| /* | 
 |  * This file is part of the Chelsio T4 Ethernet driver for Linux. | 
 |  * | 
 |  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the | 
 |  * OpenIB.org BSD license below: | 
 |  * | 
 |  *     Redistribution and use in source and binary forms, with or | 
 |  *     without modification, are permitted provided that the following | 
 |  *     conditions are met: | 
 |  * | 
 |  *      - Redistributions of source code must retain the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer. | 
 |  * | 
 |  *      - Redistributions in binary form must reproduce the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer in the documentation and/or other materials | 
 |  *        provided with the distribution. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  */ | 
 |  | 
 | #include <linux/skbuff.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/export.h> | 
 | #include <net/ipv6.h> | 
 | #include <net/tcp.h> | 
 | #ifdef CONFIG_NET_RX_BUSY_POLL | 
 | #include <net/busy_poll.h> | 
 | #endif /* CONFIG_NET_RX_BUSY_POLL */ | 
 | #include "cxgb4.h" | 
 | #include "t4_regs.h" | 
 | #include "t4_values.h" | 
 | #include "t4_msg.h" | 
 | #include "t4fw_api.h" | 
 |  | 
 | /* | 
 |  * Rx buffer size.  We use largish buffers if possible but settle for single | 
 |  * pages under memory shortage. | 
 |  */ | 
 | #if PAGE_SHIFT >= 16 | 
 | # define FL_PG_ORDER 0 | 
 | #else | 
 | # define FL_PG_ORDER (16 - PAGE_SHIFT) | 
 | #endif | 
 |  | 
 | /* RX_PULL_LEN should be <= RX_COPY_THRES */ | 
 | #define RX_COPY_THRES    256 | 
 | #define RX_PULL_LEN      128 | 
 |  | 
 | /* | 
 |  * Main body length for sk_buffs used for Rx Ethernet packets with fragments. | 
 |  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. | 
 |  */ | 
 | #define RX_PKT_SKB_LEN   512 | 
 |  | 
 | /* | 
 |  * Max number of Tx descriptors we clean up at a time.  Should be modest as | 
 |  * freeing skbs isn't cheap and it happens while holding locks.  We just need | 
 |  * to free packets faster than they arrive, we eventually catch up and keep | 
 |  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES. | 
 |  */ | 
 | #define MAX_TX_RECLAIM 16 | 
 |  | 
 | /* | 
 |  * Max number of Rx buffers we replenish at a time.  Again keep this modest, | 
 |  * allocating buffers isn't cheap either. | 
 |  */ | 
 | #define MAX_RX_REFILL 16U | 
 |  | 
 | /* | 
 |  * Period of the Rx queue check timer.  This timer is infrequent as it has | 
 |  * something to do only when the system experiences severe memory shortage. | 
 |  */ | 
 | #define RX_QCHECK_PERIOD (HZ / 2) | 
 |  | 
 | /* | 
 |  * Period of the Tx queue check timer. | 
 |  */ | 
 | #define TX_QCHECK_PERIOD (HZ / 2) | 
 |  | 
 | /* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate | 
 |  * (in RX_QCHECK_PERIOD multiples).  If we find one of the SGE Ingress DMA | 
 |  * State Machines in the same state for this amount of time (in HZ) then we'll | 
 |  * issue a warning about a potential hang.  We'll repeat the warning as the | 
 |  * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till | 
 |  * the situation clears.  If the situation clears, we'll note that as well. | 
 |  */ | 
 | #define SGE_IDMA_WARN_THRESH (1 * HZ) | 
 | #define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD) | 
 |  | 
 | /* | 
 |  * Max number of Tx descriptors to be reclaimed by the Tx timer. | 
 |  */ | 
 | #define MAX_TIMER_TX_RECLAIM 100 | 
 |  | 
 | /* | 
 |  * Timer index used when backing off due to memory shortage. | 
 |  */ | 
 | #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) | 
 |  | 
 | /* | 
 |  * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will | 
 |  * attempt to refill it. | 
 |  */ | 
 | #define FL_STARVE_THRES 4 | 
 |  | 
 | /* | 
 |  * Suspend an Ethernet Tx queue with fewer available descriptors than this. | 
 |  * This is the same as calc_tx_descs() for a TSO packet with | 
 |  * nr_frags == MAX_SKB_FRAGS. | 
 |  */ | 
 | #define ETHTXQ_STOP_THRES \ | 
 | 	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) | 
 |  | 
 | /* | 
 |  * Suspension threshold for non-Ethernet Tx queues.  We require enough room | 
 |  * for a full sized WR. | 
 |  */ | 
 | #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) | 
 |  | 
 | /* | 
 |  * Max Tx descriptor space we allow for an Ethernet packet to be inlined | 
 |  * into a WR. | 
 |  */ | 
 | #define MAX_IMM_TX_PKT_LEN 128 | 
 |  | 
 | /* | 
 |  * Max size of a WR sent through a control Tx queue. | 
 |  */ | 
 | #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN | 
 |  | 
 | struct tx_sw_desc {                /* SW state per Tx descriptor */ | 
 | 	struct sk_buff *skb; | 
 | 	struct ulptx_sgl *sgl; | 
 | }; | 
 |  | 
 | struct rx_sw_desc {                /* SW state per Rx descriptor */ | 
 | 	struct page *page; | 
 | 	dma_addr_t dma_addr; | 
 | }; | 
 |  | 
 | /* | 
 |  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb | 
 |  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs. | 
 |  * We could easily support more but there doesn't seem to be much need for | 
 |  * that ... | 
 |  */ | 
 | #define FL_MTU_SMALL 1500 | 
 | #define FL_MTU_LARGE 9000 | 
 |  | 
 | static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, | 
 | 					  unsigned int mtu) | 
 | { | 
 | 	struct sge *s = &adapter->sge; | 
 |  | 
 | 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); | 
 | } | 
 |  | 
 | #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) | 
 | #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) | 
 |  | 
 | /* | 
 |  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses | 
 |  * these to specify the buffer size as an index into the SGE Free List Buffer | 
 |  * Size register array.  We also use bit 4, when the buffer has been unmapped | 
 |  * for DMA, but this is of course never sent to the hardware and is only used | 
 |  * to prevent double unmappings.  All of the above requires that the Free List | 
 |  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are | 
 |  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal | 
 |  * Free List Buffer alignment is 32 bytes, this works out for us ... | 
 |  */ | 
 | enum { | 
 | 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */ | 
 | 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */ | 
 | 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */ | 
 |  | 
 | 	/* | 
 | 	 * XXX We shouldn't depend on being able to use these indices. | 
 | 	 * XXX Especially when some other Master PF has initialized the | 
 | 	 * XXX adapter or we use the Firmware Configuration File.  We | 
 | 	 * XXX should really search through the Host Buffer Size register | 
 | 	 * XXX array for the appropriately sized buffer indices. | 
 | 	 */ | 
 | 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */ | 
 | 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */ | 
 |  | 
 | 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */ | 
 | 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */ | 
 | }; | 
 |  | 
 | static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; | 
 | #define MIN_NAPI_WORK  1 | 
 |  | 
 | static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) | 
 | { | 
 | 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; | 
 | } | 
 |  | 
 | static inline bool is_buf_mapped(const struct rx_sw_desc *d) | 
 | { | 
 | 	return !(d->dma_addr & RX_UNMAPPED_BUF); | 
 | } | 
 |  | 
 | /** | 
 |  *	txq_avail - return the number of available slots in a Tx queue | 
 |  *	@q: the Tx queue | 
 |  * | 
 |  *	Returns the number of descriptors in a Tx queue available to write new | 
 |  *	packets. | 
 |  */ | 
 | static inline unsigned int txq_avail(const struct sge_txq *q) | 
 | { | 
 | 	return q->size - 1 - q->in_use; | 
 | } | 
 |  | 
 | /** | 
 |  *	fl_cap - return the capacity of a free-buffer list | 
 |  *	@fl: the FL | 
 |  * | 
 |  *	Returns the capacity of a free-buffer list.  The capacity is less than | 
 |  *	the size because one descriptor needs to be left unpopulated, otherwise | 
 |  *	HW will think the FL is empty. | 
 |  */ | 
 | static inline unsigned int fl_cap(const struct sge_fl *fl) | 
 | { | 
 | 	return fl->size - 8;   /* 1 descriptor = 8 buffers */ | 
 | } | 
 |  | 
 | static inline bool fl_starving(const struct sge_fl *fl) | 
 | { | 
 | 	return fl->avail - fl->pend_cred <= FL_STARVE_THRES; | 
 | } | 
 |  | 
 | static int map_skb(struct device *dev, const struct sk_buff *skb, | 
 | 		   dma_addr_t *addr) | 
 | { | 
 | 	const skb_frag_t *fp, *end; | 
 | 	const struct skb_shared_info *si; | 
 |  | 
 | 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, *addr)) | 
 | 		goto out_err; | 
 |  | 
 | 	si = skb_shinfo(skb); | 
 | 	end = &si->frags[si->nr_frags]; | 
 |  | 
 | 	for (fp = si->frags; fp < end; fp++) { | 
 | 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), | 
 | 					   DMA_TO_DEVICE); | 
 | 		if (dma_mapping_error(dev, *addr)) | 
 | 			goto unwind; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | unwind: | 
 | 	while (fp-- > si->frags) | 
 | 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); | 
 |  | 
 | 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); | 
 | out_err: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NEED_DMA_MAP_STATE | 
 | static void unmap_skb(struct device *dev, const struct sk_buff *skb, | 
 | 		      const dma_addr_t *addr) | 
 | { | 
 | 	const skb_frag_t *fp, *end; | 
 | 	const struct skb_shared_info *si; | 
 |  | 
 | 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); | 
 |  | 
 | 	si = skb_shinfo(skb); | 
 | 	end = &si->frags[si->nr_frags]; | 
 | 	for (fp = si->frags; fp < end; fp++) | 
 | 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); | 
 | } | 
 |  | 
 | /** | 
 |  *	deferred_unmap_destructor - unmap a packet when it is freed | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	This is the packet destructor used for Tx packets that need to remain | 
 |  *	mapped until they are freed rather than until their Tx descriptors are | 
 |  *	freed. | 
 |  */ | 
 | static void deferred_unmap_destructor(struct sk_buff *skb) | 
 | { | 
 | 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); | 
 | } | 
 | #endif | 
 |  | 
 | static void unmap_sgl(struct device *dev, const struct sk_buff *skb, | 
 | 		      const struct ulptx_sgl *sgl, const struct sge_txq *q) | 
 | { | 
 | 	const struct ulptx_sge_pair *p; | 
 | 	unsigned int nfrags = skb_shinfo(skb)->nr_frags; | 
 |  | 
 | 	if (likely(skb_headlen(skb))) | 
 | 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), | 
 | 				 DMA_TO_DEVICE); | 
 | 	else { | 
 | 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), | 
 | 			       DMA_TO_DEVICE); | 
 | 		nfrags--; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * the complexity below is because of the possibility of a wrap-around | 
 | 	 * in the middle of an SGL | 
 | 	 */ | 
 | 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { | 
 | 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { | 
 | unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]), | 
 | 				       ntohl(p->len[0]), DMA_TO_DEVICE); | 
 | 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]), | 
 | 				       ntohl(p->len[1]), DMA_TO_DEVICE); | 
 | 			p++; | 
 | 		} else if ((u8 *)p == (u8 *)q->stat) { | 
 | 			p = (const struct ulptx_sge_pair *)q->desc; | 
 | 			goto unmap; | 
 | 		} else if ((u8 *)p + 8 == (u8 *)q->stat) { | 
 | 			const __be64 *addr = (const __be64 *)q->desc; | 
 |  | 
 | 			dma_unmap_page(dev, be64_to_cpu(addr[0]), | 
 | 				       ntohl(p->len[0]), DMA_TO_DEVICE); | 
 | 			dma_unmap_page(dev, be64_to_cpu(addr[1]), | 
 | 				       ntohl(p->len[1]), DMA_TO_DEVICE); | 
 | 			p = (const struct ulptx_sge_pair *)&addr[2]; | 
 | 		} else { | 
 | 			const __be64 *addr = (const __be64 *)q->desc; | 
 |  | 
 | 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]), | 
 | 				       ntohl(p->len[0]), DMA_TO_DEVICE); | 
 | 			dma_unmap_page(dev, be64_to_cpu(addr[0]), | 
 | 				       ntohl(p->len[1]), DMA_TO_DEVICE); | 
 | 			p = (const struct ulptx_sge_pair *)&addr[1]; | 
 | 		} | 
 | 	} | 
 | 	if (nfrags) { | 
 | 		__be64 addr; | 
 |  | 
 | 		if ((u8 *)p == (u8 *)q->stat) | 
 | 			p = (const struct ulptx_sge_pair *)q->desc; | 
 | 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : | 
 | 						       *(const __be64 *)q->desc; | 
 | 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), | 
 | 			       DMA_TO_DEVICE); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	free_tx_desc - reclaims Tx descriptors and their buffers | 
 |  *	@adapter: the adapter | 
 |  *	@q: the Tx queue to reclaim descriptors from | 
 |  *	@n: the number of descriptors to reclaim | 
 |  *	@unmap: whether the buffers should be unmapped for DMA | 
 |  * | 
 |  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated | 
 |  *	Tx buffers.  Called with the Tx queue lock held. | 
 |  */ | 
 | static void free_tx_desc(struct adapter *adap, struct sge_txq *q, | 
 | 			 unsigned int n, bool unmap) | 
 | { | 
 | 	struct tx_sw_desc *d; | 
 | 	unsigned int cidx = q->cidx; | 
 | 	struct device *dev = adap->pdev_dev; | 
 |  | 
 | 	d = &q->sdesc[cidx]; | 
 | 	while (n--) { | 
 | 		if (d->skb) {                       /* an SGL is present */ | 
 | 			if (unmap) | 
 | 				unmap_sgl(dev, d->skb, d->sgl, q); | 
 | 			dev_consume_skb_any(d->skb); | 
 | 			d->skb = NULL; | 
 | 		} | 
 | 		++d; | 
 | 		if (++cidx == q->size) { | 
 | 			cidx = 0; | 
 | 			d = q->sdesc; | 
 | 		} | 
 | 	} | 
 | 	q->cidx = cidx; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the number of reclaimable descriptors in a Tx queue. | 
 |  */ | 
 | static inline int reclaimable(const struct sge_txq *q) | 
 | { | 
 | 	int hw_cidx = ntohs(q->stat->cidx); | 
 | 	hw_cidx -= q->cidx; | 
 | 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; | 
 | } | 
 |  | 
 | /** | 
 |  *	reclaim_completed_tx - reclaims completed Tx descriptors | 
 |  *	@adap: the adapter | 
 |  *	@q: the Tx queue to reclaim completed descriptors from | 
 |  *	@unmap: whether the buffers should be unmapped for DMA | 
 |  * | 
 |  *	Reclaims Tx descriptors that the SGE has indicated it has processed, | 
 |  *	and frees the associated buffers if possible.  Called with the Tx | 
 |  *	queue locked. | 
 |  */ | 
 | static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, | 
 | 					bool unmap) | 
 | { | 
 | 	int avail = reclaimable(q); | 
 |  | 
 | 	if (avail) { | 
 | 		/* | 
 | 		 * Limit the amount of clean up work we do at a time to keep | 
 | 		 * the Tx lock hold time O(1). | 
 | 		 */ | 
 | 		if (avail > MAX_TX_RECLAIM) | 
 | 			avail = MAX_TX_RECLAIM; | 
 |  | 
 | 		free_tx_desc(adap, q, avail, unmap); | 
 | 		q->in_use -= avail; | 
 | 	} | 
 | } | 
 |  | 
 | static inline int get_buf_size(struct adapter *adapter, | 
 | 			       const struct rx_sw_desc *d) | 
 | { | 
 | 	struct sge *s = &adapter->sge; | 
 | 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; | 
 | 	int buf_size; | 
 |  | 
 | 	switch (rx_buf_size_idx) { | 
 | 	case RX_SMALL_PG_BUF: | 
 | 		buf_size = PAGE_SIZE; | 
 | 		break; | 
 |  | 
 | 	case RX_LARGE_PG_BUF: | 
 | 		buf_size = PAGE_SIZE << s->fl_pg_order; | 
 | 		break; | 
 |  | 
 | 	case RX_SMALL_MTU_BUF: | 
 | 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter); | 
 | 		break; | 
 |  | 
 | 	case RX_LARGE_MTU_BUF: | 
 | 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	return buf_size; | 
 | } | 
 |  | 
 | /** | 
 |  *	free_rx_bufs - free the Rx buffers on an SGE free list | 
 |  *	@adap: the adapter | 
 |  *	@q: the SGE free list to free buffers from | 
 |  *	@n: how many buffers to free | 
 |  * | 
 |  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The | 
 |  *	buffers must be made inaccessible to HW before calling this function. | 
 |  */ | 
 | static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) | 
 | { | 
 | 	while (n--) { | 
 | 		struct rx_sw_desc *d = &q->sdesc[q->cidx]; | 
 |  | 
 | 		if (is_buf_mapped(d)) | 
 | 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d), | 
 | 				       get_buf_size(adap, d), | 
 | 				       PCI_DMA_FROMDEVICE); | 
 | 		put_page(d->page); | 
 | 		d->page = NULL; | 
 | 		if (++q->cidx == q->size) | 
 | 			q->cidx = 0; | 
 | 		q->avail--; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list | 
 |  *	@adap: the adapter | 
 |  *	@q: the SGE free list | 
 |  * | 
 |  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The | 
 |  *	buffer must be made inaccessible to HW before calling this function. | 
 |  * | 
 |  *	This is similar to @free_rx_bufs above but does not free the buffer. | 
 |  *	Do note that the FL still loses any further access to the buffer. | 
 |  */ | 
 | static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) | 
 | { | 
 | 	struct rx_sw_desc *d = &q->sdesc[q->cidx]; | 
 |  | 
 | 	if (is_buf_mapped(d)) | 
 | 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d), | 
 | 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE); | 
 | 	d->page = NULL; | 
 | 	if (++q->cidx == q->size) | 
 | 		q->cidx = 0; | 
 | 	q->avail--; | 
 | } | 
 |  | 
 | static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) | 
 | { | 
 | 	u32 val; | 
 | 	if (q->pend_cred >= 8) { | 
 | 		if (is_t4(adap->params.chip)) | 
 | 			val = PIDX_V(q->pend_cred / 8); | 
 | 		else | 
 | 			val = PIDX_T5_V(q->pend_cred / 8) | | 
 | 				DBTYPE_F; | 
 | 		val |= DBPRIO_F; | 
 | 		wmb(); | 
 |  | 
 | 		/* If we don't have access to the new User Doorbell (T5+), use | 
 | 		 * the old doorbell mechanism; otherwise use the new BAR2 | 
 | 		 * mechanism. | 
 | 		 */ | 
 | 		if (unlikely(q->bar2_addr == NULL)) { | 
 | 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), | 
 | 				     val | QID_V(q->cntxt_id)); | 
 | 		} else { | 
 | 			writel(val | QID_V(q->bar2_qid), | 
 | 			       q->bar2_addr + SGE_UDB_KDOORBELL); | 
 |  | 
 | 			/* This Write memory Barrier will force the write to | 
 | 			 * the User Doorbell area to be flushed. | 
 | 			 */ | 
 | 			wmb(); | 
 | 		} | 
 | 		q->pend_cred &= 7; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, | 
 | 				  dma_addr_t mapping) | 
 | { | 
 | 	sd->page = pg; | 
 | 	sd->dma_addr = mapping;      /* includes size low bits */ | 
 | } | 
 |  | 
 | /** | 
 |  *	refill_fl - refill an SGE Rx buffer ring | 
 |  *	@adap: the adapter | 
 |  *	@q: the ring to refill | 
 |  *	@n: the number of new buffers to allocate | 
 |  *	@gfp: the gfp flags for the allocations | 
 |  * | 
 |  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers, | 
 |  *	allocated with the supplied gfp flags.  The caller must assure that | 
 |  *	@n does not exceed the queue's capacity.  If afterwards the queue is | 
 |  *	found critically low mark it as starving in the bitmap of starving FLs. | 
 |  * | 
 |  *	Returns the number of buffers allocated. | 
 |  */ | 
 | static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, | 
 | 			      gfp_t gfp) | 
 | { | 
 | 	struct sge *s = &adap->sge; | 
 | 	struct page *pg; | 
 | 	dma_addr_t mapping; | 
 | 	unsigned int cred = q->avail; | 
 | 	__be64 *d = &q->desc[q->pidx]; | 
 | 	struct rx_sw_desc *sd = &q->sdesc[q->pidx]; | 
 |  | 
 | 	gfp |= __GFP_NOWARN; | 
 |  | 
 | 	if (s->fl_pg_order == 0) | 
 | 		goto alloc_small_pages; | 
 |  | 
 | 	/* | 
 | 	 * Prefer large buffers | 
 | 	 */ | 
 | 	while (n) { | 
 | 		pg = __dev_alloc_pages(gfp, s->fl_pg_order); | 
 | 		if (unlikely(!pg)) { | 
 | 			q->large_alloc_failed++; | 
 | 			break;       /* fall back to single pages */ | 
 | 		} | 
 |  | 
 | 		mapping = dma_map_page(adap->pdev_dev, pg, 0, | 
 | 				       PAGE_SIZE << s->fl_pg_order, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 | 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { | 
 | 			__free_pages(pg, s->fl_pg_order); | 
 | 			goto out;   /* do not try small pages for this error */ | 
 | 		} | 
 | 		mapping |= RX_LARGE_PG_BUF; | 
 | 		*d++ = cpu_to_be64(mapping); | 
 |  | 
 | 		set_rx_sw_desc(sd, pg, mapping); | 
 | 		sd++; | 
 |  | 
 | 		q->avail++; | 
 | 		if (++q->pidx == q->size) { | 
 | 			q->pidx = 0; | 
 | 			sd = q->sdesc; | 
 | 			d = q->desc; | 
 | 		} | 
 | 		n--; | 
 | 	} | 
 |  | 
 | alloc_small_pages: | 
 | 	while (n--) { | 
 | 		pg = __dev_alloc_page(gfp); | 
 | 		if (unlikely(!pg)) { | 
 | 			q->alloc_failed++; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 | 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { | 
 | 			put_page(pg); | 
 | 			goto out; | 
 | 		} | 
 | 		*d++ = cpu_to_be64(mapping); | 
 |  | 
 | 		set_rx_sw_desc(sd, pg, mapping); | 
 | 		sd++; | 
 |  | 
 | 		q->avail++; | 
 | 		if (++q->pidx == q->size) { | 
 | 			q->pidx = 0; | 
 | 			sd = q->sdesc; | 
 | 			d = q->desc; | 
 | 		} | 
 | 	} | 
 |  | 
 | out:	cred = q->avail - cred; | 
 | 	q->pend_cred += cred; | 
 | 	ring_fl_db(adap, q); | 
 |  | 
 | 	if (unlikely(fl_starving(q))) { | 
 | 		smp_wmb(); | 
 | 		set_bit(q->cntxt_id - adap->sge.egr_start, | 
 | 			adap->sge.starving_fl); | 
 | 	} | 
 |  | 
 | 	return cred; | 
 | } | 
 |  | 
 | static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) | 
 | { | 
 | 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), | 
 | 		  GFP_ATOMIC); | 
 | } | 
 |  | 
 | /** | 
 |  *	alloc_ring - allocate resources for an SGE descriptor ring | 
 |  *	@dev: the PCI device's core device | 
 |  *	@nelem: the number of descriptors | 
 |  *	@elem_size: the size of each descriptor | 
 |  *	@sw_size: the size of the SW state associated with each ring element | 
 |  *	@phys: the physical address of the allocated ring | 
 |  *	@metadata: address of the array holding the SW state for the ring | 
 |  *	@stat_size: extra space in HW ring for status information | 
 |  *	@node: preferred node for memory allocations | 
 |  * | 
 |  *	Allocates resources for an SGE descriptor ring, such as Tx queues, | 
 |  *	free buffer lists, or response queues.  Each SGE ring requires | 
 |  *	space for its HW descriptors plus, optionally, space for the SW state | 
 |  *	associated with each HW entry (the metadata).  The function returns | 
 |  *	three values: the virtual address for the HW ring (the return value | 
 |  *	of the function), the bus address of the HW ring, and the address | 
 |  *	of the SW ring. | 
 |  */ | 
 | static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, | 
 | 			size_t sw_size, dma_addr_t *phys, void *metadata, | 
 | 			size_t stat_size, int node) | 
 | { | 
 | 	size_t len = nelem * elem_size + stat_size; | 
 | 	void *s = NULL; | 
 | 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); | 
 |  | 
 | 	if (!p) | 
 | 		return NULL; | 
 | 	if (sw_size) { | 
 | 		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); | 
 |  | 
 | 		if (!s) { | 
 | 			dma_free_coherent(dev, len, p, *phys); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	if (metadata) | 
 | 		*(void **)metadata = s; | 
 | 	memset(p, 0, len); | 
 | 	return p; | 
 | } | 
 |  | 
 | /** | 
 |  *	sgl_len - calculates the size of an SGL of the given capacity | 
 |  *	@n: the number of SGL entries | 
 |  * | 
 |  *	Calculates the number of flits needed for a scatter/gather list that | 
 |  *	can hold the given number of entries. | 
 |  */ | 
 | static inline unsigned int sgl_len(unsigned int n) | 
 | { | 
 | 	n--; | 
 | 	return (3 * n) / 2 + (n & 1) + 2; | 
 | } | 
 |  | 
 | /** | 
 |  *	flits_to_desc - returns the num of Tx descriptors for the given flits | 
 |  *	@n: the number of flits | 
 |  * | 
 |  *	Returns the number of Tx descriptors needed for the supplied number | 
 |  *	of flits. | 
 |  */ | 
 | static inline unsigned int flits_to_desc(unsigned int n) | 
 | { | 
 | 	BUG_ON(n > SGE_MAX_WR_LEN / 8); | 
 | 	return DIV_ROUND_UP(n, 8); | 
 | } | 
 |  | 
 | /** | 
 |  *	is_eth_imm - can an Ethernet packet be sent as immediate data? | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Returns whether an Ethernet packet is small enough to fit as | 
 |  *	immediate data. Return value corresponds to headroom required. | 
 |  */ | 
 | static inline int is_eth_imm(const struct sk_buff *skb) | 
 | { | 
 | 	int hdrlen = skb_shinfo(skb)->gso_size ? | 
 | 			sizeof(struct cpl_tx_pkt_lso_core) : 0; | 
 |  | 
 | 	hdrlen += sizeof(struct cpl_tx_pkt); | 
 | 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) | 
 | 		return hdrlen; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	calc_tx_flits - calculate the number of flits for a packet Tx WR | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Returns the number of flits needed for a Tx WR for the given Ethernet | 
 |  *	packet, including the needed WR and CPL headers. | 
 |  */ | 
 | static inline unsigned int calc_tx_flits(const struct sk_buff *skb) | 
 | { | 
 | 	unsigned int flits; | 
 | 	int hdrlen = is_eth_imm(skb); | 
 |  | 
 | 	if (hdrlen) | 
 | 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); | 
 |  | 
 | 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4; | 
 | 	if (skb_shinfo(skb)->gso_size) | 
 | 		flits += 2; | 
 | 	return flits; | 
 | } | 
 |  | 
 | /** | 
 |  *	calc_tx_descs - calculate the number of Tx descriptors for a packet | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Returns the number of Tx descriptors needed for the given Ethernet | 
 |  *	packet, including the needed WR and CPL headers. | 
 |  */ | 
 | static inline unsigned int calc_tx_descs(const struct sk_buff *skb) | 
 | { | 
 | 	return flits_to_desc(calc_tx_flits(skb)); | 
 | } | 
 |  | 
 | /** | 
 |  *	write_sgl - populate a scatter/gather list for a packet | 
 |  *	@skb: the packet | 
 |  *	@q: the Tx queue we are writing into | 
 |  *	@sgl: starting location for writing the SGL | 
 |  *	@end: points right after the end of the SGL | 
 |  *	@start: start offset into skb main-body data to include in the SGL | 
 |  *	@addr: the list of bus addresses for the SGL elements | 
 |  * | 
 |  *	Generates a gather list for the buffers that make up a packet. | 
 |  *	The caller must provide adequate space for the SGL that will be written. | 
 |  *	The SGL includes all of the packet's page fragments and the data in its | 
 |  *	main body except for the first @start bytes.  @sgl must be 16-byte | 
 |  *	aligned and within a Tx descriptor with available space.  @end points | 
 |  *	right after the end of the SGL but does not account for any potential | 
 |  *	wrap around, i.e., @end > @sgl. | 
 |  */ | 
 | static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, | 
 | 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start, | 
 | 		      const dma_addr_t *addr) | 
 | { | 
 | 	unsigned int i, len; | 
 | 	struct ulptx_sge_pair *to; | 
 | 	const struct skb_shared_info *si = skb_shinfo(skb); | 
 | 	unsigned int nfrags = si->nr_frags; | 
 | 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; | 
 |  | 
 | 	len = skb_headlen(skb) - start; | 
 | 	if (likely(len)) { | 
 | 		sgl->len0 = htonl(len); | 
 | 		sgl->addr0 = cpu_to_be64(addr[0] + start); | 
 | 		nfrags++; | 
 | 	} else { | 
 | 		sgl->len0 = htonl(skb_frag_size(&si->frags[0])); | 
 | 		sgl->addr0 = cpu_to_be64(addr[1]); | 
 | 	} | 
 |  | 
 | 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | | 
 | 			      ULPTX_NSGE_V(nfrags)); | 
 | 	if (likely(--nfrags == 0)) | 
 | 		return; | 
 | 	/* | 
 | 	 * Most of the complexity below deals with the possibility we hit the | 
 | 	 * end of the queue in the middle of writing the SGL.  For this case | 
 | 	 * only we create the SGL in a temporary buffer and then copy it. | 
 | 	 */ | 
 | 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; | 
 |  | 
 | 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { | 
 | 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); | 
 | 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); | 
 | 		to->addr[0] = cpu_to_be64(addr[i]); | 
 | 		to->addr[1] = cpu_to_be64(addr[++i]); | 
 | 	} | 
 | 	if (nfrags) { | 
 | 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); | 
 | 		to->len[1] = cpu_to_be32(0); | 
 | 		to->addr[0] = cpu_to_be64(addr[i + 1]); | 
 | 	} | 
 | 	if (unlikely((u8 *)end > (u8 *)q->stat)) { | 
 | 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; | 
 |  | 
 | 		if (likely(part0)) | 
 | 			memcpy(sgl->sge, buf, part0); | 
 | 		part1 = (u8 *)end - (u8 *)q->stat; | 
 | 		memcpy(q->desc, (u8 *)buf + part0, part1); | 
 | 		end = (void *)q->desc + part1; | 
 | 	} | 
 | 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */ | 
 | 		*end = 0; | 
 | } | 
 |  | 
 | /* This function copies 64 byte coalesced work request to | 
 |  * memory mapped BAR2 space. For coalesced WR SGE fetches | 
 |  * data from the FIFO instead of from Host. | 
 |  */ | 
 | static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) | 
 | { | 
 | 	int count = 8; | 
 |  | 
 | 	while (count) { | 
 | 		writeq(*src, dst); | 
 | 		src++; | 
 | 		dst++; | 
 | 		count--; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ring_tx_db - check and potentially ring a Tx queue's doorbell | 
 |  *	@adap: the adapter | 
 |  *	@q: the Tx queue | 
 |  *	@n: number of new descriptors to give to HW | 
 |  * | 
 |  *	Ring the doorbel for a Tx queue. | 
 |  */ | 
 | static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) | 
 | { | 
 | 	wmb();            /* write descriptors before telling HW */ | 
 |  | 
 | 	/* If we don't have access to the new User Doorbell (T5+), use the old | 
 | 	 * doorbell mechanism; otherwise use the new BAR2 mechanism. | 
 | 	 */ | 
 | 	if (unlikely(q->bar2_addr == NULL)) { | 
 | 		u32 val = PIDX_V(n); | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* For T4 we need to participate in the Doorbell Recovery | 
 | 		 * mechanism. | 
 | 		 */ | 
 | 		spin_lock_irqsave(&q->db_lock, flags); | 
 | 		if (!q->db_disabled) | 
 | 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), | 
 | 				     QID_V(q->cntxt_id) | val); | 
 | 		else | 
 | 			q->db_pidx_inc += n; | 
 | 		q->db_pidx = q->pidx; | 
 | 		spin_unlock_irqrestore(&q->db_lock, flags); | 
 | 	} else { | 
 | 		u32 val = PIDX_T5_V(n); | 
 |  | 
 | 		/* T4 and later chips share the same PIDX field offset within | 
 | 		 * the doorbell, but T5 and later shrank the field in order to | 
 | 		 * gain a bit for Doorbell Priority.  The field was absurdly | 
 | 		 * large in the first place (14 bits) so we just use the T5 | 
 | 		 * and later limits and warn if a Queue ID is too large. | 
 | 		 */ | 
 | 		WARN_ON(val & DBPRIO_F); | 
 |  | 
 | 		/* If we're only writing a single TX Descriptor and we can use | 
 | 		 * Inferred QID registers, we can use the Write Combining | 
 | 		 * Gather Buffer; otherwise we use the simple doorbell. | 
 | 		 */ | 
 | 		if (n == 1 && q->bar2_qid == 0) { | 
 | 			int index = (q->pidx | 
 | 				     ? (q->pidx - 1) | 
 | 				     : (q->size - 1)); | 
 | 			u64 *wr = (u64 *)&q->desc[index]; | 
 |  | 
 | 			cxgb_pio_copy((u64 __iomem *) | 
 | 				      (q->bar2_addr + SGE_UDB_WCDOORBELL), | 
 | 				      wr); | 
 | 		} else { | 
 | 			writel(val | QID_V(q->bar2_qid), | 
 | 			       q->bar2_addr + SGE_UDB_KDOORBELL); | 
 | 		} | 
 |  | 
 | 		/* This Write Memory Barrier will force the write to the User | 
 | 		 * Doorbell area to be flushed.  This is needed to prevent | 
 | 		 * writes on different CPUs for the same queue from hitting | 
 | 		 * the adapter out of order.  This is required when some Work | 
 | 		 * Requests take the Write Combine Gather Buffer path (user | 
 | 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some | 
 | 		 * take the traditional path where we simply increment the | 
 | 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the | 
 | 		 * hardware DMA read the actual Work Request. | 
 | 		 */ | 
 | 		wmb(); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	inline_tx_skb - inline a packet's data into Tx descriptors | 
 |  *	@skb: the packet | 
 |  *	@q: the Tx queue where the packet will be inlined | 
 |  *	@pos: starting position in the Tx queue where to inline the packet | 
 |  * | 
 |  *	Inline a packet's contents directly into Tx descriptors, starting at | 
 |  *	the given position within the Tx DMA ring. | 
 |  *	Most of the complexity of this operation is dealing with wrap arounds | 
 |  *	in the middle of the packet we want to inline. | 
 |  */ | 
 | static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, | 
 | 			  void *pos) | 
 | { | 
 | 	u64 *p; | 
 | 	int left = (void *)q->stat - pos; | 
 |  | 
 | 	if (likely(skb->len <= left)) { | 
 | 		if (likely(!skb->data_len)) | 
 | 			skb_copy_from_linear_data(skb, pos, skb->len); | 
 | 		else | 
 | 			skb_copy_bits(skb, 0, pos, skb->len); | 
 | 		pos += skb->len; | 
 | 	} else { | 
 | 		skb_copy_bits(skb, 0, pos, left); | 
 | 		skb_copy_bits(skb, left, q->desc, skb->len - left); | 
 | 		pos = (void *)q->desc + (skb->len - left); | 
 | 	} | 
 |  | 
 | 	/* 0-pad to multiple of 16 */ | 
 | 	p = PTR_ALIGN(pos, 8); | 
 | 	if ((uintptr_t)p & 8) | 
 | 		*p = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Figure out what HW csum a packet wants and return the appropriate control | 
 |  * bits. | 
 |  */ | 
 | static u64 hwcsum(const struct sk_buff *skb) | 
 | { | 
 | 	int csum_type; | 
 | 	const struct iphdr *iph = ip_hdr(skb); | 
 |  | 
 | 	if (iph->version == 4) { | 
 | 		if (iph->protocol == IPPROTO_TCP) | 
 | 			csum_type = TX_CSUM_TCPIP; | 
 | 		else if (iph->protocol == IPPROTO_UDP) | 
 | 			csum_type = TX_CSUM_UDPIP; | 
 | 		else { | 
 | nocsum:			/* | 
 | 			 * unknown protocol, disable HW csum | 
 | 			 * and hope a bad packet is detected | 
 | 			 */ | 
 | 			return TXPKT_L4CSUM_DIS; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * this doesn't work with extension headers | 
 | 		 */ | 
 | 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; | 
 |  | 
 | 		if (ip6h->nexthdr == IPPROTO_TCP) | 
 | 			csum_type = TX_CSUM_TCPIP6; | 
 | 		else if (ip6h->nexthdr == IPPROTO_UDP) | 
 | 			csum_type = TX_CSUM_UDPIP6; | 
 | 		else | 
 | 			goto nocsum; | 
 | 	} | 
 |  | 
 | 	if (likely(csum_type >= TX_CSUM_TCPIP)) | 
 | 		return TXPKT_CSUM_TYPE(csum_type) | | 
 | 			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | | 
 | 			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); | 
 | 	else { | 
 | 		int start = skb_transport_offset(skb); | 
 |  | 
 | 		return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) | | 
 | 			TXPKT_CSUM_LOC(start + skb->csum_offset); | 
 | 	} | 
 | } | 
 |  | 
 | static void eth_txq_stop(struct sge_eth_txq *q) | 
 | { | 
 | 	netif_tx_stop_queue(q->txq); | 
 | 	q->q.stops++; | 
 | } | 
 |  | 
 | static inline void txq_advance(struct sge_txq *q, unsigned int n) | 
 | { | 
 | 	q->in_use += n; | 
 | 	q->pidx += n; | 
 | 	if (q->pidx >= q->size) | 
 | 		q->pidx -= q->size; | 
 | } | 
 |  | 
 | /** | 
 |  *	t4_eth_xmit - add a packet to an Ethernet Tx queue | 
 |  *	@skb: the packet | 
 |  *	@dev: the egress net device | 
 |  * | 
 |  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled. | 
 |  */ | 
 | netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	int len; | 
 | 	u32 wr_mid; | 
 | 	u64 cntrl, *end; | 
 | 	int qidx, credits; | 
 | 	unsigned int flits, ndesc; | 
 | 	struct adapter *adap; | 
 | 	struct sge_eth_txq *q; | 
 | 	const struct port_info *pi; | 
 | 	struct fw_eth_tx_pkt_wr *wr; | 
 | 	struct cpl_tx_pkt_core *cpl; | 
 | 	const struct skb_shared_info *ssi; | 
 | 	dma_addr_t addr[MAX_SKB_FRAGS + 1]; | 
 | 	bool immediate = false; | 
 |  | 
 | 	/* | 
 | 	 * The chip min packet length is 10 octets but play safe and reject | 
 | 	 * anything shorter than an Ethernet header. | 
 | 	 */ | 
 | 	if (unlikely(skb->len < ETH_HLEN)) { | 
 | out_free:	dev_kfree_skb_any(skb); | 
 | 		return NETDEV_TX_OK; | 
 | 	} | 
 |  | 
 | 	pi = netdev_priv(dev); | 
 | 	adap = pi->adapter; | 
 | 	qidx = skb_get_queue_mapping(skb); | 
 | 	q = &adap->sge.ethtxq[qidx + pi->first_qset]; | 
 |  | 
 | 	reclaim_completed_tx(adap, &q->q, true); | 
 |  | 
 | 	flits = calc_tx_flits(skb); | 
 | 	ndesc = flits_to_desc(flits); | 
 | 	credits = txq_avail(&q->q) - ndesc; | 
 |  | 
 | 	if (unlikely(credits < 0)) { | 
 | 		eth_txq_stop(q); | 
 | 		dev_err(adap->pdev_dev, | 
 | 			"%s: Tx ring %u full while queue awake!\n", | 
 | 			dev->name, qidx); | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	if (is_eth_imm(skb)) | 
 | 		immediate = true; | 
 |  | 
 | 	if (!immediate && | 
 | 	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { | 
 | 		q->mapping_err++; | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); | 
 | 	if (unlikely(credits < ETHTXQ_STOP_THRES)) { | 
 | 		eth_txq_stop(q); | 
 | 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; | 
 | 	} | 
 |  | 
 | 	wr = (void *)&q->q.desc[q->q.pidx]; | 
 | 	wr->equiq_to_len16 = htonl(wr_mid); | 
 | 	wr->r3 = cpu_to_be64(0); | 
 | 	end = (u64 *)wr + flits; | 
 |  | 
 | 	len = immediate ? skb->len : 0; | 
 | 	ssi = skb_shinfo(skb); | 
 | 	if (ssi->gso_size) { | 
 | 		struct cpl_tx_pkt_lso *lso = (void *)wr; | 
 | 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; | 
 | 		int l3hdr_len = skb_network_header_len(skb); | 
 | 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; | 
 |  | 
 | 		len += sizeof(*lso); | 
 | 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | | 
 | 				       FW_WR_IMMDLEN_V(len)); | 
 | 		lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) | | 
 | 					LSO_FIRST_SLICE | LSO_LAST_SLICE | | 
 | 					LSO_IPV6(v6) | | 
 | 					LSO_ETHHDR_LEN(eth_xtra_len / 4) | | 
 | 					LSO_IPHDR_LEN(l3hdr_len / 4) | | 
 | 					LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); | 
 | 		lso->c.ipid_ofst = htons(0); | 
 | 		lso->c.mss = htons(ssi->gso_size); | 
 | 		lso->c.seqno_offset = htonl(0); | 
 | 		if (is_t4(adap->params.chip)) | 
 | 			lso->c.len = htonl(skb->len); | 
 | 		else | 
 | 			lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len)); | 
 | 		cpl = (void *)(lso + 1); | 
 | 		cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | | 
 | 			TXPKT_IPHDR_LEN(l3hdr_len) | | 
 | 			TXPKT_ETHHDR_LEN(eth_xtra_len); | 
 | 		q->tso++; | 
 | 		q->tx_cso += ssi->gso_segs; | 
 | 	} else { | 
 | 		len += sizeof(*cpl); | 
 | 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | | 
 | 				       FW_WR_IMMDLEN_V(len)); | 
 | 		cpl = (void *)(wr + 1); | 
 | 		if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
 | 			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; | 
 | 			q->tx_cso++; | 
 | 		} else | 
 | 			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; | 
 | 	} | 
 |  | 
 | 	if (skb_vlan_tag_present(skb)) { | 
 | 		q->vlan_ins++; | 
 | 		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb)); | 
 | 	} | 
 |  | 
 | 	cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) | | 
 | 			   TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn)); | 
 | 	cpl->pack = htons(0); | 
 | 	cpl->len = htons(skb->len); | 
 | 	cpl->ctrl1 = cpu_to_be64(cntrl); | 
 |  | 
 | 	if (immediate) { | 
 | 		inline_tx_skb(skb, &q->q, cpl + 1); | 
 | 		dev_consume_skb_any(skb); | 
 | 	} else { | 
 | 		int last_desc; | 
 |  | 
 | 		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, | 
 | 			  addr); | 
 | 		skb_orphan(skb); | 
 |  | 
 | 		last_desc = q->q.pidx + ndesc - 1; | 
 | 		if (last_desc >= q->q.size) | 
 | 			last_desc -= q->q.size; | 
 | 		q->q.sdesc[last_desc].skb = skb; | 
 | 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); | 
 | 	} | 
 |  | 
 | 	txq_advance(&q->q, ndesc); | 
 |  | 
 | 	ring_tx_db(adap, &q->q, ndesc); | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | /** | 
 |  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs | 
 |  *	@q: the SGE control Tx queue | 
 |  * | 
 |  *	This is a variant of reclaim_completed_tx() that is used for Tx queues | 
 |  *	that send only immediate data (presently just the control queues) and | 
 |  *	thus do not have any sk_buffs to release. | 
 |  */ | 
 | static inline void reclaim_completed_tx_imm(struct sge_txq *q) | 
 | { | 
 | 	int hw_cidx = ntohs(q->stat->cidx); | 
 | 	int reclaim = hw_cidx - q->cidx; | 
 |  | 
 | 	if (reclaim < 0) | 
 | 		reclaim += q->size; | 
 |  | 
 | 	q->in_use -= reclaim; | 
 | 	q->cidx = hw_cidx; | 
 | } | 
 |  | 
 | /** | 
 |  *	is_imm - check whether a packet can be sent as immediate data | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Returns true if a packet can be sent as a WR with immediate data. | 
 |  */ | 
 | static inline int is_imm(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->len <= MAX_CTRL_WR_LEN; | 
 | } | 
 |  | 
 | /** | 
 |  *	ctrlq_check_stop - check if a control queue is full and should stop | 
 |  *	@q: the queue | 
 |  *	@wr: most recent WR written to the queue | 
 |  * | 
 |  *	Check if a control queue has become full and should be stopped. | 
 |  *	We clean up control queue descriptors very lazily, only when we are out. | 
 |  *	If the queue is still full after reclaiming any completed descriptors | 
 |  *	we suspend it and have the last WR wake it up. | 
 |  */ | 
 | static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) | 
 | { | 
 | 	reclaim_completed_tx_imm(&q->q); | 
 | 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { | 
 | 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); | 
 | 		q->q.stops++; | 
 | 		q->full = 1; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ctrl_xmit - send a packet through an SGE control Tx queue | 
 |  *	@q: the control queue | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Send a packet through an SGE control Tx queue.  Packets sent through | 
 |  *	a control queue must fit entirely as immediate data. | 
 |  */ | 
 | static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) | 
 | { | 
 | 	unsigned int ndesc; | 
 | 	struct fw_wr_hdr *wr; | 
 |  | 
 | 	if (unlikely(!is_imm(skb))) { | 
 | 		WARN_ON(1); | 
 | 		dev_kfree_skb(skb); | 
 | 		return NET_XMIT_DROP; | 
 | 	} | 
 |  | 
 | 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); | 
 | 	spin_lock(&q->sendq.lock); | 
 |  | 
 | 	if (unlikely(q->full)) { | 
 | 		skb->priority = ndesc;                  /* save for restart */ | 
 | 		__skb_queue_tail(&q->sendq, skb); | 
 | 		spin_unlock(&q->sendq.lock); | 
 | 		return NET_XMIT_CN; | 
 | 	} | 
 |  | 
 | 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; | 
 | 	inline_tx_skb(skb, &q->q, wr); | 
 |  | 
 | 	txq_advance(&q->q, ndesc); | 
 | 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) | 
 | 		ctrlq_check_stop(q, wr); | 
 |  | 
 | 	ring_tx_db(q->adap, &q->q, ndesc); | 
 | 	spin_unlock(&q->sendq.lock); | 
 |  | 
 | 	kfree_skb(skb); | 
 | 	return NET_XMIT_SUCCESS; | 
 | } | 
 |  | 
 | /** | 
 |  *	restart_ctrlq - restart a suspended control queue | 
 |  *	@data: the control queue to restart | 
 |  * | 
 |  *	Resumes transmission on a suspended Tx control queue. | 
 |  */ | 
 | static void restart_ctrlq(unsigned long data) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int written = 0; | 
 | 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; | 
 |  | 
 | 	spin_lock(&q->sendq.lock); | 
 | 	reclaim_completed_tx_imm(&q->q); | 
 | 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */ | 
 |  | 
 | 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) { | 
 | 		struct fw_wr_hdr *wr; | 
 | 		unsigned int ndesc = skb->priority;     /* previously saved */ | 
 |  | 
 | 		/* | 
 | 		 * Write descriptors and free skbs outside the lock to limit | 
 | 		 * wait times.  q->full is still set so new skbs will be queued. | 
 | 		 */ | 
 | 		spin_unlock(&q->sendq.lock); | 
 |  | 
 | 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; | 
 | 		inline_tx_skb(skb, &q->q, wr); | 
 | 		kfree_skb(skb); | 
 |  | 
 | 		written += ndesc; | 
 | 		txq_advance(&q->q, ndesc); | 
 | 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { | 
 | 			unsigned long old = q->q.stops; | 
 |  | 
 | 			ctrlq_check_stop(q, wr); | 
 | 			if (q->q.stops != old) {          /* suspended anew */ | 
 | 				spin_lock(&q->sendq.lock); | 
 | 				goto ringdb; | 
 | 			} | 
 | 		} | 
 | 		if (written > 16) { | 
 | 			ring_tx_db(q->adap, &q->q, written); | 
 | 			written = 0; | 
 | 		} | 
 | 		spin_lock(&q->sendq.lock); | 
 | 	} | 
 | 	q->full = 0; | 
 | ringdb: if (written) | 
 | 		ring_tx_db(q->adap, &q->q, written); | 
 | 	spin_unlock(&q->sendq.lock); | 
 | } | 
 |  | 
 | /** | 
 |  *	t4_mgmt_tx - send a management message | 
 |  *	@adap: the adapter | 
 |  *	@skb: the packet containing the management message | 
 |  * | 
 |  *	Send a management message through control queue 0. | 
 |  */ | 
 | int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	local_bh_disable(); | 
 | 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); | 
 | 	local_bh_enable(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	is_ofld_imm - check whether a packet can be sent as immediate data | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Returns true if a packet can be sent as an offload WR with immediate | 
 |  *	data.  We currently use the same limit as for Ethernet packets. | 
 |  */ | 
 | static inline int is_ofld_imm(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->len <= MAX_IMM_TX_PKT_LEN; | 
 | } | 
 |  | 
 | /** | 
 |  *	calc_tx_flits_ofld - calculate # of flits for an offload packet | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Returns the number of flits needed for the given offload packet. | 
 |  *	These packets are already fully constructed and no additional headers | 
 |  *	will be added. | 
 |  */ | 
 | static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) | 
 | { | 
 | 	unsigned int flits, cnt; | 
 |  | 
 | 	if (is_ofld_imm(skb)) | 
 | 		return DIV_ROUND_UP(skb->len, 8); | 
 |  | 
 | 	flits = skb_transport_offset(skb) / 8U;   /* headers */ | 
 | 	cnt = skb_shinfo(skb)->nr_frags; | 
 | 	if (skb_tail_pointer(skb) != skb_transport_header(skb)) | 
 | 		cnt++; | 
 | 	return flits + sgl_len(cnt); | 
 | } | 
 |  | 
 | /** | 
 |  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion | 
 |  *	@adap: the adapter | 
 |  *	@q: the queue to stop | 
 |  * | 
 |  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting | 
 |  *	inability to map packets.  A periodic timer attempts to restart | 
 |  *	queues so marked. | 
 |  */ | 
 | static void txq_stop_maperr(struct sge_ofld_txq *q) | 
 | { | 
 | 	q->mapping_err++; | 
 | 	q->q.stops++; | 
 | 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start, | 
 | 		q->adap->sge.txq_maperr); | 
 | } | 
 |  | 
 | /** | 
 |  *	ofldtxq_stop - stop an offload Tx queue that has become full | 
 |  *	@q: the queue to stop | 
 |  *	@skb: the packet causing the queue to become full | 
 |  * | 
 |  *	Stops an offload Tx queue that has become full and modifies the packet | 
 |  *	being written to request a wakeup. | 
 |  */ | 
 | static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) | 
 | { | 
 | 	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; | 
 |  | 
 | 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); | 
 | 	q->q.stops++; | 
 | 	q->full = 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	service_ofldq - restart a suspended offload queue | 
 |  *	@q: the offload queue | 
 |  * | 
 |  *	Services an offload Tx queue by moving packets from its packet queue | 
 |  *	to the HW Tx ring.  The function starts and ends with the queue locked. | 
 |  */ | 
 | static void service_ofldq(struct sge_ofld_txq *q) | 
 | { | 
 | 	u64 *pos; | 
 | 	int credits; | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int written = 0; | 
 | 	unsigned int flits, ndesc; | 
 |  | 
 | 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { | 
 | 		/* | 
 | 		 * We drop the lock but leave skb on sendq, thus retaining | 
 | 		 * exclusive access to the state of the queue. | 
 | 		 */ | 
 | 		spin_unlock(&q->sendq.lock); | 
 |  | 
 | 		reclaim_completed_tx(q->adap, &q->q, false); | 
 |  | 
 | 		flits = skb->priority;                /* previously saved */ | 
 | 		ndesc = flits_to_desc(flits); | 
 | 		credits = txq_avail(&q->q) - ndesc; | 
 | 		BUG_ON(credits < 0); | 
 | 		if (unlikely(credits < TXQ_STOP_THRES)) | 
 | 			ofldtxq_stop(q, skb); | 
 |  | 
 | 		pos = (u64 *)&q->q.desc[q->q.pidx]; | 
 | 		if (is_ofld_imm(skb)) | 
 | 			inline_tx_skb(skb, &q->q, pos); | 
 | 		else if (map_skb(q->adap->pdev_dev, skb, | 
 | 				 (dma_addr_t *)skb->head)) { | 
 | 			txq_stop_maperr(q); | 
 | 			spin_lock(&q->sendq.lock); | 
 | 			break; | 
 | 		} else { | 
 | 			int last_desc, hdr_len = skb_transport_offset(skb); | 
 |  | 
 | 			memcpy(pos, skb->data, hdr_len); | 
 | 			write_sgl(skb, &q->q, (void *)pos + hdr_len, | 
 | 				  pos + flits, hdr_len, | 
 | 				  (dma_addr_t *)skb->head); | 
 | #ifdef CONFIG_NEED_DMA_MAP_STATE | 
 | 			skb->dev = q->adap->port[0]; | 
 | 			skb->destructor = deferred_unmap_destructor; | 
 | #endif | 
 | 			last_desc = q->q.pidx + ndesc - 1; | 
 | 			if (last_desc >= q->q.size) | 
 | 				last_desc -= q->q.size; | 
 | 			q->q.sdesc[last_desc].skb = skb; | 
 | 		} | 
 |  | 
 | 		txq_advance(&q->q, ndesc); | 
 | 		written += ndesc; | 
 | 		if (unlikely(written > 32)) { | 
 | 			ring_tx_db(q->adap, &q->q, written); | 
 | 			written = 0; | 
 | 		} | 
 |  | 
 | 		spin_lock(&q->sendq.lock); | 
 | 		__skb_unlink(skb, &q->sendq); | 
 | 		if (is_ofld_imm(skb)) | 
 | 			kfree_skb(skb); | 
 | 	} | 
 | 	if (likely(written)) | 
 | 		ring_tx_db(q->adap, &q->q, written); | 
 | } | 
 |  | 
 | /** | 
 |  *	ofld_xmit - send a packet through an offload queue | 
 |  *	@q: the Tx offload queue | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Send an offload packet through an SGE offload queue. | 
 |  */ | 
 | static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) | 
 | { | 
 | 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */ | 
 | 	spin_lock(&q->sendq.lock); | 
 | 	__skb_queue_tail(&q->sendq, skb); | 
 | 	if (q->sendq.qlen == 1) | 
 | 		service_ofldq(q); | 
 | 	spin_unlock(&q->sendq.lock); | 
 | 	return NET_XMIT_SUCCESS; | 
 | } | 
 |  | 
 | /** | 
 |  *	restart_ofldq - restart a suspended offload queue | 
 |  *	@data: the offload queue to restart | 
 |  * | 
 |  *	Resumes transmission on a suspended Tx offload queue. | 
 |  */ | 
 | static void restart_ofldq(unsigned long data) | 
 | { | 
 | 	struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; | 
 |  | 
 | 	spin_lock(&q->sendq.lock); | 
 | 	q->full = 0;            /* the queue actually is completely empty now */ | 
 | 	service_ofldq(q); | 
 | 	spin_unlock(&q->sendq.lock); | 
 | } | 
 |  | 
 | /** | 
 |  *	skb_txq - return the Tx queue an offload packet should use | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Returns the Tx queue an offload packet should use as indicated by bits | 
 |  *	1-15 in the packet's queue_mapping. | 
 |  */ | 
 | static inline unsigned int skb_txq(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->queue_mapping >> 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	is_ctrl_pkt - return whether an offload packet is a control packet | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Returns whether an offload packet should use an OFLD or a CTRL | 
 |  *	Tx queue as indicated by bit 0 in the packet's queue_mapping. | 
 |  */ | 
 | static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->queue_mapping & 1; | 
 | } | 
 |  | 
 | static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) | 
 | { | 
 | 	unsigned int idx = skb_txq(skb); | 
 |  | 
 | 	if (unlikely(is_ctrl_pkt(skb))) { | 
 | 		/* Single ctrl queue is a requirement for LE workaround path */ | 
 | 		if (adap->tids.nsftids) | 
 | 			idx = 0; | 
 | 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb); | 
 | 	} | 
 | 	return ofld_xmit(&adap->sge.ofldtxq[idx], skb); | 
 | } | 
 |  | 
 | /** | 
 |  *	t4_ofld_send - send an offload packet | 
 |  *	@adap: the adapter | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Sends an offload packet.  We use the packet queue_mapping to select the | 
 |  *	appropriate Tx queue as follows: bit 0 indicates whether the packet | 
 |  *	should be sent as regular or control, bits 1-15 select the queue. | 
 |  */ | 
 | int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	local_bh_disable(); | 
 | 	ret = ofld_send(adap, skb); | 
 | 	local_bh_enable(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	cxgb4_ofld_send - send an offload packet | 
 |  *	@dev: the net device | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Sends an offload packet.  This is an exported version of @t4_ofld_send, | 
 |  *	intended for ULDs. | 
 |  */ | 
 | int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) | 
 | { | 
 | 	return t4_ofld_send(netdev2adap(dev), skb); | 
 | } | 
 | EXPORT_SYMBOL(cxgb4_ofld_send); | 
 |  | 
 | static inline void copy_frags(struct sk_buff *skb, | 
 | 			      const struct pkt_gl *gl, unsigned int offset) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* usually there's just one frag */ | 
 | 	__skb_fill_page_desc(skb, 0, gl->frags[0].page, | 
 | 			     gl->frags[0].offset + offset, | 
 | 			     gl->frags[0].size - offset); | 
 | 	skb_shinfo(skb)->nr_frags = gl->nfrags; | 
 | 	for (i = 1; i < gl->nfrags; i++) | 
 | 		__skb_fill_page_desc(skb, i, gl->frags[i].page, | 
 | 				     gl->frags[i].offset, | 
 | 				     gl->frags[i].size); | 
 |  | 
 | 	/* get a reference to the last page, we don't own it */ | 
 | 	get_page(gl->frags[gl->nfrags - 1].page); | 
 | } | 
 |  | 
 | /** | 
 |  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list | 
 |  *	@gl: the gather list | 
 |  *	@skb_len: size of sk_buff main body if it carries fragments | 
 |  *	@pull_len: amount of data to move to the sk_buff's main body | 
 |  * | 
 |  *	Builds an sk_buff from the given packet gather list.  Returns the | 
 |  *	sk_buff or %NULL if sk_buff allocation failed. | 
 |  */ | 
 | struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, | 
 | 				   unsigned int skb_len, unsigned int pull_len) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	/* | 
 | 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer | 
 | 	 * size, which is expected since buffers are at least PAGE_SIZEd. | 
 | 	 * In this case packets up to RX_COPY_THRES have only one fragment. | 
 | 	 */ | 
 | 	if (gl->tot_len <= RX_COPY_THRES) { | 
 | 		skb = dev_alloc_skb(gl->tot_len); | 
 | 		if (unlikely(!skb)) | 
 | 			goto out; | 
 | 		__skb_put(skb, gl->tot_len); | 
 | 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len); | 
 | 	} else { | 
 | 		skb = dev_alloc_skb(skb_len); | 
 | 		if (unlikely(!skb)) | 
 | 			goto out; | 
 | 		__skb_put(skb, pull_len); | 
 | 		skb_copy_to_linear_data(skb, gl->va, pull_len); | 
 |  | 
 | 		copy_frags(skb, gl, pull_len); | 
 | 		skb->len = gl->tot_len; | 
 | 		skb->data_len = skb->len - pull_len; | 
 | 		skb->truesize += skb->data_len; | 
 | 	} | 
 | out:	return skb; | 
 | } | 
 | EXPORT_SYMBOL(cxgb4_pktgl_to_skb); | 
 |  | 
 | /** | 
 |  *	t4_pktgl_free - free a packet gather list | 
 |  *	@gl: the gather list | 
 |  * | 
 |  *	Releases the pages of a packet gather list.  We do not own the last | 
 |  *	page on the list and do not free it. | 
 |  */ | 
 | static void t4_pktgl_free(const struct pkt_gl *gl) | 
 | { | 
 | 	int n; | 
 | 	const struct page_frag *p; | 
 |  | 
 | 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++) | 
 | 		put_page(p->page); | 
 | } | 
 |  | 
 | /* | 
 |  * Process an MPS trace packet.  Give it an unused protocol number so it won't | 
 |  * be delivered to anyone and send it to the stack for capture. | 
 |  */ | 
 | static noinline int handle_trace_pkt(struct adapter *adap, | 
 | 				     const struct pkt_gl *gl) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); | 
 | 	if (unlikely(!skb)) { | 
 | 		t4_pktgl_free(gl); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (is_t4(adap->params.chip)) | 
 | 		__skb_pull(skb, sizeof(struct cpl_trace_pkt)); | 
 | 	else | 
 | 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); | 
 |  | 
 | 	skb_reset_mac_header(skb); | 
 | 	skb->protocol = htons(0xffff); | 
 | 	skb->dev = adap->port[0]; | 
 | 	netif_receive_skb(skb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, | 
 | 		   const struct cpl_rx_pkt *pkt) | 
 | { | 
 | 	struct adapter *adapter = rxq->rspq.adap; | 
 | 	struct sge *s = &adapter->sge; | 
 | 	int ret; | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	skb = napi_get_frags(&rxq->rspq.napi); | 
 | 	if (unlikely(!skb)) { | 
 | 		t4_pktgl_free(gl); | 
 | 		rxq->stats.rx_drops++; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	copy_frags(skb, gl, s->pktshift); | 
 | 	skb->len = gl->tot_len - s->pktshift; | 
 | 	skb->data_len = skb->len; | 
 | 	skb->truesize += skb->data_len; | 
 | 	skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 	skb_record_rx_queue(skb, rxq->rspq.idx); | 
 | 	skb_mark_napi_id(skb, &rxq->rspq.napi); | 
 | 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH) | 
 | 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, | 
 | 			     PKT_HASH_TYPE_L3); | 
 |  | 
 | 	if (unlikely(pkt->vlan_ex)) { | 
 | 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); | 
 | 		rxq->stats.vlan_ex++; | 
 | 	} | 
 | 	ret = napi_gro_frags(&rxq->rspq.napi); | 
 | 	if (ret == GRO_HELD) | 
 | 		rxq->stats.lro_pkts++; | 
 | 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) | 
 | 		rxq->stats.lro_merged++; | 
 | 	rxq->stats.pkts++; | 
 | 	rxq->stats.rx_cso++; | 
 | } | 
 |  | 
 | /** | 
 |  *	t4_ethrx_handler - process an ingress ethernet packet | 
 |  *	@q: the response queue that received the packet | 
 |  *	@rsp: the response queue descriptor holding the RX_PKT message | 
 |  *	@si: the gather list of packet fragments | 
 |  * | 
 |  *	Process an ingress ethernet packet and deliver it to the stack. | 
 |  */ | 
 | int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, | 
 | 		     const struct pkt_gl *si) | 
 | { | 
 | 	bool csum_ok; | 
 | 	struct sk_buff *skb; | 
 | 	const struct cpl_rx_pkt *pkt; | 
 | 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); | 
 | 	struct sge *s = &q->adap->sge; | 
 | 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ? | 
 | 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5; | 
 |  | 
 | 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) | 
 | 		return handle_trace_pkt(q->adap, si); | 
 |  | 
 | 	pkt = (const struct cpl_rx_pkt *)rsp; | 
 | 	csum_ok = pkt->csum_calc && !pkt->err_vec && | 
 | 		  (q->netdev->features & NETIF_F_RXCSUM); | 
 | 	if ((pkt->l2info & htonl(RXF_TCP_F)) && | 
 | 	    !(cxgb_poll_busy_polling(q)) && | 
 | 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { | 
 | 		do_gro(rxq, si, pkt); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); | 
 | 	if (unlikely(!skb)) { | 
 | 		t4_pktgl_free(si); | 
 | 		rxq->stats.rx_drops++; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	__skb_pull(skb, s->pktshift);      /* remove ethernet header padding */ | 
 | 	skb->protocol = eth_type_trans(skb, q->netdev); | 
 | 	skb_record_rx_queue(skb, q->idx); | 
 | 	if (skb->dev->features & NETIF_F_RXHASH) | 
 | 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, | 
 | 			     PKT_HASH_TYPE_L3); | 
 |  | 
 | 	rxq->stats.pkts++; | 
 |  | 
 | 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { | 
 | 		if (!pkt->ip_frag) { | 
 | 			skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 			rxq->stats.rx_cso++; | 
 | 		} else if (pkt->l2info & htonl(RXF_IP_F)) { | 
 | 			__sum16 c = (__force __sum16)pkt->csum; | 
 | 			skb->csum = csum_unfold(c); | 
 | 			skb->ip_summed = CHECKSUM_COMPLETE; | 
 | 			rxq->stats.rx_cso++; | 
 | 		} | 
 | 	} else | 
 | 		skb_checksum_none_assert(skb); | 
 |  | 
 | 	if (unlikely(pkt->vlan_ex)) { | 
 | 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); | 
 | 		rxq->stats.vlan_ex++; | 
 | 	} | 
 | 	skb_mark_napi_id(skb, &q->napi); | 
 | 	netif_receive_skb(skb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	restore_rx_bufs - put back a packet's Rx buffers | 
 |  *	@si: the packet gather list | 
 |  *	@q: the SGE free list | 
 |  *	@frags: number of FL buffers to restore | 
 |  * | 
 |  *	Puts back on an FL the Rx buffers associated with @si.  The buffers | 
 |  *	have already been unmapped and are left unmapped, we mark them so to | 
 |  *	prevent further unmapping attempts. | 
 |  * | 
 |  *	This function undoes a series of @unmap_rx_buf calls when we find out | 
 |  *	that the current packet can't be processed right away afterall and we | 
 |  *	need to come back to it later.  This is a very rare event and there's | 
 |  *	no effort to make this particularly efficient. | 
 |  */ | 
 | static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, | 
 | 			    int frags) | 
 | { | 
 | 	struct rx_sw_desc *d; | 
 |  | 
 | 	while (frags--) { | 
 | 		if (q->cidx == 0) | 
 | 			q->cidx = q->size - 1; | 
 | 		else | 
 | 			q->cidx--; | 
 | 		d = &q->sdesc[q->cidx]; | 
 | 		d->page = si->frags[frags].page; | 
 | 		d->dma_addr |= RX_UNMAPPED_BUF; | 
 | 		q->avail++; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	is_new_response - check if a response is newly written | 
 |  *	@r: the response descriptor | 
 |  *	@q: the response queue | 
 |  * | 
 |  *	Returns true if a response descriptor contains a yet unprocessed | 
 |  *	response. | 
 |  */ | 
 | static inline bool is_new_response(const struct rsp_ctrl *r, | 
 | 				   const struct sge_rspq *q) | 
 | { | 
 | 	return RSPD_GEN(r->type_gen) == q->gen; | 
 | } | 
 |  | 
 | /** | 
 |  *	rspq_next - advance to the next entry in a response queue | 
 |  *	@q: the queue | 
 |  * | 
 |  *	Updates the state of a response queue to advance it to the next entry. | 
 |  */ | 
 | static inline void rspq_next(struct sge_rspq *q) | 
 | { | 
 | 	q->cur_desc = (void *)q->cur_desc + q->iqe_len; | 
 | 	if (unlikely(++q->cidx == q->size)) { | 
 | 		q->cidx = 0; | 
 | 		q->gen ^= 1; | 
 | 		q->cur_desc = q->desc; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	process_responses - process responses from an SGE response queue | 
 |  *	@q: the ingress queue to process | 
 |  *	@budget: how many responses can be processed in this round | 
 |  * | 
 |  *	Process responses from an SGE response queue up to the supplied budget. | 
 |  *	Responses include received packets as well as control messages from FW | 
 |  *	or HW. | 
 |  * | 
 |  *	Additionally choose the interrupt holdoff time for the next interrupt | 
 |  *	on this queue.  If the system is under memory shortage use a fairly | 
 |  *	long delay to help recovery. | 
 |  */ | 
 | static int process_responses(struct sge_rspq *q, int budget) | 
 | { | 
 | 	int ret, rsp_type; | 
 | 	int budget_left = budget; | 
 | 	const struct rsp_ctrl *rc; | 
 | 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); | 
 | 	struct adapter *adapter = q->adap; | 
 | 	struct sge *s = &adapter->sge; | 
 |  | 
 | 	while (likely(budget_left)) { | 
 | 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); | 
 | 		if (!is_new_response(rc, q)) | 
 | 			break; | 
 |  | 
 | 		rmb(); | 
 | 		rsp_type = RSPD_TYPE(rc->type_gen); | 
 | 		if (likely(rsp_type == RSP_TYPE_FLBUF)) { | 
 | 			struct page_frag *fp; | 
 | 			struct pkt_gl si; | 
 | 			const struct rx_sw_desc *rsd; | 
 | 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; | 
 |  | 
 | 			if (len & RSPD_NEWBUF) { | 
 | 				if (likely(q->offset > 0)) { | 
 | 					free_rx_bufs(q->adap, &rxq->fl, 1); | 
 | 					q->offset = 0; | 
 | 				} | 
 | 				len = RSPD_LEN(len); | 
 | 			} | 
 | 			si.tot_len = len; | 
 |  | 
 | 			/* gather packet fragments */ | 
 | 			for (frags = 0, fp = si.frags; ; frags++, fp++) { | 
 | 				rsd = &rxq->fl.sdesc[rxq->fl.cidx]; | 
 | 				bufsz = get_buf_size(adapter, rsd); | 
 | 				fp->page = rsd->page; | 
 | 				fp->offset = q->offset; | 
 | 				fp->size = min(bufsz, len); | 
 | 				len -= fp->size; | 
 | 				if (!len) | 
 | 					break; | 
 | 				unmap_rx_buf(q->adap, &rxq->fl); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Last buffer remains mapped so explicitly make it | 
 | 			 * coherent for CPU access. | 
 | 			 */ | 
 | 			dma_sync_single_for_cpu(q->adap->pdev_dev, | 
 | 						get_buf_addr(rsd), | 
 | 						fp->size, DMA_FROM_DEVICE); | 
 |  | 
 | 			si.va = page_address(si.frags[0].page) + | 
 | 				si.frags[0].offset; | 
 | 			prefetch(si.va); | 
 |  | 
 | 			si.nfrags = frags + 1; | 
 | 			ret = q->handler(q, q->cur_desc, &si); | 
 | 			if (likely(ret == 0)) | 
 | 				q->offset += ALIGN(fp->size, s->fl_align); | 
 | 			else | 
 | 				restore_rx_bufs(&si, &rxq->fl, frags); | 
 | 		} else if (likely(rsp_type == RSP_TYPE_CPL)) { | 
 | 			ret = q->handler(q, q->cur_desc, NULL); | 
 | 		} else { | 
 | 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); | 
 | 		} | 
 |  | 
 | 		if (unlikely(ret)) { | 
 | 			/* couldn't process descriptor, back off for recovery */ | 
 | 			q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		rspq_next(q); | 
 | 		budget_left--; | 
 | 	} | 
 |  | 
 | 	if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16) | 
 | 		__refill_fl(q->adap, &rxq->fl); | 
 | 	return budget - budget_left; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NET_RX_BUSY_POLL | 
 | int cxgb_busy_poll(struct napi_struct *napi) | 
 | { | 
 | 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); | 
 | 	unsigned int params, work_done; | 
 | 	u32 val; | 
 |  | 
 | 	if (!cxgb_poll_lock_poll(q)) | 
 | 		return LL_FLUSH_BUSY; | 
 |  | 
 | 	work_done = process_responses(q, 4); | 
 | 	params = QINTR_TIMER_IDX(TIMERREG_COUNTER0_X) | QINTR_CNT_EN; | 
 | 	q->next_intr_params = params; | 
 | 	val = CIDXINC_V(work_done) | SEINTARM_V(params); | 
 |  | 
 | 	/* If we don't have access to the new User GTS (T5+), use the old | 
 | 	 * doorbell mechanism; otherwise use the new BAR2 mechanism. | 
 | 	 */ | 
 | 	if (unlikely(!q->bar2_addr)) | 
 | 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), | 
 | 			     val | INGRESSQID_V((u32)q->cntxt_id)); | 
 | 	else { | 
 | 		writel(val | INGRESSQID_V(q->bar2_qid), | 
 | 		       q->bar2_addr + SGE_UDB_GTS); | 
 | 		wmb(); | 
 | 	} | 
 |  | 
 | 	cxgb_poll_unlock_poll(q); | 
 | 	return work_done; | 
 | } | 
 | #endif /* CONFIG_NET_RX_BUSY_POLL */ | 
 |  | 
 | /** | 
 |  *	napi_rx_handler - the NAPI handler for Rx processing | 
 |  *	@napi: the napi instance | 
 |  *	@budget: how many packets we can process in this round | 
 |  * | 
 |  *	Handler for new data events when using NAPI.  This does not need any | 
 |  *	locking or protection from interrupts as data interrupts are off at | 
 |  *	this point and other adapter interrupts do not interfere (the latter | 
 |  *	in not a concern at all with MSI-X as non-data interrupts then have | 
 |  *	a separate handler). | 
 |  */ | 
 | static int napi_rx_handler(struct napi_struct *napi, int budget) | 
 | { | 
 | 	unsigned int params; | 
 | 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); | 
 | 	int work_done; | 
 | 	u32 val; | 
 |  | 
 | 	if (!cxgb_poll_lock_napi(q)) | 
 | 		return budget; | 
 |  | 
 | 	work_done = process_responses(q, budget); | 
 | 	if (likely(work_done < budget)) { | 
 | 		int timer_index; | 
 |  | 
 | 		napi_complete(napi); | 
 | 		timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params); | 
 |  | 
 | 		if (q->adaptive_rx) { | 
 | 			if (work_done > max(timer_pkt_quota[timer_index], | 
 | 					    MIN_NAPI_WORK)) | 
 | 				timer_index = (timer_index + 1); | 
 | 			else | 
 | 				timer_index = timer_index - 1; | 
 |  | 
 | 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); | 
 | 			q->next_intr_params = QINTR_TIMER_IDX(timer_index) | | 
 | 							      V_QINTR_CNT_EN; | 
 | 			params = q->next_intr_params; | 
 | 		} else { | 
 | 			params = q->next_intr_params; | 
 | 			q->next_intr_params = q->intr_params; | 
 | 		} | 
 | 	} else | 
 | 		params = QINTR_TIMER_IDX(7); | 
 |  | 
 | 	val = CIDXINC_V(work_done) | SEINTARM_V(params); | 
 |  | 
 | 	/* If we don't have access to the new User GTS (T5+), use the old | 
 | 	 * doorbell mechanism; otherwise use the new BAR2 mechanism. | 
 | 	 */ | 
 | 	if (unlikely(q->bar2_addr == NULL)) { | 
 | 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), | 
 | 			     val | INGRESSQID_V((u32)q->cntxt_id)); | 
 | 	} else { | 
 | 		writel(val | INGRESSQID_V(q->bar2_qid), | 
 | 		       q->bar2_addr + SGE_UDB_GTS); | 
 | 		wmb(); | 
 | 	} | 
 | 	cxgb_poll_unlock_napi(q); | 
 | 	return work_done; | 
 | } | 
 |  | 
 | /* | 
 |  * The MSI-X interrupt handler for an SGE response queue. | 
 |  */ | 
 | irqreturn_t t4_sge_intr_msix(int irq, void *cookie) | 
 | { | 
 | 	struct sge_rspq *q = cookie; | 
 |  | 
 | 	napi_schedule(&q->napi); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * Process the indirect interrupt entries in the interrupt queue and kick off | 
 |  * NAPI for each queue that has generated an entry. | 
 |  */ | 
 | static unsigned int process_intrq(struct adapter *adap) | 
 | { | 
 | 	unsigned int credits; | 
 | 	const struct rsp_ctrl *rc; | 
 | 	struct sge_rspq *q = &adap->sge.intrq; | 
 | 	u32 val; | 
 |  | 
 | 	spin_lock(&adap->sge.intrq_lock); | 
 | 	for (credits = 0; ; credits++) { | 
 | 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); | 
 | 		if (!is_new_response(rc, q)) | 
 | 			break; | 
 |  | 
 | 		rmb(); | 
 | 		if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) { | 
 | 			unsigned int qid = ntohl(rc->pldbuflen_qid); | 
 |  | 
 | 			qid -= adap->sge.ingr_start; | 
 | 			napi_schedule(&adap->sge.ingr_map[qid]->napi); | 
 | 		} | 
 |  | 
 | 		rspq_next(q); | 
 | 	} | 
 |  | 
 | 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params); | 
 |  | 
 | 	/* If we don't have access to the new User GTS (T5+), use the old | 
 | 	 * doorbell mechanism; otherwise use the new BAR2 mechanism. | 
 | 	 */ | 
 | 	if (unlikely(q->bar2_addr == NULL)) { | 
 | 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), | 
 | 			     val | INGRESSQID_V(q->cntxt_id)); | 
 | 	} else { | 
 | 		writel(val | INGRESSQID_V(q->bar2_qid), | 
 | 		       q->bar2_addr + SGE_UDB_GTS); | 
 | 		wmb(); | 
 | 	} | 
 | 	spin_unlock(&adap->sge.intrq_lock); | 
 | 	return credits; | 
 | } | 
 |  | 
 | /* | 
 |  * The MSI interrupt handler, which handles data events from SGE response queues | 
 |  * as well as error and other async events as they all use the same MSI vector. | 
 |  */ | 
 | static irqreturn_t t4_intr_msi(int irq, void *cookie) | 
 | { | 
 | 	struct adapter *adap = cookie; | 
 |  | 
 | 	t4_slow_intr_handler(adap); | 
 | 	process_intrq(adap); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupt handler for legacy INTx interrupts. | 
 |  * Handles data events from SGE response queues as well as error and other | 
 |  * async events as they all use the same interrupt line. | 
 |  */ | 
 | static irqreturn_t t4_intr_intx(int irq, void *cookie) | 
 | { | 
 | 	struct adapter *adap = cookie; | 
 |  | 
 | 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); | 
 | 	if (t4_slow_intr_handler(adap) | process_intrq(adap)) | 
 | 		return IRQ_HANDLED; | 
 | 	return IRQ_NONE;             /* probably shared interrupt */ | 
 | } | 
 |  | 
 | /** | 
 |  *	t4_intr_handler - select the top-level interrupt handler | 
 |  *	@adap: the adapter | 
 |  * | 
 |  *	Selects the top-level interrupt handler based on the type of interrupts | 
 |  *	(MSI-X, MSI, or INTx). | 
 |  */ | 
 | irq_handler_t t4_intr_handler(struct adapter *adap) | 
 | { | 
 | 	if (adap->flags & USING_MSIX) | 
 | 		return t4_sge_intr_msix; | 
 | 	if (adap->flags & USING_MSI) | 
 | 		return t4_intr_msi; | 
 | 	return t4_intr_intx; | 
 | } | 
 |  | 
 | static void sge_rx_timer_cb(unsigned long data) | 
 | { | 
 | 	unsigned long m; | 
 | 	unsigned int i, idma_same_state_cnt[2]; | 
 | 	struct adapter *adap = (struct adapter *)data; | 
 | 	struct sge *s = &adap->sge; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) | 
 | 		for (m = s->starving_fl[i]; m; m &= m - 1) { | 
 | 			struct sge_eth_rxq *rxq; | 
 | 			unsigned int id = __ffs(m) + i * BITS_PER_LONG; | 
 | 			struct sge_fl *fl = s->egr_map[id]; | 
 |  | 
 | 			clear_bit(id, s->starving_fl); | 
 | 			smp_mb__after_atomic(); | 
 |  | 
 | 			if (fl_starving(fl)) { | 
 | 				rxq = container_of(fl, struct sge_eth_rxq, fl); | 
 | 				if (napi_reschedule(&rxq->rspq.napi)) | 
 | 					fl->starving++; | 
 | 				else | 
 | 					set_bit(id, s->starving_fl); | 
 | 			} | 
 | 		} | 
 |  | 
 | 	t4_write_reg(adap, SGE_DEBUG_INDEX_A, 13); | 
 | 	idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH_A); | 
 | 	idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); | 
 |  | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		u32 debug0, debug11; | 
 |  | 
 | 		/* If the Ingress DMA Same State Counter ("timer") is less | 
 | 		 * than 1s, then we can reset our synthesized Stall Timer and | 
 | 		 * continue.  If we have previously emitted warnings about a | 
 | 		 * potential stalled Ingress Queue, issue a note indicating | 
 | 		 * that the Ingress Queue has resumed forward progress. | 
 | 		 */ | 
 | 		if (idma_same_state_cnt[i] < s->idma_1s_thresh) { | 
 | 			if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH) | 
 | 				CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n", | 
 | 					i, s->idma_qid[i], | 
 | 					s->idma_stalled[i]/HZ); | 
 | 			s->idma_stalled[i] = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz | 
 | 		 * domain.  The first time we get here it'll be because we | 
 | 		 * passed the 1s Threshold; each additional time it'll be | 
 | 		 * because the RX Timer Callback is being fired on its regular | 
 | 		 * schedule. | 
 | 		 * | 
 | 		 * If the stall is below our Potential Hung Ingress Queue | 
 | 		 * Warning Threshold, continue. | 
 | 		 */ | 
 | 		if (s->idma_stalled[i] == 0) | 
 | 			s->idma_stalled[i] = HZ; | 
 | 		else | 
 | 			s->idma_stalled[i] += RX_QCHECK_PERIOD; | 
 |  | 
 | 		if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH) | 
 | 			continue; | 
 |  | 
 | 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */ | 
 | 		if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0) | 
 | 			continue; | 
 |  | 
 | 		/* Read and save the SGE IDMA State and Queue ID information. | 
 | 		 * We do this every time in case it changes across time ... | 
 | 		 */ | 
 | 		t4_write_reg(adap, SGE_DEBUG_INDEX_A, 0); | 
 | 		debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); | 
 | 		s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; | 
 |  | 
 | 		t4_write_reg(adap, SGE_DEBUG_INDEX_A, 11); | 
 | 		debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); | 
 | 		s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; | 
 |  | 
 | 		CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n", | 
 | 			i, s->idma_qid[i], s->idma_state[i], | 
 | 			s->idma_stalled[i]/HZ, debug0, debug11); | 
 | 		t4_sge_decode_idma_state(adap, s->idma_state[i]); | 
 | 	} | 
 |  | 
 | 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); | 
 | } | 
 |  | 
 | static void sge_tx_timer_cb(unsigned long data) | 
 | { | 
 | 	unsigned long m; | 
 | 	unsigned int i, budget; | 
 | 	struct adapter *adap = (struct adapter *)data; | 
 | 	struct sge *s = &adap->sge; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++) | 
 | 		for (m = s->txq_maperr[i]; m; m &= m - 1) { | 
 | 			unsigned long id = __ffs(m) + i * BITS_PER_LONG; | 
 | 			struct sge_ofld_txq *txq = s->egr_map[id]; | 
 |  | 
 | 			clear_bit(id, s->txq_maperr); | 
 | 			tasklet_schedule(&txq->qresume_tsk); | 
 | 		} | 
 |  | 
 | 	budget = MAX_TIMER_TX_RECLAIM; | 
 | 	i = s->ethtxq_rover; | 
 | 	do { | 
 | 		struct sge_eth_txq *q = &s->ethtxq[i]; | 
 |  | 
 | 		if (q->q.in_use && | 
 | 		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && | 
 | 		    __netif_tx_trylock(q->txq)) { | 
 | 			int avail = reclaimable(&q->q); | 
 |  | 
 | 			if (avail) { | 
 | 				if (avail > budget) | 
 | 					avail = budget; | 
 |  | 
 | 				free_tx_desc(adap, &q->q, avail, true); | 
 | 				q->q.in_use -= avail; | 
 | 				budget -= avail; | 
 | 			} | 
 | 			__netif_tx_unlock(q->txq); | 
 | 		} | 
 |  | 
 | 		if (++i >= s->ethqsets) | 
 | 			i = 0; | 
 | 	} while (budget && i != s->ethtxq_rover); | 
 | 	s->ethtxq_rover = i; | 
 | 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); | 
 | } | 
 |  | 
 | /** | 
 |  *	bar2_address - return the BAR2 address for an SGE Queue's Registers | 
 |  *	@adapter: the adapter | 
 |  *	@qid: the SGE Queue ID | 
 |  *	@qtype: the SGE Queue Type (Egress or Ingress) | 
 |  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues | 
 |  * | 
 |  *	Returns the BAR2 address for the SGE Queue Registers associated with | 
 |  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also | 
 |  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE | 
 |  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID" | 
 |  *	Registers are supported (e.g. the Write Combining Doorbell Buffer). | 
 |  */ | 
 | static void __iomem *bar2_address(struct adapter *adapter, | 
 | 				  unsigned int qid, | 
 | 				  enum t4_bar2_qtype qtype, | 
 | 				  unsigned int *pbar2_qid) | 
 | { | 
 | 	u64 bar2_qoffset; | 
 | 	int ret; | 
 |  | 
 | 	ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype, | 
 | 				&bar2_qoffset, pbar2_qid); | 
 | 	if (ret) | 
 | 		return NULL; | 
 |  | 
 | 	return adapter->bar2 + bar2_qoffset; | 
 | } | 
 |  | 
 | int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, | 
 | 		     struct net_device *dev, int intr_idx, | 
 | 		     struct sge_fl *fl, rspq_handler_t hnd) | 
 | { | 
 | 	int ret, flsz = 0; | 
 | 	struct fw_iq_cmd c; | 
 | 	struct sge *s = &adap->sge; | 
 | 	struct port_info *pi = netdev_priv(dev); | 
 |  | 
 | 	/* Size needs to be multiple of 16, including status entry. */ | 
 | 	iq->size = roundup(iq->size, 16); | 
 |  | 
 | 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, | 
 | 			      &iq->phys_addr, NULL, 0, NUMA_NO_NODE); | 
 | 	if (!iq->desc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | | 
 | 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F | | 
 | 			    FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0)); | 
 | 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | | 
 | 				 FW_LEN16(c)); | 
 | 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | | 
 | 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | | 
 | 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) | | 
 | 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : | 
 | 							-intr_idx - 1)); | 
 | 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | | 
 | 		FW_IQ_CMD_IQGTSMODE_F | | 
 | 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | | 
 | 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); | 
 | 	c.iqsize = htons(iq->size); | 
 | 	c.iqaddr = cpu_to_be64(iq->phys_addr); | 
 |  | 
 | 	if (fl) { | 
 | 		fl->size = roundup(fl->size, 8); | 
 | 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), | 
 | 				      sizeof(struct rx_sw_desc), &fl->addr, | 
 | 				      &fl->sdesc, s->stat_len, NUMA_NO_NODE); | 
 | 		if (!fl->desc) | 
 | 			goto fl_nomem; | 
 |  | 
 | 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); | 
 | 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F | | 
 | 					    FW_IQ_CMD_FL0FETCHRO_F | | 
 | 					    FW_IQ_CMD_FL0DATARO_F | | 
 | 					    FW_IQ_CMD_FL0PADEN_F); | 
 | 		c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) | | 
 | 				FW_IQ_CMD_FL0FBMAX_V(3)); | 
 | 		c.fl0size = htons(flsz); | 
 | 		c.fl0addr = cpu_to_be64(fl->addr); | 
 | 	} | 
 |  | 
 | 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); | 
 | 	napi_hash_add(&iq->napi); | 
 | 	iq->cur_desc = iq->desc; | 
 | 	iq->cidx = 0; | 
 | 	iq->gen = 1; | 
 | 	iq->next_intr_params = iq->intr_params; | 
 | 	iq->cntxt_id = ntohs(c.iqid); | 
 | 	iq->abs_id = ntohs(c.physiqid); | 
 | 	iq->bar2_addr = bar2_address(adap, | 
 | 				     iq->cntxt_id, | 
 | 				     T4_BAR2_QTYPE_INGRESS, | 
 | 				     &iq->bar2_qid); | 
 | 	iq->size--;                           /* subtract status entry */ | 
 | 	iq->netdev = dev; | 
 | 	iq->handler = hnd; | 
 |  | 
 | 	/* set offset to -1 to distinguish ingress queues without FL */ | 
 | 	iq->offset = fl ? 0 : -1; | 
 |  | 
 | 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; | 
 |  | 
 | 	if (fl) { | 
 | 		fl->cntxt_id = ntohs(c.fl0id); | 
 | 		fl->avail = fl->pend_cred = 0; | 
 | 		fl->pidx = fl->cidx = 0; | 
 | 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; | 
 | 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; | 
 |  | 
 | 		/* Note, we must initialize the BAR2 Free List User Doorbell | 
 | 		 * information before refilling the Free List! | 
 | 		 */ | 
 | 		fl->bar2_addr = bar2_address(adap, | 
 | 					     fl->cntxt_id, | 
 | 					     T4_BAR2_QTYPE_EGRESS, | 
 | 					     &fl->bar2_qid); | 
 | 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | fl_nomem: | 
 | 	ret = -ENOMEM; | 
 | err: | 
 | 	if (iq->desc) { | 
 | 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, | 
 | 				  iq->desc, iq->phys_addr); | 
 | 		iq->desc = NULL; | 
 | 	} | 
 | 	if (fl && fl->desc) { | 
 | 		kfree(fl->sdesc); | 
 | 		fl->sdesc = NULL; | 
 | 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), | 
 | 				  fl->desc, fl->addr); | 
 | 		fl->desc = NULL; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) | 
 | { | 
 | 	q->cntxt_id = id; | 
 | 	q->bar2_addr = bar2_address(adap, | 
 | 				    q->cntxt_id, | 
 | 				    T4_BAR2_QTYPE_EGRESS, | 
 | 				    &q->bar2_qid); | 
 | 	q->in_use = 0; | 
 | 	q->cidx = q->pidx = 0; | 
 | 	q->stops = q->restarts = 0; | 
 | 	q->stat = (void *)&q->desc[q->size]; | 
 | 	spin_lock_init(&q->db_lock); | 
 | 	adap->sge.egr_map[id - adap->sge.egr_start] = q; | 
 | } | 
 |  | 
 | int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, | 
 | 			 struct net_device *dev, struct netdev_queue *netdevq, | 
 | 			 unsigned int iqid) | 
 | { | 
 | 	int ret, nentries; | 
 | 	struct fw_eq_eth_cmd c; | 
 | 	struct sge *s = &adap->sge; | 
 | 	struct port_info *pi = netdev_priv(dev); | 
 |  | 
 | 	/* Add status entries */ | 
 | 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); | 
 |  | 
 | 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, | 
 | 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc), | 
 | 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len, | 
 | 			netdev_queue_numa_node_read(netdevq)); | 
 | 	if (!txq->q.desc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | | 
 | 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F | | 
 | 			    FW_EQ_ETH_CMD_PFN_V(adap->fn) | | 
 | 			    FW_EQ_ETH_CMD_VFN_V(0)); | 
 | 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | | 
 | 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); | 
 | 	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | | 
 | 			   FW_EQ_ETH_CMD_VIID_V(pi->viid)); | 
 | 	c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) | | 
 | 				   FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | | 
 | 				   FW_EQ_ETH_CMD_FETCHRO_V(1) | | 
 | 				   FW_EQ_ETH_CMD_IQID_V(iqid)); | 
 | 	c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) | | 
 | 				  FW_EQ_ETH_CMD_FBMAX_V(3) | | 
 | 				  FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) | | 
 | 				  FW_EQ_ETH_CMD_EQSIZE_V(nentries)); | 
 | 	c.eqaddr = cpu_to_be64(txq->q.phys_addr); | 
 |  | 
 | 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); | 
 | 	if (ret) { | 
 | 		kfree(txq->q.sdesc); | 
 | 		txq->q.sdesc = NULL; | 
 | 		dma_free_coherent(adap->pdev_dev, | 
 | 				  nentries * sizeof(struct tx_desc), | 
 | 				  txq->q.desc, txq->q.phys_addr); | 
 | 		txq->q.desc = NULL; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); | 
 | 	txq->txq = netdevq; | 
 | 	txq->tso = txq->tx_cso = txq->vlan_ins = 0; | 
 | 	txq->mapping_err = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, | 
 | 			  struct net_device *dev, unsigned int iqid, | 
 | 			  unsigned int cmplqid) | 
 | { | 
 | 	int ret, nentries; | 
 | 	struct fw_eq_ctrl_cmd c; | 
 | 	struct sge *s = &adap->sge; | 
 | 	struct port_info *pi = netdev_priv(dev); | 
 |  | 
 | 	/* Add status entries */ | 
 | 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); | 
 |  | 
 | 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries, | 
 | 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr, | 
 | 				 NULL, 0, NUMA_NO_NODE); | 
 | 	if (!txq->q.desc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | | 
 | 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F | | 
 | 			    FW_EQ_CTRL_CMD_PFN_V(adap->fn) | | 
 | 			    FW_EQ_CTRL_CMD_VFN_V(0)); | 
 | 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | | 
 | 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); | 
 | 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); | 
 | 	c.physeqid_pkd = htonl(0); | 
 | 	c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) | | 
 | 				   FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | | 
 | 				   FW_EQ_CTRL_CMD_FETCHRO_F | | 
 | 				   FW_EQ_CTRL_CMD_IQID_V(iqid)); | 
 | 	c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) | | 
 | 				  FW_EQ_CTRL_CMD_FBMAX_V(3) | | 
 | 				  FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) | | 
 | 				  FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); | 
 | 	c.eqaddr = cpu_to_be64(txq->q.phys_addr); | 
 |  | 
 | 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); | 
 | 	if (ret) { | 
 | 		dma_free_coherent(adap->pdev_dev, | 
 | 				  nentries * sizeof(struct tx_desc), | 
 | 				  txq->q.desc, txq->q.phys_addr); | 
 | 		txq->q.desc = NULL; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); | 
 | 	txq->adap = adap; | 
 | 	skb_queue_head_init(&txq->sendq); | 
 | 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); | 
 | 	txq->full = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, | 
 | 			  struct net_device *dev, unsigned int iqid) | 
 | { | 
 | 	int ret, nentries; | 
 | 	struct fw_eq_ofld_cmd c; | 
 | 	struct sge *s = &adap->sge; | 
 | 	struct port_info *pi = netdev_priv(dev); | 
 |  | 
 | 	/* Add status entries */ | 
 | 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); | 
 |  | 
 | 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, | 
 | 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc), | 
 | 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len, | 
 | 			NUMA_NO_NODE); | 
 | 	if (!txq->q.desc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F | | 
 | 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F | | 
 | 			    FW_EQ_OFLD_CMD_PFN_V(adap->fn) | | 
 | 			    FW_EQ_OFLD_CMD_VFN_V(0)); | 
 | 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | | 
 | 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); | 
 | 	c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) | | 
 | 				   FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | | 
 | 				   FW_EQ_OFLD_CMD_FETCHRO_F | | 
 | 				   FW_EQ_OFLD_CMD_IQID_V(iqid)); | 
 | 	c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) | | 
 | 				  FW_EQ_OFLD_CMD_FBMAX_V(3) | | 
 | 				  FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) | | 
 | 				  FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); | 
 | 	c.eqaddr = cpu_to_be64(txq->q.phys_addr); | 
 |  | 
 | 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); | 
 | 	if (ret) { | 
 | 		kfree(txq->q.sdesc); | 
 | 		txq->q.sdesc = NULL; | 
 | 		dma_free_coherent(adap->pdev_dev, | 
 | 				  nentries * sizeof(struct tx_desc), | 
 | 				  txq->q.desc, txq->q.phys_addr); | 
 | 		txq->q.desc = NULL; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); | 
 | 	txq->adap = adap; | 
 | 	skb_queue_head_init(&txq->sendq); | 
 | 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); | 
 | 	txq->full = 0; | 
 | 	txq->mapping_err = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_txq(struct adapter *adap, struct sge_txq *q) | 
 | { | 
 | 	struct sge *s = &adap->sge; | 
 |  | 
 | 	dma_free_coherent(adap->pdev_dev, | 
 | 			  q->size * sizeof(struct tx_desc) + s->stat_len, | 
 | 			  q->desc, q->phys_addr); | 
 | 	q->cntxt_id = 0; | 
 | 	q->sdesc = NULL; | 
 | 	q->desc = NULL; | 
 | } | 
 |  | 
 | static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, | 
 | 			 struct sge_fl *fl) | 
 | { | 
 | 	struct sge *s = &adap->sge; | 
 | 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; | 
 |  | 
 | 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; | 
 | 	t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP, | 
 | 		   rq->cntxt_id, fl_id, 0xffff); | 
 | 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, | 
 | 			  rq->desc, rq->phys_addr); | 
 | 	napi_hash_del(&rq->napi); | 
 | 	netif_napi_del(&rq->napi); | 
 | 	rq->netdev = NULL; | 
 | 	rq->cntxt_id = rq->abs_id = 0; | 
 | 	rq->desc = NULL; | 
 |  | 
 | 	if (fl) { | 
 | 		free_rx_bufs(adap, fl, fl->avail); | 
 | 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, | 
 | 				  fl->desc, fl->addr); | 
 | 		kfree(fl->sdesc); | 
 | 		fl->sdesc = NULL; | 
 | 		fl->cntxt_id = 0; | 
 | 		fl->desc = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues | 
 |  *      @adap: the adapter | 
 |  *      @n: number of queues | 
 |  *      @q: pointer to first queue | 
 |  * | 
 |  *      Release the resources of a consecutive block of offload Rx queues. | 
 |  */ | 
 | void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) | 
 | { | 
 | 	for ( ; n; n--, q++) | 
 | 		if (q->rspq.desc) | 
 | 			free_rspq_fl(adap, &q->rspq, | 
 | 				     q->fl.size ? &q->fl : NULL); | 
 | } | 
 |  | 
 | /** | 
 |  *	t4_free_sge_resources - free SGE resources | 
 |  *	@adap: the adapter | 
 |  * | 
 |  *	Frees resources used by the SGE queue sets. | 
 |  */ | 
 | void t4_free_sge_resources(struct adapter *adap) | 
 | { | 
 | 	int i; | 
 | 	struct sge_eth_rxq *eq = adap->sge.ethrxq; | 
 | 	struct sge_eth_txq *etq = adap->sge.ethtxq; | 
 |  | 
 | 	/* clean up Ethernet Tx/Rx queues */ | 
 | 	for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) { | 
 | 		if (eq->rspq.desc) | 
 | 			free_rspq_fl(adap, &eq->rspq, | 
 | 				     eq->fl.size ? &eq->fl : NULL); | 
 | 		if (etq->q.desc) { | 
 | 			t4_eth_eq_free(adap, adap->fn, adap->fn, 0, | 
 | 				       etq->q.cntxt_id); | 
 | 			free_tx_desc(adap, &etq->q, etq->q.in_use, true); | 
 | 			kfree(etq->q.sdesc); | 
 | 			free_txq(adap, &etq->q); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* clean up RDMA and iSCSI Rx queues */ | 
 | 	t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq); | 
 | 	t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq); | 
 | 	t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq); | 
 |  | 
 | 	/* clean up offload Tx queues */ | 
 | 	for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { | 
 | 		struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; | 
 |  | 
 | 		if (q->q.desc) { | 
 | 			tasklet_kill(&q->qresume_tsk); | 
 | 			t4_ofld_eq_free(adap, adap->fn, adap->fn, 0, | 
 | 					q->q.cntxt_id); | 
 | 			free_tx_desc(adap, &q->q, q->q.in_use, false); | 
 | 			kfree(q->q.sdesc); | 
 | 			__skb_queue_purge(&q->sendq); | 
 | 			free_txq(adap, &q->q); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* clean up control Tx queues */ | 
 | 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { | 
 | 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; | 
 |  | 
 | 		if (cq->q.desc) { | 
 | 			tasklet_kill(&cq->qresume_tsk); | 
 | 			t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0, | 
 | 					cq->q.cntxt_id); | 
 | 			__skb_queue_purge(&cq->sendq); | 
 | 			free_txq(adap, &cq->q); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (adap->sge.fw_evtq.desc) | 
 | 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); | 
 |  | 
 | 	if (adap->sge.intrq.desc) | 
 | 		free_rspq_fl(adap, &adap->sge.intrq, NULL); | 
 |  | 
 | 	/* clear the reverse egress queue map */ | 
 | 	memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map)); | 
 | } | 
 |  | 
 | void t4_sge_start(struct adapter *adap) | 
 | { | 
 | 	adap->sge.ethtxq_rover = 0; | 
 | 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); | 
 | 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); | 
 | } | 
 |  | 
 | /** | 
 |  *	t4_sge_stop - disable SGE operation | 
 |  *	@adap: the adapter | 
 |  * | 
 |  *	Stop tasklets and timers associated with the DMA engine.  Note that | 
 |  *	this is effective only if measures have been taken to disable any HW | 
 |  *	events that may restart them. | 
 |  */ | 
 | void t4_sge_stop(struct adapter *adap) | 
 | { | 
 | 	int i; | 
 | 	struct sge *s = &adap->sge; | 
 |  | 
 | 	if (in_interrupt())  /* actions below require waiting */ | 
 | 		return; | 
 |  | 
 | 	if (s->rx_timer.function) | 
 | 		del_timer_sync(&s->rx_timer); | 
 | 	if (s->tx_timer.function) | 
 | 		del_timer_sync(&s->tx_timer); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { | 
 | 		struct sge_ofld_txq *q = &s->ofldtxq[i]; | 
 |  | 
 | 		if (q->q.desc) | 
 | 			tasklet_kill(&q->qresume_tsk); | 
 | 	} | 
 | 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { | 
 | 		struct sge_ctrl_txq *cq = &s->ctrlq[i]; | 
 |  | 
 | 		if (cq->q.desc) | 
 | 			tasklet_kill(&cq->qresume_tsk); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	t4_sge_init_soft - grab core SGE values needed by SGE code | 
 |  *	@adap: the adapter | 
 |  * | 
 |  *	We need to grab the SGE operating parameters that we need to have | 
 |  *	in order to do our job and make sure we can live with them. | 
 |  */ | 
 |  | 
 | static int t4_sge_init_soft(struct adapter *adap) | 
 | { | 
 | 	struct sge *s = &adap->sge; | 
 | 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; | 
 | 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; | 
 | 	u32 ingress_rx_threshold; | 
 |  | 
 | 	/* | 
 | 	 * Verify that CPL messages are going to the Ingress Queue for | 
 | 	 * process_responses() and that only packet data is going to the | 
 | 	 * Free Lists. | 
 | 	 */ | 
 | 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != | 
 | 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { | 
 | 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Validate the Host Buffer Register Array indices that we want to | 
 | 	 * use ... | 
 | 	 * | 
 | 	 * XXX Note that we should really read through the Host Buffer Size | 
 | 	 * XXX register array and find the indices of the Buffer Sizes which | 
 | 	 * XXX meet our needs! | 
 | 	 */ | 
 | 	#define READ_FL_BUF(x) \ | 
 | 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) | 
 |  | 
 | 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); | 
 | 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); | 
 | 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); | 
 | 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); | 
 |  | 
 | 	/* We only bother using the Large Page logic if the Large Page Buffer | 
 | 	 * is larger than our Page Size Buffer. | 
 | 	 */ | 
 | 	if (fl_large_pg <= fl_small_pg) | 
 | 		fl_large_pg = 0; | 
 |  | 
 | 	#undef READ_FL_BUF | 
 |  | 
 | 	/* The Page Size Buffer must be exactly equal to our Page Size and the | 
 | 	 * Large Page Size Buffer should be 0 (per above) or a power of 2. | 
 | 	 */ | 
 | 	if (fl_small_pg != PAGE_SIZE || | 
 | 	    (fl_large_pg & (fl_large_pg-1)) != 0) { | 
 | 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", | 
 | 			fl_small_pg, fl_large_pg); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (fl_large_pg) | 
 | 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; | 
 |  | 
 | 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || | 
 | 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { | 
 | 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", | 
 | 			fl_small_mtu, fl_large_mtu); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Retrieve our RX interrupt holdoff timer values and counter | 
 | 	 * threshold values from the SGE parameters. | 
 | 	 */ | 
 | 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); | 
 | 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); | 
 | 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); | 
 | 	s->timer_val[0] = core_ticks_to_us(adap, | 
 | 		TIMERVALUE0_G(timer_value_0_and_1)); | 
 | 	s->timer_val[1] = core_ticks_to_us(adap, | 
 | 		TIMERVALUE1_G(timer_value_0_and_1)); | 
 | 	s->timer_val[2] = core_ticks_to_us(adap, | 
 | 		TIMERVALUE2_G(timer_value_2_and_3)); | 
 | 	s->timer_val[3] = core_ticks_to_us(adap, | 
 | 		TIMERVALUE3_G(timer_value_2_and_3)); | 
 | 	s->timer_val[4] = core_ticks_to_us(adap, | 
 | 		TIMERVALUE4_G(timer_value_4_and_5)); | 
 | 	s->timer_val[5] = core_ticks_to_us(adap, | 
 | 		TIMERVALUE5_G(timer_value_4_and_5)); | 
 |  | 
 | 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); | 
 | 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); | 
 | 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); | 
 | 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); | 
 | 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *     t4_sge_init - initialize SGE | 
 |  *     @adap: the adapter | 
 |  * | 
 |  *     Perform low-level SGE code initialization needed every time after a | 
 |  *     chip reset. | 
 |  */ | 
 | int t4_sge_init(struct adapter *adap) | 
 | { | 
 | 	struct sge *s = &adap->sge; | 
 | 	u32 sge_control, sge_control2, sge_conm_ctrl; | 
 | 	unsigned int ingpadboundary, ingpackboundary; | 
 | 	int ret, egress_threshold; | 
 |  | 
 | 	/* | 
 | 	 * Ingress Padding Boundary and Egress Status Page Size are set up by | 
 | 	 * t4_fixup_host_params(). | 
 | 	 */ | 
 | 	sge_control = t4_read_reg(adap, SGE_CONTROL_A); | 
 | 	s->pktshift = PKTSHIFT_G(sge_control); | 
 | 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; | 
 |  | 
 | 	/* T4 uses a single control field to specify both the PCIe Padding and | 
 | 	 * Packing Boundary.  T5 introduced the ability to specify these | 
 | 	 * separately.  The actual Ingress Packet Data alignment boundary | 
 | 	 * within Packed Buffer Mode is the maximum of these two | 
 | 	 * specifications. | 
 | 	 */ | 
 | 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + | 
 | 			       INGPADBOUNDARY_SHIFT_X); | 
 | 	if (is_t4(adap->params.chip)) { | 
 | 		s->fl_align = ingpadboundary; | 
 | 	} else { | 
 | 		/* T5 has a different interpretation of one of the PCIe Packing | 
 | 		 * Boundary values. | 
 | 		 */ | 
 | 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); | 
 | 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2); | 
 | 		if (ingpackboundary == INGPACKBOUNDARY_16B_X) | 
 | 			ingpackboundary = 16; | 
 | 		else | 
 | 			ingpackboundary = 1 << (ingpackboundary + | 
 | 						INGPACKBOUNDARY_SHIFT_X); | 
 |  | 
 | 		s->fl_align = max(ingpadboundary, ingpackboundary); | 
 | 	} | 
 |  | 
 | 	ret = t4_sge_init_soft(adap); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * A FL with <= fl_starve_thres buffers is starving and a periodic | 
 | 	 * timer will attempt to refill it.  This needs to be larger than the | 
 | 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get | 
 | 	 * stuck waiting for new packets while the SGE is waiting for us to | 
 | 	 * give it more Free List entries.  (Note that the SGE's Egress | 
 | 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4, | 
 | 	 * there was only a single field to control this.  For T5 there's the | 
 | 	 * original field which now only applies to Unpacked Mode Free List | 
 | 	 * buffers and a new field which only applies to Packed Mode Free List | 
 | 	 * buffers. | 
 | 	 */ | 
 | 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); | 
 | 	if (is_t4(adap->params.chip)) | 
 | 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); | 
 | 	else | 
 | 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); | 
 | 	s->fl_starve_thres = 2*egress_threshold + 1; | 
 |  | 
 | 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); | 
 | 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); | 
 | 	s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000;  /* 1 s */ | 
 | 	s->idma_stalled[0] = 0; | 
 | 	s->idma_stalled[1] = 0; | 
 | 	spin_lock_init(&s->intrq_lock); | 
 |  | 
 | 	return 0; | 
 | } |