blob: e630d918fefc0993e540ac4ecb1734eeaaf3aec6 [file] [log] [blame]
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <linux/kthread.h>
#include <linux/console.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include <drm/amdgpu_drm.h>
#include <linux/vgaarb.h>
#include <linux/vga_switcheroo.h>
#include <linux/efi.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "amdgpu_i2c.h"
#include "atom.h"
#include "amdgpu_atombios.h"
#include "amdgpu_atomfirmware.h"
#include "amd_pcie.h"
#ifdef CONFIG_DRM_AMDGPU_SI
#include "si.h"
#endif
#ifdef CONFIG_DRM_AMDGPU_CIK
#include "cik.h"
#endif
#include "vi.h"
#include "soc15.h"
#include "bif/bif_4_1_d.h"
#include <linux/pci.h>
#include <linux/firmware.h>
#include "amdgpu_vf_error.h"
#include "amdgpu_amdkfd.h"
MODULE_FIRMWARE("amdgpu/vega10_gpu_info.bin");
MODULE_FIRMWARE("amdgpu/raven_gpu_info.bin");
#define AMDGPU_RESUME_MS 2000
static int amdgpu_debugfs_regs_init(struct amdgpu_device *adev);
static void amdgpu_debugfs_regs_cleanup(struct amdgpu_device *adev);
static int amdgpu_debugfs_test_ib_ring_init(struct amdgpu_device *adev);
static const char *amdgpu_asic_name[] = {
"TAHITI",
"PITCAIRN",
"VERDE",
"OLAND",
"HAINAN",
"BONAIRE",
"KAVERI",
"KABINI",
"HAWAII",
"MULLINS",
"TOPAZ",
"TONGA",
"FIJI",
"CARRIZO",
"STONEY",
"POLARIS10",
"POLARIS11",
"POLARIS12",
"VEGA10",
"RAVEN",
"LAST",
};
bool amdgpu_device_is_px(struct drm_device *dev)
{
struct amdgpu_device *adev = dev->dev_private;
if (adev->flags & AMD_IS_PX)
return true;
return false;
}
/*
* MMIO register access helper functions.
*/
uint32_t amdgpu_mm_rreg(struct amdgpu_device *adev, uint32_t reg,
uint32_t acc_flags)
{
uint32_t ret;
if (!(acc_flags & AMDGPU_REGS_NO_KIQ) && amdgpu_sriov_runtime(adev)) {
BUG_ON(in_interrupt());
return amdgpu_virt_kiq_rreg(adev, reg);
}
if ((reg * 4) < adev->rmmio_size && !(acc_flags & AMDGPU_REGS_IDX))
ret = readl(((void __iomem *)adev->rmmio) + (reg * 4));
else {
unsigned long flags;
spin_lock_irqsave(&adev->mmio_idx_lock, flags);
writel((reg * 4), ((void __iomem *)adev->rmmio) + (mmMM_INDEX * 4));
ret = readl(((void __iomem *)adev->rmmio) + (mmMM_DATA * 4));
spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
}
trace_amdgpu_mm_rreg(adev->pdev->device, reg, ret);
return ret;
}
void amdgpu_mm_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v,
uint32_t acc_flags)
{
trace_amdgpu_mm_wreg(adev->pdev->device, reg, v);
if (adev->asic_type >= CHIP_VEGA10 && reg == 0) {
adev->last_mm_index = v;
}
if (!(acc_flags & AMDGPU_REGS_NO_KIQ) && amdgpu_sriov_runtime(adev)) {
BUG_ON(in_interrupt());
return amdgpu_virt_kiq_wreg(adev, reg, v);
}
if ((reg * 4) < adev->rmmio_size && !(acc_flags & AMDGPU_REGS_IDX))
writel(v, ((void __iomem *)adev->rmmio) + (reg * 4));
else {
unsigned long flags;
spin_lock_irqsave(&adev->mmio_idx_lock, flags);
writel((reg * 4), ((void __iomem *)adev->rmmio) + (mmMM_INDEX * 4));
writel(v, ((void __iomem *)adev->rmmio) + (mmMM_DATA * 4));
spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
}
if (adev->asic_type >= CHIP_VEGA10 && reg == 1 && adev->last_mm_index == 0x5702C) {
udelay(500);
}
}
u32 amdgpu_io_rreg(struct amdgpu_device *adev, u32 reg)
{
if ((reg * 4) < adev->rio_mem_size)
return ioread32(adev->rio_mem + (reg * 4));
else {
iowrite32((reg * 4), adev->rio_mem + (mmMM_INDEX * 4));
return ioread32(adev->rio_mem + (mmMM_DATA * 4));
}
}
void amdgpu_io_wreg(struct amdgpu_device *adev, u32 reg, u32 v)
{
if (adev->asic_type >= CHIP_VEGA10 && reg == 0) {
adev->last_mm_index = v;
}
if ((reg * 4) < adev->rio_mem_size)
iowrite32(v, adev->rio_mem + (reg * 4));
else {
iowrite32((reg * 4), adev->rio_mem + (mmMM_INDEX * 4));
iowrite32(v, adev->rio_mem + (mmMM_DATA * 4));
}
if (adev->asic_type >= CHIP_VEGA10 && reg == 1 && adev->last_mm_index == 0x5702C) {
udelay(500);
}
}
/**
* amdgpu_mm_rdoorbell - read a doorbell dword
*
* @adev: amdgpu_device pointer
* @index: doorbell index
*
* Returns the value in the doorbell aperture at the
* requested doorbell index (CIK).
*/
u32 amdgpu_mm_rdoorbell(struct amdgpu_device *adev, u32 index)
{
if (index < adev->doorbell.num_doorbells) {
return readl(adev->doorbell.ptr + index);
} else {
DRM_ERROR("reading beyond doorbell aperture: 0x%08x!\n", index);
return 0;
}
}
/**
* amdgpu_mm_wdoorbell - write a doorbell dword
*
* @adev: amdgpu_device pointer
* @index: doorbell index
* @v: value to write
*
* Writes @v to the doorbell aperture at the
* requested doorbell index (CIK).
*/
void amdgpu_mm_wdoorbell(struct amdgpu_device *adev, u32 index, u32 v)
{
if (index < adev->doorbell.num_doorbells) {
writel(v, adev->doorbell.ptr + index);
} else {
DRM_ERROR("writing beyond doorbell aperture: 0x%08x!\n", index);
}
}
/**
* amdgpu_mm_rdoorbell64 - read a doorbell Qword
*
* @adev: amdgpu_device pointer
* @index: doorbell index
*
* Returns the value in the doorbell aperture at the
* requested doorbell index (VEGA10+).
*/
u64 amdgpu_mm_rdoorbell64(struct amdgpu_device *adev, u32 index)
{
if (index < adev->doorbell.num_doorbells) {
return atomic64_read((atomic64_t *)(adev->doorbell.ptr + index));
} else {
DRM_ERROR("reading beyond doorbell aperture: 0x%08x!\n", index);
return 0;
}
}
/**
* amdgpu_mm_wdoorbell64 - write a doorbell Qword
*
* @adev: amdgpu_device pointer
* @index: doorbell index
* @v: value to write
*
* Writes @v to the doorbell aperture at the
* requested doorbell index (VEGA10+).
*/
void amdgpu_mm_wdoorbell64(struct amdgpu_device *adev, u32 index, u64 v)
{
if (index < adev->doorbell.num_doorbells) {
atomic64_set((atomic64_t *)(adev->doorbell.ptr + index), v);
} else {
DRM_ERROR("writing beyond doorbell aperture: 0x%08x!\n", index);
}
}
/**
* amdgpu_invalid_rreg - dummy reg read function
*
* @adev: amdgpu device pointer
* @reg: offset of register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
* Returns the value in the register.
*/
static uint32_t amdgpu_invalid_rreg(struct amdgpu_device *adev, uint32_t reg)
{
DRM_ERROR("Invalid callback to read register 0x%04X\n", reg);
BUG();
return 0;
}
/**
* amdgpu_invalid_wreg - dummy reg write function
*
* @adev: amdgpu device pointer
* @reg: offset of register
* @v: value to write to the register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
*/
static void amdgpu_invalid_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
{
DRM_ERROR("Invalid callback to write register 0x%04X with 0x%08X\n",
reg, v);
BUG();
}
/**
* amdgpu_block_invalid_rreg - dummy reg read function
*
* @adev: amdgpu device pointer
* @block: offset of instance
* @reg: offset of register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
* Returns the value in the register.
*/
static uint32_t amdgpu_block_invalid_rreg(struct amdgpu_device *adev,
uint32_t block, uint32_t reg)
{
DRM_ERROR("Invalid callback to read register 0x%04X in block 0x%04X\n",
reg, block);
BUG();
return 0;
}
/**
* amdgpu_block_invalid_wreg - dummy reg write function
*
* @adev: amdgpu device pointer
* @block: offset of instance
* @reg: offset of register
* @v: value to write to the register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
*/
static void amdgpu_block_invalid_wreg(struct amdgpu_device *adev,
uint32_t block,
uint32_t reg, uint32_t v)
{
DRM_ERROR("Invalid block callback to write register 0x%04X in block 0x%04X with 0x%08X\n",
reg, block, v);
BUG();
}
static int amdgpu_vram_scratch_init(struct amdgpu_device *adev)
{
return amdgpu_bo_create_kernel(adev, AMDGPU_GPU_PAGE_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM,
&adev->vram_scratch.robj,
&adev->vram_scratch.gpu_addr,
(void **)&adev->vram_scratch.ptr);
}
static void amdgpu_vram_scratch_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->vram_scratch.robj, NULL, NULL);
}
/**
* amdgpu_program_register_sequence - program an array of registers.
*
* @adev: amdgpu_device pointer
* @registers: pointer to the register array
* @array_size: size of the register array
*
* Programs an array or registers with and and or masks.
* This is a helper for setting golden registers.
*/
void amdgpu_program_register_sequence(struct amdgpu_device *adev,
const u32 *registers,
const u32 array_size)
{
u32 tmp, reg, and_mask, or_mask;
int i;
if (array_size % 3)
return;
for (i = 0; i < array_size; i +=3) {
reg = registers[i + 0];
and_mask = registers[i + 1];
or_mask = registers[i + 2];
if (and_mask == 0xffffffff) {
tmp = or_mask;
} else {
tmp = RREG32(reg);
tmp &= ~and_mask;
tmp |= or_mask;
}
WREG32(reg, tmp);
}
}
void amdgpu_pci_config_reset(struct amdgpu_device *adev)
{
pci_write_config_dword(adev->pdev, 0x7c, AMDGPU_ASIC_RESET_DATA);
}
/*
* GPU doorbell aperture helpers function.
*/
/**
* amdgpu_doorbell_init - Init doorbell driver information.
*
* @adev: amdgpu_device pointer
*
* Init doorbell driver information (CIK)
* Returns 0 on success, error on failure.
*/
static int amdgpu_doorbell_init(struct amdgpu_device *adev)
{
/* doorbell bar mapping */
adev->doorbell.base = pci_resource_start(adev->pdev, 2);
adev->doorbell.size = pci_resource_len(adev->pdev, 2);
adev->doorbell.num_doorbells = min_t(u32, adev->doorbell.size / sizeof(u32),
AMDGPU_DOORBELL_MAX_ASSIGNMENT+1);
if (adev->doorbell.num_doorbells == 0)
return -EINVAL;
adev->doorbell.ptr = ioremap(adev->doorbell.base,
adev->doorbell.num_doorbells *
sizeof(u32));
if (adev->doorbell.ptr == NULL)
return -ENOMEM;
return 0;
}
/**
* amdgpu_doorbell_fini - Tear down doorbell driver information.
*
* @adev: amdgpu_device pointer
*
* Tear down doorbell driver information (CIK)
*/
static void amdgpu_doorbell_fini(struct amdgpu_device *adev)
{
iounmap(adev->doorbell.ptr);
adev->doorbell.ptr = NULL;
}
/**
* amdgpu_doorbell_get_kfd_info - Report doorbell configuration required to
* setup amdkfd
*
* @adev: amdgpu_device pointer
* @aperture_base: output returning doorbell aperture base physical address
* @aperture_size: output returning doorbell aperture size in bytes
* @start_offset: output returning # of doorbell bytes reserved for amdgpu.
*
* amdgpu and amdkfd share the doorbell aperture. amdgpu sets it up,
* takes doorbells required for its own rings and reports the setup to amdkfd.
* amdgpu reserved doorbells are at the start of the doorbell aperture.
*/
void amdgpu_doorbell_get_kfd_info(struct amdgpu_device *adev,
phys_addr_t *aperture_base,
size_t *aperture_size,
size_t *start_offset)
{
/*
* The first num_doorbells are used by amdgpu.
* amdkfd takes whatever's left in the aperture.
*/
if (adev->doorbell.size > adev->doorbell.num_doorbells * sizeof(u32)) {
*aperture_base = adev->doorbell.base;
*aperture_size = adev->doorbell.size;
*start_offset = adev->doorbell.num_doorbells * sizeof(u32);
} else {
*aperture_base = 0;
*aperture_size = 0;
*start_offset = 0;
}
}
/*
* amdgpu_wb_*()
* Writeback is the method by which the GPU updates special pages in memory
* with the status of certain GPU events (fences, ring pointers,etc.).
*/
/**
* amdgpu_wb_fini - Disable Writeback and free memory
*
* @adev: amdgpu_device pointer
*
* Disables Writeback and frees the Writeback memory (all asics).
* Used at driver shutdown.
*/
static void amdgpu_wb_fini(struct amdgpu_device *adev)
{
if (adev->wb.wb_obj) {
amdgpu_bo_free_kernel(&adev->wb.wb_obj,
&adev->wb.gpu_addr,
(void **)&adev->wb.wb);
adev->wb.wb_obj = NULL;
}
}
/**
* amdgpu_wb_init- Init Writeback driver info and allocate memory
*
* @adev: amdgpu_device pointer
*
* Initializes writeback and allocates writeback memory (all asics).
* Used at driver startup.
* Returns 0 on success or an -error on failure.
*/
static int amdgpu_wb_init(struct amdgpu_device *adev)
{
int r;
if (adev->wb.wb_obj == NULL) {
/* AMDGPU_MAX_WB * sizeof(uint32_t) * 8 = AMDGPU_MAX_WB 256bit slots */
r = amdgpu_bo_create_kernel(adev, AMDGPU_MAX_WB * sizeof(uint32_t) * 8,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&adev->wb.wb_obj, &adev->wb.gpu_addr,
(void **)&adev->wb.wb);
if (r) {
dev_warn(adev->dev, "(%d) create WB bo failed\n", r);
return r;
}
adev->wb.num_wb = AMDGPU_MAX_WB;
memset(&adev->wb.used, 0, sizeof(adev->wb.used));
/* clear wb memory */
memset((char *)adev->wb.wb, 0, AMDGPU_MAX_WB * sizeof(uint32_t));
}
return 0;
}
/**
* amdgpu_wb_get - Allocate a wb entry
*
* @adev: amdgpu_device pointer
* @wb: wb index
*
* Allocate a wb slot for use by the driver (all asics).
* Returns 0 on success or -EINVAL on failure.
*/
int amdgpu_wb_get(struct amdgpu_device *adev, u32 *wb)
{
unsigned long offset = find_first_zero_bit(adev->wb.used, adev->wb.num_wb);
if (offset < adev->wb.num_wb) {
__set_bit(offset, adev->wb.used);
*wb = offset * 8; /* convert to dw offset */
return 0;
} else {
return -EINVAL;
}
}
/**
* amdgpu_wb_free - Free a wb entry
*
* @adev: amdgpu_device pointer
* @wb: wb index
*
* Free a wb slot allocated for use by the driver (all asics)
*/
void amdgpu_wb_free(struct amdgpu_device *adev, u32 wb)
{
if (wb < adev->wb.num_wb)
__clear_bit(wb, adev->wb.used);
}
/**
* amdgpu_vram_location - try to find VRAM location
* @adev: amdgpu device structure holding all necessary informations
* @mc: memory controller structure holding memory informations
* @base: base address at which to put VRAM
*
* Function will try to place VRAM at base address provided
* as parameter (which is so far either PCI aperture address or
* for IGP TOM base address).
*
* If there is not enough space to fit the unvisible VRAM in the 32bits
* address space then we limit the VRAM size to the aperture.
*
* Note: We don't explicitly enforce VRAM start to be aligned on VRAM size,
* this shouldn't be a problem as we are using the PCI aperture as a reference.
* Otherwise this would be needed for rv280, all r3xx, and all r4xx, but
* not IGP.
*
* Note: we use mc_vram_size as on some board we need to program the mc to
* cover the whole aperture even if VRAM size is inferior to aperture size
* Novell bug 204882 + along with lots of ubuntu ones
*
* Note: when limiting vram it's safe to overwritte real_vram_size because
* we are not in case where real_vram_size is inferior to mc_vram_size (ie
* note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu
* ones)
*
* Note: IGP TOM addr should be the same as the aperture addr, we don't
* explicitly check for that though.
*
* FIXME: when reducing VRAM size align new size on power of 2.
*/
void amdgpu_vram_location(struct amdgpu_device *adev, struct amdgpu_mc *mc, u64 base)
{
uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
mc->vram_start = base;
if (mc->mc_vram_size > (adev->mc.mc_mask - base + 1)) {
dev_warn(adev->dev, "limiting VRAM to PCI aperture size\n");
mc->real_vram_size = mc->aper_size;
mc->mc_vram_size = mc->aper_size;
}
mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
if (limit && limit < mc->real_vram_size)
mc->real_vram_size = limit;
dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
mc->mc_vram_size >> 20, mc->vram_start,
mc->vram_end, mc->real_vram_size >> 20);
}
/**
* amdgpu_gart_location - try to find GTT location
* @adev: amdgpu device structure holding all necessary informations
* @mc: memory controller structure holding memory informations
*
* Function will place try to place GTT before or after VRAM.
*
* If GTT size is bigger than space left then we ajust GTT size.
* Thus function will never fails.
*
* FIXME: when reducing GTT size align new size on power of 2.
*/
void amdgpu_gart_location(struct amdgpu_device *adev, struct amdgpu_mc *mc)
{
u64 size_af, size_bf;
size_af = adev->mc.mc_mask - mc->vram_end;
size_bf = mc->vram_start;
if (size_bf > size_af) {
if (mc->gart_size > size_bf) {
dev_warn(adev->dev, "limiting GTT\n");
mc->gart_size = size_bf;
}
mc->gart_start = 0;
} else {
if (mc->gart_size > size_af) {
dev_warn(adev->dev, "limiting GTT\n");
mc->gart_size = size_af;
}
mc->gart_start = mc->vram_end + 1;
}
mc->gart_end = mc->gart_start + mc->gart_size - 1;
dev_info(adev->dev, "GTT: %lluM 0x%016llX - 0x%016llX\n",
mc->gart_size >> 20, mc->gart_start, mc->gart_end);
}
/*
* GPU helpers function.
*/
/**
* amdgpu_need_post - check if the hw need post or not
*
* @adev: amdgpu_device pointer
*
* Check if the asic has been initialized (all asics) at driver startup
* or post is needed if hw reset is performed.
* Returns true if need or false if not.
*/
bool amdgpu_need_post(struct amdgpu_device *adev)
{
uint32_t reg;
if (adev->has_hw_reset) {
adev->has_hw_reset = false;
return true;
}
/* bios scratch used on CIK+ */
if (adev->asic_type >= CHIP_BONAIRE)
return amdgpu_atombios_scratch_need_asic_init(adev);
/* check MEM_SIZE for older asics */
reg = amdgpu_asic_get_config_memsize(adev);
if ((reg != 0) && (reg != 0xffffffff))
return false;
return true;
}
static bool amdgpu_vpost_needed(struct amdgpu_device *adev)
{
if (amdgpu_sriov_vf(adev))
return false;
if (amdgpu_passthrough(adev)) {
/* for FIJI: In whole GPU pass-through virtualization case, after VM reboot
* some old smc fw still need driver do vPost otherwise gpu hang, while
* those smc fw version above 22.15 doesn't have this flaw, so we force
* vpost executed for smc version below 22.15
*/
if (adev->asic_type == CHIP_FIJI) {
int err;
uint32_t fw_ver;
err = request_firmware(&adev->pm.fw, "amdgpu/fiji_smc.bin", adev->dev);
/* force vPost if error occured */
if (err)
return true;
fw_ver = *((uint32_t *)adev->pm.fw->data + 69);
if (fw_ver < 0x00160e00)
return true;
}
}
return amdgpu_need_post(adev);
}
/**
* amdgpu_dummy_page_init - init dummy page used by the driver
*
* @adev: amdgpu_device pointer
*
* Allocate the dummy page used by the driver (all asics).
* This dummy page is used by the driver as a filler for gart entries
* when pages are taken out of the GART
* Returns 0 on sucess, -ENOMEM on failure.
*/
int amdgpu_dummy_page_init(struct amdgpu_device *adev)
{
if (adev->dummy_page.page)
return 0;
adev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO);
if (adev->dummy_page.page == NULL)
return -ENOMEM;
adev->dummy_page.addr = pci_map_page(adev->pdev, adev->dummy_page.page,
0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(adev->pdev, adev->dummy_page.addr)) {
dev_err(&adev->pdev->dev, "Failed to DMA MAP the dummy page\n");
__free_page(adev->dummy_page.page);
adev->dummy_page.page = NULL;
return -ENOMEM;
}
return 0;
}
/**
* amdgpu_dummy_page_fini - free dummy page used by the driver
*
* @adev: amdgpu_device pointer
*
* Frees the dummy page used by the driver (all asics).
*/
void amdgpu_dummy_page_fini(struct amdgpu_device *adev)
{
if (adev->dummy_page.page == NULL)
return;
pci_unmap_page(adev->pdev, adev->dummy_page.addr,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
__free_page(adev->dummy_page.page);
adev->dummy_page.page = NULL;
}
/* ATOM accessor methods */
/*
* ATOM is an interpreted byte code stored in tables in the vbios. The
* driver registers callbacks to access registers and the interpreter
* in the driver parses the tables and executes then to program specific
* actions (set display modes, asic init, etc.). See amdgpu_atombios.c,
* atombios.h, and atom.c
*/
/**
* cail_pll_read - read PLL register
*
* @info: atom card_info pointer
* @reg: PLL register offset
*
* Provides a PLL register accessor for the atom interpreter (r4xx+).
* Returns the value of the PLL register.
*/
static uint32_t cail_pll_read(struct card_info *info, uint32_t reg)
{
return 0;
}
/**
* cail_pll_write - write PLL register
*
* @info: atom card_info pointer
* @reg: PLL register offset
* @val: value to write to the pll register
*
* Provides a PLL register accessor for the atom interpreter (r4xx+).
*/
static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val)
{
}
/**
* cail_mc_read - read MC (Memory Controller) register
*
* @info: atom card_info pointer
* @reg: MC register offset
*
* Provides an MC register accessor for the atom interpreter (r4xx+).
* Returns the value of the MC register.
*/
static uint32_t cail_mc_read(struct card_info *info, uint32_t reg)
{
return 0;
}
/**
* cail_mc_write - write MC (Memory Controller) register
*
* @info: atom card_info pointer
* @reg: MC register offset
* @val: value to write to the pll register
*
* Provides a MC register accessor for the atom interpreter (r4xx+).
*/
static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val)
{
}
/**
* cail_reg_write - write MMIO register
*
* @info: atom card_info pointer
* @reg: MMIO register offset
* @val: value to write to the pll register
*
* Provides a MMIO register accessor for the atom interpreter (r4xx+).
*/
static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val)
{
struct amdgpu_device *adev = info->dev->dev_private;
WREG32(reg, val);
}
/**
* cail_reg_read - read MMIO register
*
* @info: atom card_info pointer
* @reg: MMIO register offset
*
* Provides an MMIO register accessor for the atom interpreter (r4xx+).
* Returns the value of the MMIO register.
*/
static uint32_t cail_reg_read(struct card_info *info, uint32_t reg)
{
struct amdgpu_device *adev = info->dev->dev_private;
uint32_t r;
r = RREG32(reg);
return r;
}
/**
* cail_ioreg_write - write IO register
*
* @info: atom card_info pointer
* @reg: IO register offset
* @val: value to write to the pll register
*
* Provides a IO register accessor for the atom interpreter (r4xx+).
*/
static void cail_ioreg_write(struct card_info *info, uint32_t reg, uint32_t val)
{
struct amdgpu_device *adev = info->dev->dev_private;
WREG32_IO(reg, val);
}
/**
* cail_ioreg_read - read IO register
*
* @info: atom card_info pointer
* @reg: IO register offset
*
* Provides an IO register accessor for the atom interpreter (r4xx+).
* Returns the value of the IO register.
*/
static uint32_t cail_ioreg_read(struct card_info *info, uint32_t reg)
{
struct amdgpu_device *adev = info->dev->dev_private;
uint32_t r;
r = RREG32_IO(reg);
return r;
}
/**
* amdgpu_atombios_fini - free the driver info and callbacks for atombios
*
* @adev: amdgpu_device pointer
*
* Frees the driver info and register access callbacks for the ATOM
* interpreter (r4xx+).
* Called at driver shutdown.
*/
static void amdgpu_atombios_fini(struct amdgpu_device *adev)
{
if (adev->mode_info.atom_context) {
kfree(adev->mode_info.atom_context->scratch);
kfree(adev->mode_info.atom_context->iio);
}
kfree(adev->mode_info.atom_context);
adev->mode_info.atom_context = NULL;
kfree(adev->mode_info.atom_card_info);
adev->mode_info.atom_card_info = NULL;
}
/**
* amdgpu_atombios_init - init the driver info and callbacks for atombios
*
* @adev: amdgpu_device pointer
*
* Initializes the driver info and register access callbacks for the
* ATOM interpreter (r4xx+).
* Returns 0 on sucess, -ENOMEM on failure.
* Called at driver startup.
*/
static int amdgpu_atombios_init(struct amdgpu_device *adev)
{
struct card_info *atom_card_info =
kzalloc(sizeof(struct card_info), GFP_KERNEL);
if (!atom_card_info)
return -ENOMEM;
adev->mode_info.atom_card_info = atom_card_info;
atom_card_info->dev = adev->ddev;
atom_card_info->reg_read = cail_reg_read;
atom_card_info->reg_write = cail_reg_write;
/* needed for iio ops */
if (adev->rio_mem) {
atom_card_info->ioreg_read = cail_ioreg_read;
atom_card_info->ioreg_write = cail_ioreg_write;
} else {
DRM_INFO("PCI I/O BAR is not found. Using MMIO to access ATOM BIOS\n");
atom_card_info->ioreg_read = cail_reg_read;
atom_card_info->ioreg_write = cail_reg_write;
}
atom_card_info->mc_read = cail_mc_read;
atom_card_info->mc_write = cail_mc_write;
atom_card_info->pll_read = cail_pll_read;
atom_card_info->pll_write = cail_pll_write;
adev->mode_info.atom_context = amdgpu_atom_parse(atom_card_info, adev->bios);
if (!adev->mode_info.atom_context) {
amdgpu_atombios_fini(adev);
return -ENOMEM;
}
mutex_init(&adev->mode_info.atom_context->mutex);
if (adev->is_atom_fw) {
amdgpu_atomfirmware_scratch_regs_init(adev);
amdgpu_atomfirmware_allocate_fb_scratch(adev);
} else {
amdgpu_atombios_scratch_regs_init(adev);
amdgpu_atombios_allocate_fb_scratch(adev);
}
return 0;
}
/* if we get transitioned to only one device, take VGA back */
/**
* amdgpu_vga_set_decode - enable/disable vga decode
*
* @cookie: amdgpu_device pointer
* @state: enable/disable vga decode
*
* Enable/disable vga decode (all asics).
* Returns VGA resource flags.
*/
static unsigned int amdgpu_vga_set_decode(void *cookie, bool state)
{
struct amdgpu_device *adev = cookie;
amdgpu_asic_set_vga_state(adev, state);
if (state)
return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
else
return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
}
static void amdgpu_check_block_size(struct amdgpu_device *adev)
{
/* defines number of bits in page table versus page directory,
* a page is 4KB so we have 12 bits offset, minimum 9 bits in the
* page table and the remaining bits are in the page directory */
if (amdgpu_vm_block_size == -1)
return;
if (amdgpu_vm_block_size < 9) {
dev_warn(adev->dev, "VM page table size (%d) too small\n",
amdgpu_vm_block_size);
goto def_value;
}
if (amdgpu_vm_block_size > 24 ||
(amdgpu_vm_size * 1024) < (1ull << amdgpu_vm_block_size)) {
dev_warn(adev->dev, "VM page table size (%d) too large\n",
amdgpu_vm_block_size);
goto def_value;
}
return;
def_value:
amdgpu_vm_block_size = -1;
}
static void amdgpu_check_vm_size(struct amdgpu_device *adev)
{
/* no need to check the default value */
if (amdgpu_vm_size == -1)
return;
if (!is_power_of_2(amdgpu_vm_size)) {
dev_warn(adev->dev, "VM size (%d) must be a power of 2\n",
amdgpu_vm_size);
goto def_value;
}
if (amdgpu_vm_size < 1) {
dev_warn(adev->dev, "VM size (%d) too small, min is 1GB\n",
amdgpu_vm_size);
goto def_value;
}
/*
* Max GPUVM size for Cayman, SI, CI VI are 40 bits.
*/
if (amdgpu_vm_size > 1024) {
dev_warn(adev->dev, "VM size (%d) too large, max is 1TB\n",
amdgpu_vm_size);
goto def_value;
}
return;
def_value:
amdgpu_vm_size = -1;
}
/**
* amdgpu_check_arguments - validate module params
*
* @adev: amdgpu_device pointer
*
* Validates certain module parameters and updates
* the associated values used by the driver (all asics).
*/
static void amdgpu_check_arguments(struct amdgpu_device *adev)
{
if (amdgpu_sched_jobs < 4) {
dev_warn(adev->dev, "sched jobs (%d) must be at least 4\n",
amdgpu_sched_jobs);
amdgpu_sched_jobs = 4;
} else if (!is_power_of_2(amdgpu_sched_jobs)){
dev_warn(adev->dev, "sched jobs (%d) must be a power of 2\n",
amdgpu_sched_jobs);
amdgpu_sched_jobs = roundup_pow_of_two(amdgpu_sched_jobs);
}
if (amdgpu_gart_size != -1 && amdgpu_gart_size < 32) {
/* gart size must be greater or equal to 32M */
dev_warn(adev->dev, "gart size (%d) too small\n",
amdgpu_gart_size);
amdgpu_gart_size = -1;
}
if (amdgpu_gtt_size != -1 && amdgpu_gtt_size < 32) {
/* gtt size must be greater or equal to 32M */
dev_warn(adev->dev, "gtt size (%d) too small\n",
amdgpu_gtt_size);
amdgpu_gtt_size = -1;
}
/* valid range is between 4 and 9 inclusive */
if (amdgpu_vm_fragment_size != -1 &&
(amdgpu_vm_fragment_size > 9 || amdgpu_vm_fragment_size < 4)) {
dev_warn(adev->dev, "valid range is between 4 and 9\n");
amdgpu_vm_fragment_size = -1;
}
amdgpu_check_vm_size(adev);
amdgpu_check_block_size(adev);
if (amdgpu_vram_page_split != -1 && (amdgpu_vram_page_split < 16 ||
!is_power_of_2(amdgpu_vram_page_split))) {
dev_warn(adev->dev, "invalid VRAM page split (%d)\n",
amdgpu_vram_page_split);
amdgpu_vram_page_split = 1024;
}
}
/**
* amdgpu_switcheroo_set_state - set switcheroo state
*
* @pdev: pci dev pointer
* @state: vga_switcheroo state
*
* Callback for the switcheroo driver. Suspends or resumes the
* the asics before or after it is powered up using ACPI methods.
*/
static void amdgpu_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
{
struct drm_device *dev = pci_get_drvdata(pdev);
if (amdgpu_device_is_px(dev) && state == VGA_SWITCHEROO_OFF)
return;
if (state == VGA_SWITCHEROO_ON) {
pr_info("amdgpu: switched on\n");
/* don't suspend or resume card normally */
dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
amdgpu_device_resume(dev, true, true);
dev->switch_power_state = DRM_SWITCH_POWER_ON;
drm_kms_helper_poll_enable(dev);
} else {
pr_info("amdgpu: switched off\n");
drm_kms_helper_poll_disable(dev);
dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
amdgpu_device_suspend(dev, true, true);
dev->switch_power_state = DRM_SWITCH_POWER_OFF;
}
}
/**
* amdgpu_switcheroo_can_switch - see if switcheroo state can change
*
* @pdev: pci dev pointer
*
* Callback for the switcheroo driver. Check of the switcheroo
* state can be changed.
* Returns true if the state can be changed, false if not.
*/
static bool amdgpu_switcheroo_can_switch(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
/*
* FIXME: open_count is protected by drm_global_mutex but that would lead to
* locking inversion with the driver load path. And the access here is
* completely racy anyway. So don't bother with locking for now.
*/
return dev->open_count == 0;
}
static const struct vga_switcheroo_client_ops amdgpu_switcheroo_ops = {
.set_gpu_state = amdgpu_switcheroo_set_state,
.reprobe = NULL,
.can_switch = amdgpu_switcheroo_can_switch,
};
int amdgpu_set_clockgating_state(struct amdgpu_device *adev,
enum amd_ip_block_type block_type,
enum amd_clockgating_state state)
{
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type != block_type)
continue;
if (!adev->ip_blocks[i].version->funcs->set_clockgating_state)
continue;
r = adev->ip_blocks[i].version->funcs->set_clockgating_state(
(void *)adev, state);
if (r)
DRM_ERROR("set_clockgating_state of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
return r;
}
int amdgpu_set_powergating_state(struct amdgpu_device *adev,
enum amd_ip_block_type block_type,
enum amd_powergating_state state)
{
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type != block_type)
continue;
if (!adev->ip_blocks[i].version->funcs->set_powergating_state)
continue;
r = adev->ip_blocks[i].version->funcs->set_powergating_state(
(void *)adev, state);
if (r)
DRM_ERROR("set_powergating_state of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
return r;
}
void amdgpu_get_clockgating_state(struct amdgpu_device *adev, u32 *flags)
{
int i;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->funcs->get_clockgating_state)
adev->ip_blocks[i].version->funcs->get_clockgating_state((void *)adev, flags);
}
}
int amdgpu_wait_for_idle(struct amdgpu_device *adev,
enum amd_ip_block_type block_type)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type == block_type) {
r = adev->ip_blocks[i].version->funcs->wait_for_idle((void *)adev);
if (r)
return r;
break;
}
}
return 0;
}
bool amdgpu_is_idle(struct amdgpu_device *adev,
enum amd_ip_block_type block_type)
{
int i;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type == block_type)
return adev->ip_blocks[i].version->funcs->is_idle((void *)adev);
}
return true;
}
struct amdgpu_ip_block * amdgpu_get_ip_block(struct amdgpu_device *adev,
enum amd_ip_block_type type)
{
int i;
for (i = 0; i < adev->num_ip_blocks; i++)
if (adev->ip_blocks[i].version->type == type)
return &adev->ip_blocks[i];
return NULL;
}
/**
* amdgpu_ip_block_version_cmp
*
* @adev: amdgpu_device pointer
* @type: enum amd_ip_block_type
* @major: major version
* @minor: minor version
*
* return 0 if equal or greater
* return 1 if smaller or the ip_block doesn't exist
*/
int amdgpu_ip_block_version_cmp(struct amdgpu_device *adev,
enum amd_ip_block_type type,
u32 major, u32 minor)
{
struct amdgpu_ip_block *ip_block = amdgpu_get_ip_block(adev, type);
if (ip_block && ((ip_block->version->major > major) ||
((ip_block->version->major == major) &&
(ip_block->version->minor >= minor))))
return 0;
return 1;
}
/**
* amdgpu_ip_block_add
*
* @adev: amdgpu_device pointer
* @ip_block_version: pointer to the IP to add
*
* Adds the IP block driver information to the collection of IPs
* on the asic.
*/
int amdgpu_ip_block_add(struct amdgpu_device *adev,
const struct amdgpu_ip_block_version *ip_block_version)
{
if (!ip_block_version)
return -EINVAL;
DRM_DEBUG("add ip block number %d <%s>\n", adev->num_ip_blocks,
ip_block_version->funcs->name);
adev->ip_blocks[adev->num_ip_blocks++].version = ip_block_version;
return 0;
}
static void amdgpu_device_enable_virtual_display(struct amdgpu_device *adev)
{
adev->enable_virtual_display = false;
if (amdgpu_virtual_display) {
struct drm_device *ddev = adev->ddev;
const char *pci_address_name = pci_name(ddev->pdev);
char *pciaddstr, *pciaddstr_tmp, *pciaddname_tmp, *pciaddname;
pciaddstr = kstrdup(amdgpu_virtual_display, GFP_KERNEL);
pciaddstr_tmp = pciaddstr;
while ((pciaddname_tmp = strsep(&pciaddstr_tmp, ";"))) {
pciaddname = strsep(&pciaddname_tmp, ",");
if (!strcmp("all", pciaddname)
|| !strcmp(pci_address_name, pciaddname)) {
long num_crtc;
int res = -1;
adev->enable_virtual_display = true;
if (pciaddname_tmp)
res = kstrtol(pciaddname_tmp, 10,
&num_crtc);
if (!res) {
if (num_crtc < 1)
num_crtc = 1;
if (num_crtc > 6)
num_crtc = 6;
adev->mode_info.num_crtc = num_crtc;
} else {
adev->mode_info.num_crtc = 1;
}
break;
}
}
DRM_INFO("virtual display string:%s, %s:virtual_display:%d, num_crtc:%d\n",
amdgpu_virtual_display, pci_address_name,
adev->enable_virtual_display, adev->mode_info.num_crtc);
kfree(pciaddstr);
}
}
static int amdgpu_device_parse_gpu_info_fw(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[30];
int err;
const struct gpu_info_firmware_header_v1_0 *hdr;
adev->firmware.gpu_info_fw = NULL;
switch (adev->asic_type) {
case CHIP_TOPAZ:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS11:
case CHIP_POLARIS10:
case CHIP_POLARIS12:
case CHIP_CARRIZO:
case CHIP_STONEY:
#ifdef CONFIG_DRM_AMDGPU_SI
case CHIP_VERDE:
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_OLAND:
case CHIP_HAINAN:
#endif
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
#endif
default:
return 0;
case CHIP_VEGA10:
chip_name = "vega10";
break;
case CHIP_RAVEN:
chip_name = "raven";
break;
}
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_gpu_info.bin", chip_name);
err = request_firmware(&adev->firmware.gpu_info_fw, fw_name, adev->dev);
if (err) {
dev_err(adev->dev,
"Failed to load gpu_info firmware \"%s\"\n",
fw_name);
goto out;
}
err = amdgpu_ucode_validate(adev->firmware.gpu_info_fw);
if (err) {
dev_err(adev->dev,
"Failed to validate gpu_info firmware \"%s\"\n",
fw_name);
goto out;
}
hdr = (const struct gpu_info_firmware_header_v1_0 *)adev->firmware.gpu_info_fw->data;
amdgpu_ucode_print_gpu_info_hdr(&hdr->header);
switch (hdr->version_major) {
case 1:
{
const struct gpu_info_firmware_v1_0 *gpu_info_fw =
(const struct gpu_info_firmware_v1_0 *)(adev->firmware.gpu_info_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
adev->gfx.config.max_shader_engines = le32_to_cpu(gpu_info_fw->gc_num_se);
adev->gfx.config.max_cu_per_sh = le32_to_cpu(gpu_info_fw->gc_num_cu_per_sh);
adev->gfx.config.max_sh_per_se = le32_to_cpu(gpu_info_fw->gc_num_sh_per_se);
adev->gfx.config.max_backends_per_se = le32_to_cpu(gpu_info_fw->gc_num_rb_per_se);
adev->gfx.config.max_texture_channel_caches =
le32_to_cpu(gpu_info_fw->gc_num_tccs);
adev->gfx.config.max_gprs = le32_to_cpu(gpu_info_fw->gc_num_gprs);
adev->gfx.config.max_gs_threads = le32_to_cpu(gpu_info_fw->gc_num_max_gs_thds);
adev->gfx.config.gs_vgt_table_depth = le32_to_cpu(gpu_info_fw->gc_gs_table_depth);
adev->gfx.config.gs_prim_buffer_depth = le32_to_cpu(gpu_info_fw->gc_gsprim_buff_depth);
adev->gfx.config.double_offchip_lds_buf =
le32_to_cpu(gpu_info_fw->gc_double_offchip_lds_buffer);
adev->gfx.cu_info.wave_front_size = le32_to_cpu(gpu_info_fw->gc_wave_size);
adev->gfx.cu_info.max_waves_per_simd =
le32_to_cpu(gpu_info_fw->gc_max_waves_per_simd);
adev->gfx.cu_info.max_scratch_slots_per_cu =
le32_to_cpu(gpu_info_fw->gc_max_scratch_slots_per_cu);
adev->gfx.cu_info.lds_size = le32_to_cpu(gpu_info_fw->gc_lds_size);
break;
}
default:
dev_err(adev->dev,
"Unsupported gpu_info table %d\n", hdr->header.ucode_version);
err = -EINVAL;
goto out;
}
out:
return err;
}
static int amdgpu_early_init(struct amdgpu_device *adev)
{
int i, r;
amdgpu_device_enable_virtual_display(adev);
switch (adev->asic_type) {
case CHIP_TOPAZ:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS11:
case CHIP_POLARIS10:
case CHIP_POLARIS12:
case CHIP_CARRIZO:
case CHIP_STONEY:
if (adev->asic_type == CHIP_CARRIZO || adev->asic_type == CHIP_STONEY)
adev->family = AMDGPU_FAMILY_CZ;
else
adev->family = AMDGPU_FAMILY_VI;
r = vi_set_ip_blocks(adev);
if (r)
return r;
break;
#ifdef CONFIG_DRM_AMDGPU_SI
case CHIP_VERDE:
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_OLAND:
case CHIP_HAINAN:
adev->family = AMDGPU_FAMILY_SI;
r = si_set_ip_blocks(adev);
if (r)
return r;
break;
#endif
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
if ((adev->asic_type == CHIP_BONAIRE) || (adev->asic_type == CHIP_HAWAII))
adev->family = AMDGPU_FAMILY_CI;
else
adev->family = AMDGPU_FAMILY_KV;
r = cik_set_ip_blocks(adev);
if (r)
return r;
break;
#endif
case CHIP_VEGA10:
case CHIP_RAVEN:
if (adev->asic_type == CHIP_RAVEN)
adev->family = AMDGPU_FAMILY_RV;
else
adev->family = AMDGPU_FAMILY_AI;
r = soc15_set_ip_blocks(adev);
if (r)
return r;
break;
default:
/* FIXME: not supported yet */
return -EINVAL;
}
r = amdgpu_device_parse_gpu_info_fw(adev);
if (r)
return r;
if (amdgpu_sriov_vf(adev)) {
r = amdgpu_virt_request_full_gpu(adev, true);
if (r)
return r;
}
for (i = 0; i < adev->num_ip_blocks; i++) {
if ((amdgpu_ip_block_mask & (1 << i)) == 0) {
DRM_ERROR("disabled ip block: %d <%s>\n",
i, adev->ip_blocks[i].version->funcs->name);
adev->ip_blocks[i].status.valid = false;
} else {
if (adev->ip_blocks[i].version->funcs->early_init) {
r = adev->ip_blocks[i].version->funcs->early_init((void *)adev);
if (r == -ENOENT) {
adev->ip_blocks[i].status.valid = false;
} else if (r) {
DRM_ERROR("early_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
} else {
adev->ip_blocks[i].status.valid = true;
}
} else {
adev->ip_blocks[i].status.valid = true;
}
}
}
adev->cg_flags &= amdgpu_cg_mask;
adev->pg_flags &= amdgpu_pg_mask;
return 0;
}
static int amdgpu_init(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
r = adev->ip_blocks[i].version->funcs->sw_init((void *)adev);
if (r) {
DRM_ERROR("sw_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
adev->ip_blocks[i].status.sw = true;
/* need to do gmc hw init early so we can allocate gpu mem */
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC) {
r = amdgpu_vram_scratch_init(adev);
if (r) {
DRM_ERROR("amdgpu_vram_scratch_init failed %d\n", r);
return r;
}
r = adev->ip_blocks[i].version->funcs->hw_init((void *)adev);
if (r) {
DRM_ERROR("hw_init %d failed %d\n", i, r);
return r;
}
r = amdgpu_wb_init(adev);
if (r) {
DRM_ERROR("amdgpu_wb_init failed %d\n", r);
return r;
}
adev->ip_blocks[i].status.hw = true;
/* right after GMC hw init, we create CSA */
if (amdgpu_sriov_vf(adev)) {
r = amdgpu_allocate_static_csa(adev);
if (r) {
DRM_ERROR("allocate CSA failed %d\n", r);
return r;
}
}
}
}
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.sw)
continue;
/* gmc hw init is done early */
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC)
continue;
r = adev->ip_blocks[i].version->funcs->hw_init((void *)adev);
if (r) {
DRM_ERROR("hw_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
adev->ip_blocks[i].status.hw = true;
}
return 0;
}
static void amdgpu_fill_reset_magic(struct amdgpu_device *adev)
{
memcpy(adev->reset_magic, adev->gart.ptr, AMDGPU_RESET_MAGIC_NUM);
}
static bool amdgpu_check_vram_lost(struct amdgpu_device *adev)
{
return !!memcmp(adev->gart.ptr, adev->reset_magic,
AMDGPU_RESET_MAGIC_NUM);
}
static int amdgpu_late_set_cg_state(struct amdgpu_device *adev)
{
int i = 0, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
/* skip CG for VCE/UVD, it's handled specially */
if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_UVD &&
adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCE) {
/* enable clockgating to save power */
r = adev->ip_blocks[i].version->funcs->set_clockgating_state((void *)adev,
AMD_CG_STATE_GATE);
if (r) {
DRM_ERROR("set_clockgating_state(gate) of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
}
}
return 0;
}
static int amdgpu_late_init(struct amdgpu_device *adev)
{
int i = 0, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->funcs->late_init) {
r = adev->ip_blocks[i].version->funcs->late_init((void *)adev);
if (r) {
DRM_ERROR("late_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
adev->ip_blocks[i].status.late_initialized = true;
}
}
mod_delayed_work(system_wq, &adev->late_init_work,
msecs_to_jiffies(AMDGPU_RESUME_MS));
amdgpu_fill_reset_magic(adev);
return 0;
}
static int amdgpu_fini(struct amdgpu_device *adev)
{
int i, r;
/* need to disable SMC first */
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.hw)
continue;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC) {
/* ungate blocks before hw fini so that we can shutdown the blocks safely */
r = adev->ip_blocks[i].version->funcs->set_clockgating_state((void *)adev,
AMD_CG_STATE_UNGATE);
if (r) {
DRM_ERROR("set_clockgating_state(ungate) of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
r = adev->ip_blocks[i].version->funcs->hw_fini((void *)adev);
/* XXX handle errors */
if (r) {
DRM_DEBUG("hw_fini of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
adev->ip_blocks[i].status.hw = false;
break;
}
}
for (i = adev->num_ip_blocks - 1; i >= 0; i--) {
if (!adev->ip_blocks[i].status.hw)
continue;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC) {
amdgpu_wb_fini(adev);
amdgpu_vram_scratch_fini(adev);
}
if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_UVD &&
adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCE) {
/* ungate blocks before hw fini so that we can shutdown the blocks safely */
r = adev->ip_blocks[i].version->funcs->set_clockgating_state((void *)adev,
AMD_CG_STATE_UNGATE);
if (r) {
DRM_ERROR("set_clockgating_state(ungate) of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
}
r = adev->ip_blocks[i].version->funcs->hw_fini((void *)adev);
/* XXX handle errors */
if (r) {
DRM_DEBUG("hw_fini of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
adev->ip_blocks[i].status.hw = false;
}
for (i = adev->num_ip_blocks - 1; i >= 0; i--) {
if (!adev->ip_blocks[i].status.sw)
continue;
r = adev->ip_blocks[i].version->funcs->sw_fini((void *)adev);
/* XXX handle errors */
if (r) {
DRM_DEBUG("sw_fini of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
adev->ip_blocks[i].status.sw = false;
adev->ip_blocks[i].status.valid = false;
}
for (i = adev->num_ip_blocks - 1; i >= 0; i--) {
if (!adev->ip_blocks[i].status.late_initialized)
continue;
if (adev->ip_blocks[i].version->funcs->late_fini)
adev->ip_blocks[i].version->funcs->late_fini((void *)adev);
adev->ip_blocks[i].status.late_initialized = false;
}
if (amdgpu_sriov_vf(adev)) {
amdgpu_bo_free_kernel(&adev->virt.csa_obj, &adev->virt.csa_vmid0_addr, NULL);
amdgpu_virt_release_full_gpu(adev, false);
}
return 0;
}
static void amdgpu_late_init_func_handler(struct work_struct *work)
{
struct amdgpu_device *adev =
container_of(work, struct amdgpu_device, late_init_work.work);
amdgpu_late_set_cg_state(adev);
}
int amdgpu_suspend(struct amdgpu_device *adev)
{
int i, r;
if (amdgpu_sriov_vf(adev))
amdgpu_virt_request_full_gpu(adev, false);
/* ungate SMC block first */
r = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_SMC,
AMD_CG_STATE_UNGATE);
if (r) {
DRM_ERROR("set_clockgating_state(ungate) SMC failed %d\n",r);
}
for (i = adev->num_ip_blocks - 1; i >= 0; i--) {
if (!adev->ip_blocks[i].status.valid)
continue;
/* ungate blocks so that suspend can properly shut them down */
if (i != AMD_IP_BLOCK_TYPE_SMC) {
r = adev->ip_blocks[i].version->funcs->set_clockgating_state((void *)adev,
AMD_CG_STATE_UNGATE);
if (r) {
DRM_ERROR("set_clockgating_state(ungate) of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
}
/* XXX handle errors */
r = adev->ip_blocks[i].version->funcs->suspend(adev);
/* XXX handle errors */
if (r) {
DRM_ERROR("suspend of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
}
if (amdgpu_sriov_vf(adev))
amdgpu_virt_release_full_gpu(adev, false);
return 0;
}
static int amdgpu_sriov_reinit_early(struct amdgpu_device *adev)
{
int i, r;
static enum amd_ip_block_type ip_order[] = {
AMD_IP_BLOCK_TYPE_GMC,
AMD_IP_BLOCK_TYPE_COMMON,
AMD_IP_BLOCK_TYPE_IH,
};
for (i = 0; i < ARRAY_SIZE(ip_order); i++) {
int j;
struct amdgpu_ip_block *block;
for (j = 0; j < adev->num_ip_blocks; j++) {
block = &adev->ip_blocks[j];
if (block->version->type != ip_order[i] ||
!block->status.valid)
continue;
r = block->version->funcs->hw_init(adev);
DRM_INFO("RE-INIT: %s %s\n", block->version->funcs->name, r?"failed":"successed");
}
}
return 0;
}
static int amdgpu_sriov_reinit_late(struct amdgpu_device *adev)
{
int i, r;
static enum amd_ip_block_type ip_order[] = {
AMD_IP_BLOCK_TYPE_SMC,
AMD_IP_BLOCK_TYPE_DCE,
AMD_IP_BLOCK_TYPE_GFX,
AMD_IP_BLOCK_TYPE_SDMA,
AMD_IP_BLOCK_TYPE_UVD,
AMD_IP_BLOCK_TYPE_VCE
};
for (i = 0; i < ARRAY_SIZE(ip_order); i++) {
int j;
struct amdgpu_ip_block *block;
for (j = 0; j < adev->num_ip_blocks; j++) {
block = &adev->ip_blocks[j];
if (block->version->type != ip_order[i] ||
!block->status.valid)
continue;
r = block->version->funcs->hw_init(adev);
DRM_INFO("RE-INIT: %s %s\n", block->version->funcs->name, r?"failed":"successed");
}
}
return 0;
}
static int amdgpu_resume_phase1(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC ||
adev->ip_blocks[i].version->type ==
AMD_IP_BLOCK_TYPE_IH) {
r = adev->ip_blocks[i].version->funcs->resume(adev);
if (r) {
DRM_ERROR("resume of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
}
}
return 0;
}
static int amdgpu_resume_phase2(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH )
continue;
r = adev->ip_blocks[i].version->funcs->resume(adev);
if (r) {
DRM_ERROR("resume of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
}
return 0;
}
static int amdgpu_resume(struct amdgpu_device *adev)
{
int r;
r = amdgpu_resume_phase1(adev);
if (r)
return r;
r = amdgpu_resume_phase2(adev);
return r;
}
static void amdgpu_device_detect_sriov_bios(struct amdgpu_device *adev)
{
if (adev->is_atom_fw) {
if (amdgpu_atomfirmware_gpu_supports_virtualization(adev))
adev->virt.caps |= AMDGPU_SRIOV_CAPS_SRIOV_VBIOS;
} else {
if (amdgpu_atombios_has_gpu_virtualization_table(adev))
adev->virt.caps |= AMDGPU_SRIOV_CAPS_SRIOV_VBIOS;
}
}
/**
* amdgpu_device_init - initialize the driver
*
* @adev: amdgpu_device pointer
* @pdev: drm dev pointer
* @pdev: pci dev pointer
* @flags: driver flags
*
* Initializes the driver info and hw (all asics).
* Returns 0 for success or an error on failure.
* Called at driver startup.
*/
int amdgpu_device_init(struct amdgpu_device *adev,
struct drm_device *ddev,
struct pci_dev *pdev,
uint32_t flags)
{
int r, i;
bool runtime = false;
u32 max_MBps;
adev->shutdown = false;
adev->dev = &pdev->dev;
adev->ddev = ddev;
adev->pdev = pdev;
adev->flags = flags;
adev->asic_type = flags & AMD_ASIC_MASK;
adev->usec_timeout = AMDGPU_MAX_USEC_TIMEOUT;
adev->mc.gart_size = 512 * 1024 * 1024;
adev->accel_working = false;
adev->num_rings = 0;
adev->mman.buffer_funcs = NULL;
adev->mman.buffer_funcs_ring = NULL;
adev->vm_manager.vm_pte_funcs = NULL;
adev->vm_manager.vm_pte_num_rings = 0;
adev->gart.gart_funcs = NULL;
adev->fence_context = dma_fence_context_alloc(AMDGPU_MAX_RINGS);
adev->smc_rreg = &amdgpu_invalid_rreg;
adev->smc_wreg = &amdgpu_invalid_wreg;
adev->pcie_rreg = &amdgpu_invalid_rreg;
adev->pcie_wreg = &amdgpu_invalid_wreg;
adev->pciep_rreg = &amdgpu_invalid_rreg;
adev->pciep_wreg = &amdgpu_invalid_wreg;
adev->uvd_ctx_rreg = &amdgpu_invalid_rreg;
adev->uvd_ctx_wreg = &amdgpu_invalid_wreg;
adev->didt_rreg = &amdgpu_invalid_rreg;
adev->didt_wreg = &amdgpu_invalid_wreg;
adev->gc_cac_rreg = &amdgpu_invalid_rreg;
adev->gc_cac_wreg = &amdgpu_invalid_wreg;
adev->audio_endpt_rreg = &amdgpu_block_invalid_rreg;
adev->audio_endpt_wreg = &amdgpu_block_invalid_wreg;
DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X 0x%02X).\n",
amdgpu_asic_name[adev->asic_type], pdev->vendor, pdev->device,
pdev->subsystem_vendor, pdev->subsystem_device, pdev->revision);
/* mutex initialization are all done here so we
* can recall function without having locking issues */
atomic_set(&adev->irq.ih.lock, 0);
mutex_init(&adev->firmware.mutex);
mutex_init(&adev->pm.mutex);
mutex_init(&adev->gfx.gpu_clock_mutex);
mutex_init(&adev->srbm_mutex);
mutex_init(&adev->grbm_idx_mutex);
mutex_init(&adev->mn_lock);
hash_init(adev->mn_hash);
amdgpu_check_arguments(adev);
spin_lock_init(&adev->mmio_idx_lock);
spin_lock_init(&adev->smc_idx_lock);
spin_lock_init(&adev->pcie_idx_lock);
spin_lock_init(&adev->uvd_ctx_idx_lock);
spin_lock_init(&adev->didt_idx_lock);
spin_lock_init(&adev->gc_cac_idx_lock);
spin_lock_init(&adev->se_cac_idx_lock);
spin_lock_init(&adev->audio_endpt_idx_lock);
spin_lock_init(&adev->mm_stats.lock);
INIT_LIST_HEAD(&adev->shadow_list);
mutex_init(&adev->shadow_list_lock);
INIT_LIST_HEAD(&adev->gtt_list);
spin_lock_init(&adev->gtt_list_lock);
INIT_LIST_HEAD(&adev->ring_lru_list);
spin_lock_init(&adev->ring_lru_list_lock);
INIT_DELAYED_WORK(&adev->late_init_work, amdgpu_late_init_func_handler);
/* Registers mapping */
/* TODO: block userspace mapping of io register */
if (adev->asic_type >= CHIP_BONAIRE) {
adev->rmmio_base = pci_resource_start(adev->pdev, 5);
adev->rmmio_size = pci_resource_len(adev->pdev, 5);
} else {
adev->rmmio_base = pci_resource_start(adev->pdev, 2);
adev->rmmio_size = pci_resource_len(adev->pdev, 2);
}
adev->rmmio = ioremap(adev->rmmio_base, adev->rmmio_size);
if (adev->rmmio == NULL) {
return -ENOMEM;
}
DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)adev->rmmio_base);
DRM_INFO("register mmio size: %u\n", (unsigned)adev->rmmio_size);
if (adev->asic_type >= CHIP_BONAIRE)
/* doorbell bar mapping */
amdgpu_doorbell_init(adev);
/* io port mapping */
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
if (pci_resource_flags(adev->pdev, i) & IORESOURCE_IO) {
adev->rio_mem_size = pci_resource_len(adev->pdev, i);
adev->rio_mem = pci_iomap(adev->pdev, i, adev->rio_mem_size);
break;
}
}
if (adev->rio_mem == NULL)
DRM_INFO("PCI I/O BAR is not found.\n");
/* early init functions */
r = amdgpu_early_init(adev);
if (r)
return r;
/* if we have > 1 VGA cards, then disable the amdgpu VGA resources */
/* this will fail for cards that aren't VGA class devices, just
* ignore it */
vga_client_register(adev->pdev, adev, NULL, amdgpu_vga_set_decode);
if (amdgpu_runtime_pm == 1)
runtime = true;
if (amdgpu_device_is_px(ddev))
runtime = true;
if (!pci_is_thunderbolt_attached(adev->pdev))
vga_switcheroo_register_client(adev->pdev,
&amdgpu_switcheroo_ops, runtime);
if (runtime)
vga_switcheroo_init_domain_pm_ops(adev->dev, &adev->vga_pm_domain);
/* Read BIOS */
if (!amdgpu_get_bios(adev)) {
r = -EINVAL;
goto failed;
}
r = amdgpu_atombios_init(adev);
if (r) {
dev_err(adev->dev, "amdgpu_atombios_init failed\n");
amdgpu_vf_error_put(AMDGIM_ERROR_VF_ATOMBIOS_INIT_FAIL, 0, 0);
goto failed;
}
/* detect if we are with an SRIOV vbios */
amdgpu_device_detect_sriov_bios(adev);
/* Post card if necessary */
if (amdgpu_vpost_needed(adev)) {
if (!adev->bios) {
dev_err(adev->dev, "no vBIOS found\n");
amdgpu_vf_error_put(AMDGIM_ERROR_VF_NO_VBIOS, 0, 0);
r = -EINVAL;
goto failed;
}
DRM_INFO("GPU posting now...\n");
r = amdgpu_atom_asic_init(adev->mode_info.atom_context);
if (r) {
dev_err(adev->dev, "gpu post error!\n");
amdgpu_vf_error_put(AMDGIM_ERROR_VF_GPU_POST_ERROR, 0, 0);
goto failed;
}
} else {
DRM_INFO("GPU post is not needed\n");
}
if (adev->is_atom_fw) {
/* Initialize clocks */
r = amdgpu_atomfirmware_get_clock_info(adev);
if (r) {
dev_err(adev->dev, "amdgpu_atomfirmware_get_clock_info failed\n");
amdgpu_vf_error_put(AMDGIM_ERROR_VF_ATOMBIOS_GET_CLOCK_FAIL, 0, 0);
goto failed;
}
} else {
/* Initialize clocks */
r = amdgpu_atombios_get_clock_info(adev);
if (r) {
dev_err(adev->dev, "amdgpu_atombios_get_clock_info failed\n");
amdgpu_vf_error_put(AMDGIM_ERROR_VF_ATOMBIOS_GET_CLOCK_FAIL, 0, 0);
goto failed;
}
/* init i2c buses */
amdgpu_atombios_i2c_init(adev);
}
/* Fence driver */
r = amdgpu_fence_driver_init(adev);
if (r) {
dev_err(adev->dev, "amdgpu_fence_driver_init failed\n");
amdgpu_vf_error_put(AMDGIM_ERROR_VF_FENCE_INIT_FAIL, 0, 0);
goto failed;
}
/* init the mode config */
drm_mode_config_init(adev->ddev);
r = amdgpu_init(adev);
if (r) {
dev_err(adev->dev, "amdgpu_init failed\n");
amdgpu_vf_error_put(AMDGIM_ERROR_VF_AMDGPU_INIT_FAIL, 0, 0);
amdgpu_fini(adev);
goto failed;
}
adev->accel_working = true;
amdgpu_vm_check_compute_bug(adev);
/* Initialize the buffer migration limit. */
if (amdgpu_moverate >= 0)
max_MBps = amdgpu_moverate;
else
max_MBps = 8; /* Allow 8 MB/s. */
/* Get a log2 for easy divisions. */
adev->mm_stats.log2_max_MBps = ilog2(max(1u, max_MBps));
r = amdgpu_ib_pool_init(adev);
if (r) {
dev_err(adev->dev, "IB initialization failed (%d).\n", r);
amdgpu_vf_error_put(AMDGIM_ERROR_VF_IB_INIT_FAIL, 0, r);
goto failed;
}
r = amdgpu_ib_ring_tests(adev);
if (r)
DRM_ERROR("ib ring test failed (%d).\n", r);
amdgpu_fbdev_init(adev);
r = amdgpu_gem_debugfs_init(adev);
if (r)
DRM_ERROR("registering gem debugfs failed (%d).\n", r);
r = amdgpu_debugfs_regs_init(adev);
if (r)
DRM_ERROR("registering register debugfs failed (%d).\n", r);
r = amdgpu_debugfs_test_ib_ring_init(adev);
if (r)
DRM_ERROR("registering register test ib ring debugfs failed (%d).\n", r);
r = amdgpu_debugfs_firmware_init(adev);
if (r)
DRM_ERROR("registering firmware debugfs failed (%d).\n", r);
if ((amdgpu_testing & 1)) {
if (adev->accel_working)
amdgpu_test_moves(adev);
else
DRM_INFO("amdgpu: acceleration disabled, skipping move tests\n");
}
if (amdgpu_benchmarking) {
if (adev->accel_working)
amdgpu_benchmark(adev, amdgpu_benchmarking);
else
DRM_INFO("amdgpu: acceleration disabled, skipping benchmarks\n");
}
/* enable clockgating, etc. after ib tests, etc. since some blocks require
* explicit gating rather than handling it automatically.
*/
r = amdgpu_late_init(adev);
if (r) {
dev_err(adev->dev, "amdgpu_late_init failed\n");
amdgpu_vf_error_put(AMDGIM_ERROR_VF_AMDGPU_LATE_INIT_FAIL, 0, r);
goto failed;
}
return 0;
failed:
amdgpu_vf_error_trans_all(adev);
if (runtime)
vga_switcheroo_fini_domain_pm_ops(adev->dev);
return r;
}
/**
* amdgpu_device_fini - tear down the driver
*
* @adev: amdgpu_device pointer
*
* Tear down the driver info (all asics).
* Called at driver shutdown.
*/
void amdgpu_device_fini(struct amdgpu_device *adev)
{
int r;
DRM_INFO("amdgpu: finishing device.\n");
adev->shutdown = true;
if (adev->mode_info.mode_config_initialized)
drm_crtc_force_disable_all(adev->ddev);
/* evict vram memory */
amdgpu_bo_evict_vram(adev);
amdgpu_ib_pool_fini(adev);
amdgpu_fence_driver_fini(adev);
amdgpu_fbdev_fini(adev);
r = amdgpu_fini(adev);
if (adev->firmware.gpu_info_fw) {
release_firmware(adev->firmware.gpu_info_fw);
adev->firmware.gpu_info_fw = NULL;
}
adev->accel_working = false;
cancel_delayed_work_sync(&adev->late_init_work);
/* free i2c buses */
amdgpu_i2c_fini(adev);
amdgpu_atombios_fini(adev);
kfree(adev->bios);
adev->bios = NULL;
if (!pci_is_thunderbolt_attached(adev->pdev))
vga_switcheroo_unregister_client(adev->pdev);
if (adev->flags & AMD_IS_PX)
vga_switcheroo_fini_domain_pm_ops(adev->dev);
vga_client_register(adev->pdev, NULL, NULL, NULL);
if (adev->rio_mem)
pci_iounmap(adev->pdev, adev->rio_mem);
adev->rio_mem = NULL;
iounmap(adev->rmmio);
adev->rmmio = NULL;
if (adev->asic_type >= CHIP_BONAIRE)
amdgpu_doorbell_fini(adev);
amdgpu_debugfs_regs_cleanup(adev);
}
/*
* Suspend & resume.
*/
/**
* amdgpu_device_suspend - initiate device suspend
*
* @pdev: drm dev pointer
* @state: suspend state
*
* Puts the hw in the suspend state (all asics).
* Returns 0 for success or an error on failure.
* Called at driver suspend.
*/
int amdgpu_device_suspend(struct drm_device *dev, bool suspend, bool fbcon)
{
struct amdgpu_device *adev;
struct drm_crtc *crtc;
struct drm_connector *connector;
int r;
if (dev == NULL || dev->dev_private == NULL) {
return -ENODEV;
}
adev = dev->dev_private;
if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
drm_kms_helper_poll_disable(dev);
/* turn off display hw */
drm_modeset_lock_all(dev);
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF);
}
drm_modeset_unlock_all(dev);
amdgpu_amdkfd_suspend(adev);
/* unpin the front buffers and cursors */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
struct amdgpu_framebuffer *rfb = to_amdgpu_framebuffer(crtc->primary->fb);
struct amdgpu_bo *robj;
if (amdgpu_crtc->cursor_bo) {
struct amdgpu_bo *aobj = gem_to_amdgpu_bo(amdgpu_crtc->cursor_bo);
r = amdgpu_bo_reserve(aobj, true);
if (r == 0) {
amdgpu_bo_unpin(aobj);
amdgpu_bo_unreserve(aobj);
}
}
if (rfb == NULL || rfb->obj == NULL) {
continue;
}
robj = gem_to_amdgpu_bo(rfb->obj);
/* don't unpin kernel fb objects */
if (!amdgpu_fbdev_robj_is_fb(adev, robj)) {
r = amdgpu_bo_reserve(robj, true);
if (r == 0) {
amdgpu_bo_unpin(robj);
amdgpu_bo_unreserve(robj);
}
}
}
/* evict vram memory */
amdgpu_bo_evict_vram(adev);
amdgpu_fence_driver_suspend(adev);
r = amdgpu_suspend(adev);
/* evict remaining vram memory
* This second call to evict vram is to evict the gart page table
* using the CPU.
*/
amdgpu_bo_evict_vram(adev);
amdgpu_atombios_scratch_regs_save(adev);
pci_save_state(dev->pdev);
if (suspend) {
/* Shut down the device */
pci_disable_device(dev->pdev);
pci_set_power_state(dev->pdev, PCI_D3hot);
} else {
r = amdgpu_asic_reset(adev);
if (r)
DRM_ERROR("amdgpu asic reset failed\n");
}
if (fbcon) {
console_lock();
amdgpu_fbdev_set_suspend(adev, 1);
console_unlock();
}
return 0;
}
/**
* amdgpu_device_resume - initiate device resume
*
* @pdev: drm dev pointer
*
* Bring the hw back to operating state (all asics).
* Returns 0 for success or an error on failure.
* Called at driver resume.
*/
int amdgpu_device_resume(struct drm_device *dev, bool resume, bool fbcon)
{
struct drm_connector *connector;
struct amdgpu_device *adev = dev->dev_private;
struct drm_crtc *crtc;
int r = 0;
if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
if (fbcon)
console_lock();
if (resume) {
pci_set_power_state(dev->pdev, PCI_D0);
pci_restore_state(dev->pdev);
r = pci_enable_device(dev->pdev);
if (r)
goto unlock;
}
amdgpu_atombios_scratch_regs_restore(adev);
/* post card */
if (amdgpu_need_post(adev)) {
r = amdgpu_atom_asic_init(adev->mode_info.atom_context);
if (r)
DRM_ERROR("amdgpu asic init failed\n");
}
r = amdgpu_resume(adev);
if (r) {
DRM_ERROR("amdgpu_resume failed (%d).\n", r);
goto unlock;
}
amdgpu_fence_driver_resume(adev);
if (resume) {
r = amdgpu_ib_ring_tests(adev);
if (r)
DRM_ERROR("ib ring test failed (%d).\n", r);
}
r = amdgpu_late_init(adev);
if (r)
goto unlock;
/* pin cursors */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
if (amdgpu_crtc->cursor_bo) {
struct amdgpu_bo *aobj = gem_to_amdgpu_bo(amdgpu_crtc->cursor_bo);
r = amdgpu_bo_reserve(aobj, true);
if (r == 0) {
r = amdgpu_bo_pin(aobj,
AMDGPU_GEM_DOMAIN_VRAM,
&amdgpu_crtc->cursor_addr);
if (r != 0)
DRM_ERROR("Failed to pin cursor BO (%d)\n", r);
amdgpu_bo_unreserve(aobj);
}
}
}
r = amdgpu_amdkfd_resume(adev);
if (r)
return r;
/* blat the mode back in */
if (fbcon) {
drm_helper_resume_force_mode(dev);
/* turn on display hw */
drm_modeset_lock_all(dev);
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON);
}
drm_modeset_unlock_all(dev);
}
drm_kms_helper_poll_enable(dev);
/*
* Most of the connector probing functions try to acquire runtime pm
* refs to ensure that the GPU is powered on when connector polling is
* performed. Since we're calling this from a runtime PM callback,
* trying to acquire rpm refs will cause us to deadlock.
*
* Since we're guaranteed to be holding the rpm lock, it's safe to
* temporarily disable the rpm helpers so this doesn't deadlock us.
*/
#ifdef CONFIG_PM
dev->dev->power.disable_depth++;
#endif
drm_helper_hpd_irq_event(dev);
#ifdef CONFIG_PM
dev->dev->power.disable_depth--;
#endif
if (fbcon)
amdgpu_fbdev_set_suspend(adev, 0);
unlock:
if (fbcon)
console_unlock();
return r;
}
static bool amdgpu_check_soft_reset(struct amdgpu_device *adev)
{
int i;
bool asic_hang = false;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->funcs->check_soft_reset)
adev->ip_blocks[i].status.hang =
adev->ip_blocks[i].version->funcs->check_soft_reset(adev);
if (adev->ip_blocks[i].status.hang) {
DRM_INFO("IP block:%s is hung!\n", adev->ip_blocks[i].version->funcs->name);
asic_hang = true;
}
}
return asic_hang;
}
static int amdgpu_pre_soft_reset(struct amdgpu_device *adev)
{
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].status.hang &&
adev->ip_blocks[i].version->funcs->pre_soft_reset) {
r = adev->ip_blocks[i].version->funcs->pre_soft_reset(adev);
if (r)
return r;
}
}
return 0;
}
static bool amdgpu_need_full_reset(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if ((adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC) ||
(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC) ||
(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_ACP) ||
(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_DCE)) {
if (adev->ip_blocks[i].status.hang) {
DRM_INFO("Some block need full reset!\n");
return true;
}
}
}
return false;
}
static int amdgpu_soft_reset(struct amdgpu_device *adev)
{
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].status.hang &&
adev->ip_blocks[i].version->funcs->soft_reset) {
r = adev->ip_blocks[i].version->funcs->soft_reset(adev);
if (r)
return r;
}
}
return 0;
}
static int amdgpu_post_soft_reset(struct amdgpu_device *adev)
{
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].status.hang &&
adev->ip_blocks[i].version->funcs->post_soft_reset)
r = adev->ip_blocks[i].version->funcs->post_soft_reset(adev);
if (r)
return r;
}
return 0;
}
bool amdgpu_need_backup(struct amdgpu_device *adev)
{
if (adev->flags & AMD_IS_APU)
return false;
return amdgpu_lockup_timeout > 0 ? true : false;
}
static int amdgpu_recover_vram_from_shadow(struct amdgpu_device *adev,
struct amdgpu_ring *ring,
struct amdgpu_bo *bo,
struct dma_fence **fence)
{
uint32_t domain;
int r;
if (!bo->shadow)
return 0;
r = amdgpu_bo_reserve(bo, true);
if (r)
return r;
domain = amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
/* if bo has been evicted, then no need to recover */
if (domain == AMDGPU_GEM_DOMAIN_VRAM) {
r = amdgpu_bo_validate(bo->shadow);
if (r) {
DRM_ERROR("bo validate failed!\n");
goto err;
}
r = amdgpu_bo_restore_from_shadow(adev, ring, bo,
NULL, fence, true);
if (r) {
DRM_ERROR("recover page table failed!\n");
goto err;
}
}
err:
amdgpu_bo_unreserve(bo);
return r;
}
/**
* amdgpu_sriov_gpu_reset - reset the asic
*
* @adev: amdgpu device pointer
* @job: which job trigger hang
*
* Attempt the reset the GPU if it has hung (all asics).
* for SRIOV case.
* Returns 0 for success or an error on failure.
*/
int amdgpu_sriov_gpu_reset(struct amdgpu_device *adev, struct amdgpu_job *job)
{
int i, j, r = 0;
int resched;
struct amdgpu_bo *bo, *tmp;
struct amdgpu_ring *ring;
struct dma_fence *fence = NULL, *next = NULL;
mutex_lock(&adev->virt.lock_reset);
atomic_inc(&adev->gpu_reset_counter);
adev->gfx.in_reset = true;
/* block TTM */
resched = ttm_bo_lock_delayed_workqueue(&adev->mman.bdev);
/* we start from the ring trigger GPU hang */
j = job ? job->ring->idx : 0;
/* block scheduler */
for (i = j; i < j + AMDGPU_MAX_RINGS; ++i) {
ring = adev->rings[i % AMDGPU_MAX_RINGS];
if (!ring || !ring->sched.thread)
continue;
kthread_park(ring->sched.thread);
if (job && j != i)
continue;
/* here give the last chance to check if job removed from mirror-list
* since we already pay some time on kthread_park */
if (job && list_empty(&job->base.node)) {
kthread_unpark(ring->sched.thread);
goto give_up_reset;
}
if (amd_sched_invalidate_job(&job->base, amdgpu_job_hang_limit))
amd_sched_job_kickout(&job->base);
/* only do job_reset on the hang ring if @job not NULL */
amd_sched_hw_job_reset(&ring->sched);
/* after all hw jobs are reset, hw fence is meaningless, so force_completion */
amdgpu_fence_driver_force_completion_ring(ring);
}
/* request to take full control of GPU before re-initialization */
if (job)
amdgpu_virt_reset_gpu(adev);
else
amdgpu_virt_request_full_gpu(adev, true);
/* Resume IP prior to SMC */
amdgpu_sriov_reinit_early(adev);
/* we need recover gart prior to run SMC/CP/SDMA resume */
amdgpu_ttm_recover_gart(adev);
/* now we are okay to resume SMC/CP/SDMA */
amdgpu_sriov_reinit_late(adev);
amdgpu_irq_gpu_reset_resume_helper(adev);
if (amdgpu_ib_ring_tests(adev))
dev_err(adev->dev, "[GPU_RESET] ib ring test failed (%d).\n", r);
/* release full control of GPU after ib test */
amdgpu_virt_release_full_gpu(adev, true);
DRM_INFO("recover vram bo from shadow\n");
ring = adev->mman.buffer_funcs_ring;
mutex_lock(&adev->shadow_list_lock);
list_for_each_entry_safe(bo, tmp, &adev->shadow_list, shadow_list) {
next = NULL;
amdgpu_recover_vram_from_shadow(adev, ring, bo, &next);
if (fence) {
r = dma_fence_wait(fence, false);
if (r) {
WARN(r, "recovery from shadow isn't completed\n");
break;
}
}
dma_fence_put(fence);
fence = next;
}
mutex_unlock(&adev->shadow_list_lock);
if (fence) {
r = dma_fence_wait(fence, false);
if (r)
WARN(r, "recovery from shadow isn't completed\n");
}
dma_fence_put(fence);
for (i = j; i < j + AMDGPU_MAX_RINGS; ++i) {
ring = adev->rings[i % AMDGPU_MAX_RINGS];
if (!ring || !ring->sched.thread)
continue;
if (job && j != i) {
kthread_unpark(ring->sched.thread);
continue;
}
amd_sched_job_recovery(&ring->sched);
kthread_unpark(ring->sched.thread);
}
drm_helper_resume_force_mode(adev->ddev);
give_up_reset:
ttm_bo_unlock_delayed_workqueue(&adev->mman.bdev, resched);
if (r) {
/* bad news, how to tell it to userspace ? */
dev_info(adev->dev, "GPU reset failed\n");
} else {
dev_info(adev->dev, "GPU reset successed!\n");
}
adev->gfx.in_reset = false;
mutex_unlock(&adev->virt.lock_reset);
return r;
}
/**
* amdgpu_gpu_reset - reset the asic
*
* @adev: amdgpu device pointer
*
* Attempt the reset the GPU if it has hung (all asics).
* Returns 0 for success or an error on failure.
*/
int amdgpu_gpu_reset(struct amdgpu_device *adev)
{
int i, r;
int resched;
bool need_full_reset, vram_lost = false;
if (!amdgpu_check_soft_reset(adev)) {
DRM_INFO("No hardware hang detected. Did some blocks stall?\n");
return 0;
}
atomic_inc(&adev->gpu_reset_counter);
/* block TTM */
resched = ttm_bo_lock_delayed_workqueue(&adev->mman.bdev);
/* block scheduler */
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
kthread_park(ring->sched.thread);
amd_sched_hw_job_reset(&ring->sched);
}
/* after all hw jobs are reset, hw fence is meaningless, so force_completion */
amdgpu_fence_driver_force_completion(adev);
need_full_reset = amdgpu_need_full_reset(adev);
if (!need_full_reset) {
amdgpu_pre_soft_reset(adev);
r = amdgpu_soft_reset(adev);
amdgpu_post_soft_reset(adev);
if (r || amdgpu_check_soft_reset(adev)) {
DRM_INFO("soft reset failed, will fallback to full reset!\n");
need_full_reset = true;
}
}
if (need_full_reset) {
r = amdgpu_suspend(adev);
retry:
amdgpu_atombios_scratch_regs_save(adev);
r = amdgpu_asic_reset(adev);
amdgpu_atombios_scratch_regs_restore(adev);
/* post card */
amdgpu_atom_asic_init(adev->mode_info.atom_context);
if (!r) {
dev_info(adev->dev, "GPU reset succeeded, trying to resume\n");
r = amdgpu_resume_phase1(adev);
if (r)
goto out;
vram_lost = amdgpu_check_vram_lost(adev);
if (vram_lost) {
DRM_ERROR("VRAM is lost!\n");
atomic_inc(&adev->vram_lost_counter);
}
r = amdgpu_ttm_recover_gart(adev);
if (r)
goto out;
r = amdgpu_resume_phase2(adev);
if (r)
goto out;
if (vram_lost)
amdgpu_fill_reset_magic(adev);
}
}
out:
if (!r) {
amdgpu_irq_gpu_reset_resume_helper(adev);
r = amdgpu_ib_ring_tests(adev);
if (r) {
dev_err(adev->dev, "ib ring test failed (%d).\n", r);
r = amdgpu_suspend(adev);
need_full_reset = true;
goto retry;
}
/**
* recovery vm page tables, since we cannot depend on VRAM is
* consistent after gpu full reset.
*/
if (need_full_reset && amdgpu_need_backup(adev)) {
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
struct amdgpu_bo *bo, *tmp;
struct dma_fence *fence = NULL, *next = NULL;
DRM_INFO("recover vram bo from shadow\n");
mutex_lock(&adev->shadow_list_lock);
list_for_each_entry_safe(bo, tmp, &adev->shadow_list, shadow_list) {
next = NULL;
amdgpu_recover_vram_from_shadow(adev, ring, bo, &next);
if (fence) {
r = dma_fence_wait(fence, false);
if (r) {
WARN(r, "recovery from shadow isn't completed\n");
break;
}
}
dma_fence_put(fence);
fence = next;
}
mutex_unlock(&adev->shadow_list_lock);
if (fence) {
r = dma_fence_wait(fence, false);
if (r)
WARN(r, "recovery from shadow isn't completed\n");
}
dma_fence_put(fence);
}
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
amd_sched_job_recovery(&ring->sched);
kthread_unpark(ring->sched.thread);
}
} else {
dev_err(adev->dev, "asic resume failed (%d).\n", r);
amdgpu_vf_error_put(AMDGIM_ERROR_VF_ASIC_RESUME_FAIL, 0, r);
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
if (adev->rings[i] && adev->rings[i]->sched.thread) {
kthread_unpark(adev->rings[i]->sched.thread);
}
}
}
drm_helper_resume_force_mode(adev->ddev);
ttm_bo_unlock_delayed_workqueue(&adev->mman.bdev, resched);
if (r) {
/* bad news, how to tell it to userspace ? */
dev_info(adev->dev, "GPU reset failed\n");
amdgpu_vf_error_put(AMDGIM_ERROR_VF_GPU_RESET_FAIL, 0, r);
}
else {
dev_info(adev->dev, "GPU reset successed!\n");
}
amdgpu_vf_error_trans_all(adev);
return r;
}
void amdgpu_get_pcie_info(struct amdgpu_device *adev)
{
u32 mask;
int ret;
if (amdgpu_pcie_gen_cap)
adev->pm.pcie_gen_mask = amdgpu_pcie_gen_cap;
if (amdgpu_pcie_lane_cap)
adev->pm.pcie_mlw_mask = amdgpu_pcie_lane_cap;
/* covers APUs as well */
if (pci_is_root_bus(adev->pdev->bus)) {
if (adev->pm.pcie_gen_mask == 0)
adev->pm.pcie_gen_mask = AMDGPU_DEFAULT_PCIE_GEN_MASK;
if (adev->pm.pcie_mlw_mask == 0)
adev->pm.pcie_mlw_mask = AMDGPU_DEFAULT_PCIE_MLW_MASK;
return;
}
if (adev->pm.pcie_gen_mask == 0) {
ret = drm_pcie_get_speed_cap_mask(adev->ddev, &mask);
if (!ret) {
adev->pm.pcie_gen_mask = (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3);
if (mask & DRM_PCIE_SPEED_25)
adev->pm.pcie_gen_mask |= CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1;
if (mask & DRM_PCIE_SPEED_50)
adev->pm.pcie_gen_mask |= CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2;
if (mask & DRM_PCIE_SPEED_80)
adev->pm.pcie_gen_mask |= CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3;
} else {
adev->pm.pcie_gen_mask = AMDGPU_DEFAULT_PCIE_GEN_MASK;
}
}
if (adev->pm.pcie_mlw_mask == 0) {
ret = drm_pcie_get_max_link_width(adev->ddev, &mask);
if (!ret) {
switch (mask) {
case 32:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X32 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X16 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case 16:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X16 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case 12:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case 8:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case 4:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case 2:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case 1:
adev->pm.pcie_mlw_mask = CAIL_PCIE_LINK_WIDTH_SUPPORT_X1;
break;
default:
break;
}
} else {
adev->pm.pcie_mlw_mask = AMDGPU_DEFAULT_PCIE_MLW_MASK;
}
}
}
/*
* Debugfs
*/
int amdgpu_debugfs_add_files(struct amdgpu_device *adev,
const struct drm_info_list *files,
unsigned nfiles)
{
unsigned i;
for (i = 0; i < adev->debugfs_count; i++) {
if (adev->debugfs[i].files == files) {
/* Already registered */
return 0;
}
}
i = adev->debugfs_count + 1;
if (i > AMDGPU_DEBUGFS_MAX_COMPONENTS) {
DRM_ERROR("Reached maximum number of debugfs components.\n");
DRM_ERROR("Report so we increase "
"AMDGPU_DEBUGFS_MAX_COMPONENTS.\n");
return -EINVAL;
}
adev->debugfs[adev->debugfs_count].files = files;
adev->debugfs[adev->debugfs_count].num_files = nfiles;
adev->debugfs_count = i;
#if defined(CONFIG_DEBUG_FS)
drm_debugfs_create_files(files, nfiles,
adev->ddev->primary->debugfs_root,
adev->ddev->primary);
#endif
return 0;
}
#if defined(CONFIG_DEBUG_FS)
static ssize_t amdgpu_debugfs_regs_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
bool pm_pg_lock, use_bank;
unsigned instance_bank, sh_bank, se_bank;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
/* are we reading registers for which a PG lock is necessary? */
pm_pg_lock = (*pos >> 23) & 1;
if (*pos & (1ULL << 62)) {
se_bank = (*pos >> 24) & 0x3FF;
sh_bank = (*pos >> 34) & 0x3FF;
instance_bank = (*pos >> 44) & 0x3FF;
if (se_bank == 0x3FF)
se_bank = 0xFFFFFFFF;
if (sh_bank == 0x3FF)
sh_bank = 0xFFFFFFFF;
if (instance_bank == 0x3FF)
instance_bank = 0xFFFFFFFF;
use_bank = 1;
} else {
use_bank = 0;
}
*pos &= (1UL << 22) - 1;
if (use_bank) {
if ((sh_bank != 0xFFFFFFFF && sh_bank >= adev->gfx.config.max_sh_per_se) ||
(se_bank != 0xFFFFFFFF && se_bank >= adev->gfx.config.max_shader_engines))
return -EINVAL;
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se_bank,
sh_bank, instance_bank);
}
if (pm_pg_lock)
mutex_lock(&adev->pm.mutex);
while (size) {
uint32_t value;
if (*pos > adev->rmmio_size)
goto end;
value = RREG32(*pos >> 2);
r = put_user(value, (uint32_t *)buf);
if (r) {
result = r;
goto end;
}
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
end:
if (use_bank) {
amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
}
if (pm_pg_lock)
mutex_unlock(&adev->pm.mutex);
return result;
}
static ssize_t amdgpu_debugfs_regs_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
bool pm_pg_lock, use_bank;
unsigned instance_bank, sh_bank, se_bank;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
/* are we reading registers for which a PG lock is necessary? */
pm_pg_lock = (*pos >> 23) & 1;
if (*pos & (1ULL << 62)) {
se_bank = (*pos >> 24) & 0x3FF;
sh_bank = (*pos >> 34) & 0x3FF;
instance_bank = (*pos >> 44) & 0x3FF;
if (se_bank == 0x3FF)
se_bank = 0xFFFFFFFF;
if (sh_bank == 0x3FF)
sh_bank = 0xFFFFFFFF;
if (instance_bank == 0x3FF)
instance_bank = 0xFFFFFFFF;
use_bank = 1;
} else {
use_bank = 0;
}
*pos &= (1UL << 22) - 1;
if (use_bank) {
if ((sh_bank != 0xFFFFFFFF && sh_bank >= adev->gfx.config.max_sh_per_se) ||
(se_bank != 0xFFFFFFFF && se_bank >= adev->gfx.config.max_shader_engines))
return -EINVAL;
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se_bank,
sh_bank, instance_bank);
}
if (pm_pg_lock)
mutex_lock(&adev->pm.mutex);
while (size) {
uint32_t value;
if (*pos > adev->rmmio_size)
return result;
r = get_user(value, (uint32_t *)buf);
if (r)
return r;
WREG32(*pos >> 2, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
if (use_bank) {
amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
}
if (pm_pg_lock)
mutex_unlock(&adev->pm.mutex);
return result;
}
static ssize_t amdgpu_debugfs_regs_pcie_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
value = RREG32_PCIE(*pos >> 2);
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static ssize_t amdgpu_debugfs_regs_pcie_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
return r;
WREG32_PCIE(*pos >> 2, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static ssize_t amdgpu_debugfs_regs_didt_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
value = RREG32_DIDT(*pos >> 2);
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static ssize_t amdgpu_debugfs_regs_didt_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
return r;
WREG32_DIDT(*pos >> 2, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static ssize_t amdgpu_debugfs_regs_smc_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
value = RREG32_SMC(*pos);
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static ssize_t amdgpu_debugfs_regs_smc_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
return r;
WREG32_SMC(*pos, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static ssize_t amdgpu_debugfs_gca_config_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
uint32_t *config, no_regs = 0;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
config = kmalloc_array(256, sizeof(*config), GFP_KERNEL);
if (!config)
return -ENOMEM;
/* version, increment each time something is added */
config[no_regs++] = 3;
config[no_regs++] = adev->gfx.config.max_shader_engines;
config[no_regs++] = adev->gfx.config.max_tile_pipes;
config[no_regs++] = adev->gfx.config.max_cu_per_sh;
config[no_regs++] = adev->gfx.config.max_sh_per_se;
config[no_regs++] = adev->gfx.config.max_backends_per_se;
config[no_regs++] = adev->gfx.config.max_texture_channel_caches;
config[no_regs++] = adev->gfx.config.max_gprs;
config[no_regs++] = adev->gfx.config.max_gs_threads;
config[no_regs++] = adev->gfx.config.max_hw_contexts;
config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_frontend;
config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_backend;
config[no_regs++] = adev->gfx.config.sc_hiz_tile_fifo_size;
config[no_regs++] = adev->gfx.config.sc_earlyz_tile_fifo_size;
config[no_regs++] = adev->gfx.config.num_tile_pipes;
config[no_regs++] = adev->gfx.config.backend_enable_mask;
config[no_regs++] = adev->gfx.config.mem_max_burst_length_bytes;
config[no_regs++] = adev->gfx.config.mem_row_size_in_kb;
config[no_regs++] = adev->gfx.config.shader_engine_tile_size;
config[no_regs++] = adev->gfx.config.num_gpus;
config[no_regs++] = adev->gfx.config.multi_gpu_tile_size;
config[no_regs++] = adev->gfx.config.mc_arb_ramcfg;
config[no_regs++] = adev->gfx.config.gb_addr_config;
config[no_regs++] = adev->gfx.config.num_rbs;
/* rev==1 */
config[no_regs++] = adev->rev_id;
config[no_regs++] = adev->pg_flags;
config[no_regs++] = adev->cg_flags;
/* rev==2 */
config[no_regs++] = adev->family;
config[no_regs++] = adev->external_rev_id;
/* rev==3 */
config[no_regs++] = adev->pdev->device;
config[no_regs++] = adev->pdev->revision;
config[no_regs++] = adev->pdev->subsystem_device;
config[no_regs++] = adev->pdev->subsystem_vendor;
while (size && (*pos < no_regs * 4)) {
uint32_t value;
value = config[*pos >> 2];
r = put_user(value, (uint32_t *)buf);
if (r) {
kfree(config);
return r;
}
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
kfree(config);
return result;
}
static ssize_t amdgpu_debugfs_sensor_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
int idx, x, outsize, r, valuesize;
uint32_t values[16];
if (size & 3 || *pos & 0x3)
return -EINVAL;
if (amdgpu_dpm == 0)
return -EINVAL;
/* convert offset to sensor number */
idx = *pos >> 2;
valuesize = sizeof(values);
if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->read_sensor)
r = adev->powerplay.pp_funcs->read_sensor(adev->powerplay.pp_handle, idx, &values[0], &valuesize);
else if (adev->pm.funcs && adev->pm.funcs->read_sensor)
r = adev->pm.funcs->read_sensor(adev, idx, &values[0],
&valuesize);
else
return -EINVAL;
if (size > valuesize)
return -EINVAL;
outsize = 0;
x = 0;
if (!r) {
while (size) {
r = put_user(values[x++], (int32_t *)buf);
buf += 4;
size -= 4;
outsize += 4;
}
}
return !r ? outsize : r;
}
static ssize_t amdgpu_debugfs_wave_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = f->f_inode->i_private;
int r, x;
ssize_t result=0;
uint32_t offset, se, sh, cu, wave, simd, data[32];
if (size & 3 || *pos & 3)
return -EINVAL;
/* decode offset */
offset = (*pos & 0x7F);
se = ((*pos >> 7) & 0xFF);
sh = ((*pos >> 15) & 0xFF);
cu = ((*pos >> 23) & 0xFF);
wave = ((*pos >> 31) & 0xFF);
simd = ((*pos >> 37) & 0xFF);
/* switch to the specific se/sh/cu */
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se, sh, cu);
x = 0;
if (adev->gfx.funcs->read_wave_data)
adev->gfx.funcs->read_wave_data(adev, simd, wave, data, &x);
amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
mutex_unlock(&adev->grbm_idx_mutex);
if (!x)
return -EINVAL;
while (size && (offset < x * 4)) {
uint32_t value;
value = data[offset >> 2];
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
offset += 4;
size -= 4;
}
return result;
}
static ssize_t amdgpu_debugfs_gpr_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = f->f_inode->i_private;
int r;
ssize_t result = 0;
uint32_t offset, se, sh, cu, wave, simd, thread, bank, *data;
if (size & 3 || *pos & 3)
return -EINVAL;
/* decode offset */
offset = (*pos & 0xFFF); /* in dwords */
se = ((*pos >> 12) & 0xFF);
sh = ((*pos >> 20) & 0xFF);
cu = ((*pos >> 28) & 0xFF);
wave = ((*pos >> 36) & 0xFF);
simd = ((*pos >> 44) & 0xFF);
thread = ((*pos >> 52) & 0xFF);
bank = ((*pos >> 60) & 1);
data = kmalloc_array(1024, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
/* switch to the specific se/sh/cu */
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se, sh, cu);
if (bank == 0) {
if (adev->gfx.funcs->read_wave_vgprs)
adev->gfx.funcs->read_wave_vgprs(adev, simd, wave, thread, offset, size>>2, data);
} else {
if (adev->gfx.funcs->read_wave_sgprs)
adev->gfx.funcs->read_wave_sgprs(adev, simd, wave, offset, size>>2, data);
}
amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
mutex_unlock(&adev->grbm_idx_mutex);
while (size) {
uint32_t value;
value = data[offset++];
r = put_user(value, (uint32_t *)buf);
if (r) {
result = r;
goto err;
}
result += 4;
buf += 4;
size -= 4;
}
err:
kfree(data);
return result;
}
static const struct file_operations amdgpu_debugfs_regs_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_read,
.write = amdgpu_debugfs_regs_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_didt_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_didt_read,
.write = amdgpu_debugfs_regs_didt_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_pcie_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_pcie_read,
.write = amdgpu_debugfs_regs_pcie_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_smc_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_smc_read,
.write = amdgpu_debugfs_regs_smc_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gca_config_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gca_config_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_sensors_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_sensor_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_wave_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_wave_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gpr_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gpr_read,
.llseek = default_llseek
};
static const struct file_operations *debugfs_regs[] = {
&amdgpu_debugfs_regs_fops,
&amdgpu_debugfs_regs_didt_fops,
&amdgpu_debugfs_regs_pcie_fops,
&amdgpu_debugfs_regs_smc_fops,
&amdgpu_debugfs_gca_config_fops,
&amdgpu_debugfs_sensors_fops,
&amdgpu_debugfs_wave_fops,
&amdgpu_debugfs_gpr_fops,
};
static const char *debugfs_regs_names[] = {
"amdgpu_regs",
"amdgpu_regs_didt",
"amdgpu_regs_pcie",
"amdgpu_regs_smc",
"amdgpu_gca_config",
"amdgpu_sensors",
"amdgpu_wave",
"amdgpu_gpr",
};
static int amdgpu_debugfs_regs_init(struct amdgpu_device *adev)
{
struct drm_minor *minor = adev->ddev->primary;
struct dentry *ent, *root = minor->debugfs_root;
unsigned i, j;
for (i = 0; i < ARRAY_SIZE(debugfs_regs); i++) {
ent = debugfs_create_file(debugfs_regs_names[i],
S_IFREG | S_IRUGO, root,
adev, debugfs_regs[i]);
if (IS_ERR(ent)) {
for (j = 0; j < i; j++) {
debugfs_remove(adev->debugfs_regs[i]);
adev->debugfs_regs[i] = NULL;
}
return PTR_ERR(ent);
}
if (!i)
i_size_write(ent->d_inode, adev->rmmio_size);
adev->debugfs_regs[i] = ent;
}
return 0;
}
static void amdgpu_debugfs_regs_cleanup(struct amdgpu_device *adev)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(debugfs_regs); i++) {
if (adev->debugfs_regs[i]) {
debugfs_remove(adev->debugfs_regs[i]);
adev->debugfs_regs[i] = NULL;
}
}
}
static int amdgpu_debugfs_test_ib(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct amdgpu_device *adev = dev->dev_private;
int r = 0, i;
/* hold on the scheduler */
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
kthread_park(ring->sched.thread);
}
seq_printf(m, "run ib test:\n");
r = amdgpu_ib_ring_tests(adev);
if (r)
seq_printf(m, "ib ring tests failed (%d).\n", r);
else
seq_printf(m, "ib ring tests passed.\n");
/* go on the scheduler */
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
kthread_unpark(ring->sched.thread);
}
return 0;
}
static const struct drm_info_list amdgpu_debugfs_test_ib_ring_list[] = {
{"amdgpu_test_ib", &amdgpu_debugfs_test_ib}
};
static int amdgpu_debugfs_test_ib_ring_init(struct amdgpu_device *adev)
{
return amdgpu_debugfs_add_files(adev,
amdgpu_debugfs_test_ib_ring_list, 1);
}
int amdgpu_debugfs_init(struct drm_minor *minor)
{
return 0;
}
#else
static int amdgpu_debugfs_test_ib_ring_init(struct amdgpu_device *adev)
{
return 0;
}
static int amdgpu_debugfs_regs_init(struct amdgpu_device *adev)
{
return 0;
}
static void amdgpu_debugfs_regs_cleanup(struct amdgpu_device *adev) { }
#endif