|  | /* | 
|  | * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_extfree_item.h" | 
|  | #include "xfs_log.h" | 
|  |  | 
|  |  | 
|  | kmem_zone_t	*xfs_efi_zone; | 
|  | kmem_zone_t	*xfs_efd_zone; | 
|  |  | 
|  | static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) | 
|  | { | 
|  | return container_of(lip, struct xfs_efi_log_item, efi_item); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_efi_item_free( | 
|  | struct xfs_efi_log_item	*efip) | 
|  | { | 
|  | if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) | 
|  | kmem_free(efip); | 
|  | else | 
|  | kmem_zone_free(xfs_efi_zone, efip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Freeing the efi requires that we remove it from the AIL if it has already | 
|  | * been placed there. However, the EFI may not yet have been placed in the AIL | 
|  | * when called by xfs_efi_release() from EFD processing due to the ordering of | 
|  | * committed vs unpin operations in bulk insert operations. Hence the reference | 
|  | * count to ensure only the last caller frees the EFI. | 
|  | */ | 
|  | STATIC void | 
|  | __xfs_efi_release( | 
|  | struct xfs_efi_log_item	*efip) | 
|  | { | 
|  | struct xfs_ail		*ailp = efip->efi_item.li_ailp; | 
|  |  | 
|  | if (atomic_dec_and_test(&efip->efi_refcount)) { | 
|  | spin_lock(&ailp->xa_lock); | 
|  | /* xfs_trans_ail_delete() drops the AIL lock. */ | 
|  | xfs_trans_ail_delete(ailp, &efip->efi_item, | 
|  | SHUTDOWN_LOG_IO_ERROR); | 
|  | xfs_efi_item_free(efip); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This returns the number of iovecs needed to log the given efi item. | 
|  | * We only need 1 iovec for an efi item.  It just logs the efi_log_format | 
|  | * structure. | 
|  | */ | 
|  | static inline int | 
|  | xfs_efi_item_sizeof( | 
|  | struct xfs_efi_log_item *efip) | 
|  | { | 
|  | return sizeof(struct xfs_efi_log_format) + | 
|  | (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efi_item_size( | 
|  | struct xfs_log_item	*lip, | 
|  | int			*nvecs, | 
|  | int			*nbytes) | 
|  | { | 
|  | *nvecs += 1; | 
|  | *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given efi log item. We use only 1 iovec, and we point that | 
|  | * at the efi_log_format structure embedded in the efi item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the efi item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_format( | 
|  | struct xfs_log_item	*lip, | 
|  | struct xfs_log_vec	*lv) | 
|  | { | 
|  | struct xfs_efi_log_item	*efip = EFI_ITEM(lip); | 
|  | struct xfs_log_iovec	*vecp = NULL; | 
|  |  | 
|  | ASSERT(atomic_read(&efip->efi_next_extent) == | 
|  | efip->efi_format.efi_nextents); | 
|  |  | 
|  | efip->efi_format.efi_type = XFS_LI_EFI; | 
|  | efip->efi_format.efi_size = 1; | 
|  |  | 
|  | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, | 
|  | &efip->efi_format, | 
|  | xfs_efi_item_sizeof(efip)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Pinning has no meaning for an efi item, so just return. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_pin( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While EFIs cannot really be pinned, the unpin operation is the last place at | 
|  | * which the EFI is manipulated during a transaction.  If we are being asked to | 
|  | * remove the EFI it's because the transaction has been cancelled and by | 
|  | * definition that means the EFI cannot be in the AIL so remove it from the | 
|  | * transaction and free it.  Otherwise coordinate with xfs_efi_release() | 
|  | * to determine who gets to free the EFI. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_unpin( | 
|  | struct xfs_log_item	*lip, | 
|  | int			remove) | 
|  | { | 
|  | struct xfs_efi_log_item	*efip = EFI_ITEM(lip); | 
|  |  | 
|  | if (remove) { | 
|  | ASSERT(!(lip->li_flags & XFS_LI_IN_AIL)); | 
|  | if (lip->li_desc) | 
|  | xfs_trans_del_item(lip); | 
|  | xfs_efi_item_free(efip); | 
|  | return; | 
|  | } | 
|  | __xfs_efi_release(efip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Efi items have no locking or pushing.  However, since EFIs are pulled from | 
|  | * the AIL when their corresponding EFDs are committed to disk, their situation | 
|  | * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller | 
|  | * will eventually flush the log.  This should help in getting the EFI out of | 
|  | * the AIL. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_efi_item_push( | 
|  | struct xfs_log_item	*lip, | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | return XFS_ITEM_PINNED; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efi_item_unlock( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | if (lip->li_flags & XFS_LI_ABORTED) | 
|  | xfs_efi_item_free(EFI_ITEM(lip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFI is logged only once and cannot be moved in the log, so simply return | 
|  | * the lsn at which it's been logged. | 
|  | */ | 
|  | STATIC xfs_lsn_t | 
|  | xfs_efi_item_committed( | 
|  | struct xfs_log_item	*lip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | return lsn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFI dependency tracking op doesn't do squat.  It can't because | 
|  | * it doesn't know where the free extent is coming from.  The dependency | 
|  | * tracking has to be handled by the "enclosing" metadata object.  For | 
|  | * example, for inodes, the inode is locked throughout the extent freeing | 
|  | * so the dependency should be recorded there. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_committing( | 
|  | struct xfs_log_item	*lip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the ops vector shared by all efi log items. | 
|  | */ | 
|  | static const struct xfs_item_ops xfs_efi_item_ops = { | 
|  | .iop_size	= xfs_efi_item_size, | 
|  | .iop_format	= xfs_efi_item_format, | 
|  | .iop_pin	= xfs_efi_item_pin, | 
|  | .iop_unpin	= xfs_efi_item_unpin, | 
|  | .iop_unlock	= xfs_efi_item_unlock, | 
|  | .iop_committed	= xfs_efi_item_committed, | 
|  | .iop_push	= xfs_efi_item_push, | 
|  | .iop_committing = xfs_efi_item_committing | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an efi item with the given number of extents. | 
|  | */ | 
|  | struct xfs_efi_log_item * | 
|  | xfs_efi_init( | 
|  | struct xfs_mount	*mp, | 
|  | uint			nextents) | 
|  |  | 
|  | { | 
|  | struct xfs_efi_log_item	*efip; | 
|  | uint			size; | 
|  |  | 
|  | ASSERT(nextents > 0); | 
|  | if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | size = (uint)(sizeof(xfs_efi_log_item_t) + | 
|  | ((nextents - 1) * sizeof(xfs_extent_t))); | 
|  | efip = kmem_zalloc(size, KM_SLEEP); | 
|  | } else { | 
|  | efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); | 
|  | } | 
|  |  | 
|  | xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); | 
|  | efip->efi_format.efi_nextents = nextents; | 
|  | efip->efi_format.efi_id = (__psint_t)(void*)efip; | 
|  | atomic_set(&efip->efi_next_extent, 0); | 
|  | atomic_set(&efip->efi_refcount, 2); | 
|  |  | 
|  | return efip; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy an EFI format buffer from the given buf, and into the destination | 
|  | * EFI format structure. | 
|  | * The given buffer can be in 32 bit or 64 bit form (which has different padding), | 
|  | * one of which will be the native format for this kernel. | 
|  | * It will handle the conversion of formats if necessary. | 
|  | */ | 
|  | int | 
|  | xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) | 
|  | { | 
|  | xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; | 
|  | uint i; | 
|  | uint len = sizeof(xfs_efi_log_format_t) + | 
|  | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); | 
|  | uint len32 = sizeof(xfs_efi_log_format_32_t) + | 
|  | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); | 
|  | uint len64 = sizeof(xfs_efi_log_format_64_t) + | 
|  | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); | 
|  |  | 
|  | if (buf->i_len == len) { | 
|  | memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); | 
|  | return 0; | 
|  | } else if (buf->i_len == len32) { | 
|  | xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; | 
|  |  | 
|  | dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type; | 
|  | dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size; | 
|  | dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; | 
|  | dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id; | 
|  | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | 
|  | dst_efi_fmt->efi_extents[i].ext_start = | 
|  | src_efi_fmt_32->efi_extents[i].ext_start; | 
|  | dst_efi_fmt->efi_extents[i].ext_len = | 
|  | src_efi_fmt_32->efi_extents[i].ext_len; | 
|  | } | 
|  | return 0; | 
|  | } else if (buf->i_len == len64) { | 
|  | xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; | 
|  |  | 
|  | dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type; | 
|  | dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size; | 
|  | dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; | 
|  | dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id; | 
|  | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | 
|  | dst_efi_fmt->efi_extents[i].ext_start = | 
|  | src_efi_fmt_64->efi_extents[i].ext_start; | 
|  | dst_efi_fmt->efi_extents[i].ext_len = | 
|  | src_efi_fmt_64->efi_extents[i].ext_len; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called by the efd item code below to release references to the given | 
|  | * efi item.  Each efd calls this with the number of extents that it has | 
|  | * logged, and when the sum of these reaches the total number of extents logged | 
|  | * by this efi item we can free the efi item. | 
|  | */ | 
|  | void | 
|  | xfs_efi_release(xfs_efi_log_item_t	*efip, | 
|  | uint			nextents) | 
|  | { | 
|  | ASSERT(atomic_read(&efip->efi_next_extent) >= nextents); | 
|  | if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) { | 
|  | /* recovery needs us to drop the EFI reference, too */ | 
|  | if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) | 
|  | __xfs_efi_release(efip); | 
|  |  | 
|  | __xfs_efi_release(efip); | 
|  | /* efip may now have been freed, do not reference it again. */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) | 
|  | { | 
|  | return container_of(lip, struct xfs_efd_log_item, efd_item); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efd_item_free(struct xfs_efd_log_item *efdp) | 
|  | { | 
|  | if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) | 
|  | kmem_free(efdp); | 
|  | else | 
|  | kmem_zone_free(xfs_efd_zone, efdp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This returns the number of iovecs needed to log the given efd item. | 
|  | * We only need 1 iovec for an efd item.  It just logs the efd_log_format | 
|  | * structure. | 
|  | */ | 
|  | static inline int | 
|  | xfs_efd_item_sizeof( | 
|  | struct xfs_efd_log_item *efdp) | 
|  | { | 
|  | return sizeof(xfs_efd_log_format_t) + | 
|  | (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efd_item_size( | 
|  | struct xfs_log_item	*lip, | 
|  | int			*nvecs, | 
|  | int			*nbytes) | 
|  | { | 
|  | *nvecs += 1; | 
|  | *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given efd log item. We use only 1 iovec, and we point that | 
|  | * at the efd_log_format structure embedded in the efd item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the efd item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efd_item_format( | 
|  | struct xfs_log_item	*lip, | 
|  | struct xfs_log_vec	*lv) | 
|  | { | 
|  | struct xfs_efd_log_item	*efdp = EFD_ITEM(lip); | 
|  | struct xfs_log_iovec	*vecp = NULL; | 
|  |  | 
|  | ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); | 
|  |  | 
|  | efdp->efd_format.efd_type = XFS_LI_EFD; | 
|  | efdp->efd_format.efd_size = 1; | 
|  |  | 
|  | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, | 
|  | &efdp->efd_format, | 
|  | xfs_efd_item_sizeof(efdp)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pinning has no meaning for an efd item, so just return. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efd_item_pin( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since pinning has no meaning for an efd item, unpinning does | 
|  | * not either. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efd_item_unpin( | 
|  | struct xfs_log_item	*lip, | 
|  | int			remove) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There isn't much you can do to push on an efd item.  It is simply stuck | 
|  | * waiting for the log to be flushed to disk. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_efd_item_push( | 
|  | struct xfs_log_item	*lip, | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | return XFS_ITEM_PINNED; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efd_item_unlock( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | if (lip->li_flags & XFS_LI_ABORTED) | 
|  | xfs_efd_item_free(EFD_ITEM(lip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When the efd item is committed to disk, all we need to do | 
|  | * is delete our reference to our partner efi item and then | 
|  | * free ourselves.  Since we're freeing ourselves we must | 
|  | * return -1 to keep the transaction code from further referencing | 
|  | * this item. | 
|  | */ | 
|  | STATIC xfs_lsn_t | 
|  | xfs_efd_item_committed( | 
|  | struct xfs_log_item	*lip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | struct xfs_efd_log_item	*efdp = EFD_ITEM(lip); | 
|  |  | 
|  | /* | 
|  | * If we got a log I/O error, it's always the case that the LR with the | 
|  | * EFI got unpinned and freed before the EFD got aborted. | 
|  | */ | 
|  | if (!(lip->li_flags & XFS_LI_ABORTED)) | 
|  | xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); | 
|  |  | 
|  | xfs_efd_item_free(efdp); | 
|  | return (xfs_lsn_t)-1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFD dependency tracking op doesn't do squat.  It can't because | 
|  | * it doesn't know where the free extent is coming from.  The dependency | 
|  | * tracking has to be handled by the "enclosing" metadata object.  For | 
|  | * example, for inodes, the inode is locked throughout the extent freeing | 
|  | * so the dependency should be recorded there. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efd_item_committing( | 
|  | struct xfs_log_item	*lip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the ops vector shared by all efd log items. | 
|  | */ | 
|  | static const struct xfs_item_ops xfs_efd_item_ops = { | 
|  | .iop_size	= xfs_efd_item_size, | 
|  | .iop_format	= xfs_efd_item_format, | 
|  | .iop_pin	= xfs_efd_item_pin, | 
|  | .iop_unpin	= xfs_efd_item_unpin, | 
|  | .iop_unlock	= xfs_efd_item_unlock, | 
|  | .iop_committed	= xfs_efd_item_committed, | 
|  | .iop_push	= xfs_efd_item_push, | 
|  | .iop_committing = xfs_efd_item_committing | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an efd item with the given number of extents. | 
|  | */ | 
|  | struct xfs_efd_log_item * | 
|  | xfs_efd_init( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_efi_log_item	*efip, | 
|  | uint			nextents) | 
|  |  | 
|  | { | 
|  | struct xfs_efd_log_item	*efdp; | 
|  | uint			size; | 
|  |  | 
|  | ASSERT(nextents > 0); | 
|  | if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { | 
|  | size = (uint)(sizeof(xfs_efd_log_item_t) + | 
|  | ((nextents - 1) * sizeof(xfs_extent_t))); | 
|  | efdp = kmem_zalloc(size, KM_SLEEP); | 
|  | } else { | 
|  | efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); | 
|  | } | 
|  |  | 
|  | xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); | 
|  | efdp->efd_efip = efip; | 
|  | efdp->efd_format.efd_nextents = nextents; | 
|  | efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; | 
|  |  | 
|  | return efdp; | 
|  | } |