|  | /* | 
|  | * Virtual Memory Map support | 
|  | * | 
|  | * (C) 2007 sgi. Christoph Lameter. | 
|  | * | 
|  | * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, | 
|  | * virt_to_page, page_address() to be implemented as a base offset | 
|  | * calculation without memory access. | 
|  | * | 
|  | * However, virtual mappings need a page table and TLBs. Many Linux | 
|  | * architectures already map their physical space using 1-1 mappings | 
|  | * via TLBs. For those arches the virtual memory map is essentially | 
|  | * for free if we use the same page size as the 1-1 mappings. In that | 
|  | * case the overhead consists of a few additional pages that are | 
|  | * allocated to create a view of memory for vmemmap. | 
|  | * | 
|  | * The architecture is expected to provide a vmemmap_populate() function | 
|  | * to instantiate the mapping. | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sched.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | /* | 
|  | * Allocate a block of memory to be used to back the virtual memory map | 
|  | * or to back the page tables that are used to create the mapping. | 
|  | * Uses the main allocators if they are available, else bootmem. | 
|  | */ | 
|  |  | 
|  | static void * __init_refok __earlyonly_bootmem_alloc(int node, | 
|  | unsigned long size, | 
|  | unsigned long align, | 
|  | unsigned long goal) | 
|  | { | 
|  | return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal); | 
|  | } | 
|  |  | 
|  | static void *vmemmap_buf; | 
|  | static void *vmemmap_buf_end; | 
|  |  | 
|  | void * __meminit vmemmap_alloc_block(unsigned long size, int node) | 
|  | { | 
|  | /* If the main allocator is up use that, fallback to bootmem. */ | 
|  | if (slab_is_available()) { | 
|  | struct page *page; | 
|  |  | 
|  | if (node_state(node, N_HIGH_MEMORY)) | 
|  | page = alloc_pages_node(node, | 
|  | GFP_KERNEL | __GFP_ZERO, get_order(size)); | 
|  | else | 
|  | page = alloc_pages(GFP_KERNEL | __GFP_ZERO, | 
|  | get_order(size)); | 
|  | if (page) | 
|  | return page_address(page); | 
|  | return NULL; | 
|  | } else | 
|  | return __earlyonly_bootmem_alloc(node, size, size, | 
|  | __pa(MAX_DMA_ADDRESS)); | 
|  | } | 
|  |  | 
|  | /* need to make sure size is all the same during early stage */ | 
|  | void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node) | 
|  | { | 
|  | void *ptr; | 
|  |  | 
|  | if (!vmemmap_buf) | 
|  | return vmemmap_alloc_block(size, node); | 
|  |  | 
|  | /* take the from buf */ | 
|  | ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size); | 
|  | if (ptr + size > vmemmap_buf_end) | 
|  | return vmemmap_alloc_block(size, node); | 
|  |  | 
|  | vmemmap_buf = ptr + size; | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | void __meminit vmemmap_verify(pte_t *pte, int node, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(*pte); | 
|  | int actual_node = early_pfn_to_nid(pfn); | 
|  |  | 
|  | if (node_distance(actual_node, node) > LOCAL_DISTANCE) | 
|  | printk(KERN_WARNING "[%lx-%lx] potential offnode " | 
|  | "page_structs\n", start, end - 1); | 
|  | } | 
|  |  | 
|  | pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node) | 
|  | { | 
|  | pte_t *pte = pte_offset_kernel(pmd, addr); | 
|  | if (pte_none(*pte)) { | 
|  | pte_t entry; | 
|  | void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); | 
|  | set_pte_at(&init_mm, addr, pte, entry); | 
|  | } | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) | 
|  | { | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | if (pmd_none(*pmd)) { | 
|  | void *p = vmemmap_alloc_block(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | pmd_populate_kernel(&init_mm, pmd, p); | 
|  | } | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node) | 
|  | { | 
|  | pud_t *pud = pud_offset(pgd, addr); | 
|  | if (pud_none(*pud)) { | 
|  | void *p = vmemmap_alloc_block(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | pud_populate(&init_mm, pud, p); | 
|  | } | 
|  | return pud; | 
|  | } | 
|  |  | 
|  | pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset_k(addr); | 
|  | if (pgd_none(*pgd)) { | 
|  | void *p = vmemmap_alloc_block(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | pgd_populate(&init_mm, pgd, p); | 
|  | } | 
|  | return pgd; | 
|  | } | 
|  |  | 
|  | int __meminit vmemmap_populate_basepages(struct page *start_page, | 
|  | unsigned long size, int node) | 
|  | { | 
|  | unsigned long addr = (unsigned long)start_page; | 
|  | unsigned long end = (unsigned long)(start_page + size); | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE) { | 
|  | pgd = vmemmap_pgd_populate(addr, node); | 
|  | if (!pgd) | 
|  | return -ENOMEM; | 
|  | pud = vmemmap_pud_populate(pgd, addr, node); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | pmd = vmemmap_pmd_populate(pud, addr, node); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | pte = vmemmap_pte_populate(pmd, addr, node); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid) | 
|  | { | 
|  | struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION); | 
|  | int error = vmemmap_populate(map, PAGES_PER_SECTION, nid); | 
|  | if (error) | 
|  | return NULL; | 
|  |  | 
|  | return map; | 
|  | } | 
|  |  | 
|  | void __init sparse_mem_maps_populate_node(struct page **map_map, | 
|  | unsigned long pnum_begin, | 
|  | unsigned long pnum_end, | 
|  | unsigned long map_count, int nodeid) | 
|  | { | 
|  | unsigned long pnum; | 
|  | unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; | 
|  | void *vmemmap_buf_start; | 
|  |  | 
|  | size = ALIGN(size, PMD_SIZE); | 
|  | vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count, | 
|  | PMD_SIZE, __pa(MAX_DMA_ADDRESS)); | 
|  |  | 
|  | if (vmemmap_buf_start) { | 
|  | vmemmap_buf = vmemmap_buf_start; | 
|  | vmemmap_buf_end = vmemmap_buf_start + size * map_count; | 
|  | } | 
|  |  | 
|  | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { | 
|  | struct mem_section *ms; | 
|  |  | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  |  | 
|  | map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); | 
|  | if (map_map[pnum]) | 
|  | continue; | 
|  | ms = __nr_to_section(pnum); | 
|  | printk(KERN_ERR "%s: sparsemem memory map backing failed " | 
|  | "some memory will not be available.\n", __func__); | 
|  | ms->section_mem_map = 0; | 
|  | } | 
|  |  | 
|  | if (vmemmap_buf_start) { | 
|  | /* need to free left buf */ | 
|  | free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf); | 
|  | vmemmap_buf = NULL; | 
|  | vmemmap_buf_end = NULL; | 
|  | } | 
|  | } |