put(sblock); |
| return ret; |
| } |
| } |
| |
| /* last one frees, either here or in bio completion for last page */ |
| scrub_block_put(sblock); |
| return 0; |
| } |
| |
| static int scrub_extent_for_parity(struct scrub_parity *sparity, |
| u64 logical, u64 len, |
| u64 physical, struct btrfs_device *dev, |
| u64 flags, u64 gen, int mirror_num) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| int ret; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| u32 blocksize; |
| |
| if (dev->missing) { |
| scrub_parity_mark_sectors_error(sparity, logical, len); |
| return 0; |
| } |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| blocksize = sctx->fs_info->sectorsize; |
| } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| blocksize = sctx->fs_info->nodesize; |
| } else { |
| blocksize = sctx->fs_info->sectorsize; |
| WARN_ON(1); |
| } |
| |
| while (len) { |
| u64 l = min_t(u64, len, blocksize); |
| int have_csum = 0; |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| /* push csums to sbio */ |
| have_csum = scrub_find_csum(sctx, logical, csum); |
| if (have_csum == 0) |
| goto skip; |
| } |
| ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, |
| flags, gen, mirror_num, |
| have_csum ? csum : NULL); |
| if (ret) |
| return ret; |
| skip: |
| len -= l; |
| logical += l; |
| physical += l; |
| } |
| return 0; |
| } |
| |
| /* |
| * Given a physical address, this will calculate it's |
| * logical offset. if this is a parity stripe, it will return |
| * the most left data stripe's logical offset. |
| * |
| * return 0 if it is a data stripe, 1 means parity stripe. |
| */ |
| static int get_raid56_logic_offset(u64 physical, int num, |
| struct map_lookup *map, u64 *offset, |
| u64 *stripe_start) |
| { |
| int i; |
| int j = 0; |
| u64 stripe_nr; |
| u64 last_offset; |
| u32 stripe_index; |
| u32 rot; |
| |
| last_offset = (physical - map->stripes[num].physical) * |
| nr_data_stripes(map); |
| if (stripe_start) |
| *stripe_start = last_offset; |
| |
| *offset = last_offset; |
| for (i = 0; i < nr_data_stripes(map); i++) { |
| *offset = last_offset + i * map->stripe_len; |
| |
| stripe_nr = div64_u64(*offset, map->stripe_len); |
| stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); |
| |
| /* Work out the disk rotation on this stripe-set */ |
| stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); |
| /* calculate which stripe this data locates */ |
| rot += i; |
| stripe_index = rot % map->num_stripes; |
| if (stripe_index == num) |
| return 0; |
| if (stripe_index < num) |
| j++; |
| } |
| *offset = last_offset + j * map->stripe_len; |
| return 1; |
| } |
| |
| static void scrub_free_parity(struct scrub_parity *sparity) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| struct scrub_page *curr, *next; |
| int nbits; |
| |
| nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); |
| if (nbits) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors += nbits; |
| sctx->stat.uncorrectable_errors += nbits; |
| spin_unlock(&sctx->stat_lock); |
| } |
| |
| list_for_each_entry_safe(curr, next, &sparity->spages, list) { |
| list_del_init(&curr->list); |
| scrub_page_put(curr); |
| } |
| |
| kfree(sparity); |
| } |
| |
| static void scrub_parity_bio_endio_worker(struct btrfs_work *work) |
| { |
| struct scrub_parity *sparity = container_of(work, struct scrub_parity, |
| work); |
| struct scrub_ctx *sctx = sparity->sctx; |
| |
| scrub_free_parity(sparity); |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static void scrub_parity_bio_endio(struct bio *bio) |
| { |
| struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; |
| struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; |
| |
| if (bio->bi_status) |
| bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, |
| sparity->nsectors); |
| |
| bio_put(bio); |
| |
| btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, |
| scrub_parity_bio_endio_worker, NULL, NULL); |
| btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); |
| } |
| |
| static void scrub_parity_check_and_repair(struct scrub_parity *sparity) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct bio *bio; |
| struct btrfs_raid_bio *rbio; |
| struct btrfs_bio *bbio = NULL; |
| u64 length; |
| int ret; |
| |
| if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, |
| sparity->nsectors)) |
| goto out; |
| |
| length = sparity->logic_end - sparity->logic_start; |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, |
| &length, &bbio); |
| if (ret || !bbio || !bbio->raid_map) |
| goto bbio_out; |
| |
| bio = btrfs_io_bio_alloc(0); |
| bio->bi_iter.bi_sector = sparity->logic_start >> 9; |
| bio->bi_private = sparity; |
| bio->bi_end_io = scrub_parity_bio_endio; |
| |
| rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, |
| length, sparity->scrub_dev, |
| sparity->dbitmap, |
| sparity->nsectors); |
| if (!rbio) |
| goto rbio_out; |
| |
| scrub_pending_bio_inc(sctx); |
| raid56_parity_submit_scrub_rbio(rbio); |
| return; |
| |
| rbio_out: |
| bio_put(bio); |
| bbio_out: |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_put_bbio(bbio); |
| bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, |
| sparity->nsectors); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| out: |
| scrub_free_parity(sparity); |
| } |
| |
| static inline int scrub_calc_parity_bitmap_len(int nsectors) |
| { |
| return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); |
| } |
| |
| static void scrub_parity_get(struct scrub_parity *sparity) |
| { |
| refcount_inc(&sparity->refs); |
| } |
| |
| static void scrub_parity_put(struct scrub_parity *sparity) |
| { |
| if (!refcount_dec_and_test(&sparity->refs)) |
| return; |
| |
| scrub_parity_check_and_repair(sparity); |
| } |
| |
| static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, |
| struct map_lookup *map, |
| struct btrfs_device *sdev, |
| struct btrfs_path *path, |
| u64 logic_start, |
| u64 logic_end) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_root *root = fs_info->extent_root; |
| struct btrfs_root *csum_root = fs_info->csum_root; |
| struct btrfs_extent_item *extent; |
| struct btrfs_bio *bbio = NULL; |
| u64 flags; |
| int ret; |
| int slot; |
| struct extent_buffer *l; |
| struct btrfs_key key; |
| u64 generation; |
| u64 extent_logical; |
| u64 extent_physical; |
| u64 extent_len; |
| u64 mapped_length; |
| struct btrfs_device *extent_dev; |
| struct scrub_parity *sparity; |
| int nsectors; |
| int bitmap_len; |
| int extent_mirror_num; |
| int stop_loop = 0; |
| |
| nsectors = div_u64(map->stripe_len, fs_info->sectorsize); |
| bitmap_len = scrub_calc_parity_bitmap_len(nsectors); |
| sparity = kzalloc(sizeof(struct scrub_
|