| /* |
| * Driver for Digigram VX222 V2/Mic soundcards |
| * |
| * VX222-specific low-level routines |
| * |
| * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/firmware.h> |
| #include <linux/mutex.h> |
| #include <linux/io.h> |
| |
| #include <sound/core.h> |
| #include <sound/control.h> |
| #include <sound/tlv.h> |
| #include "vx222.h" |
| |
| |
| static int vx2_reg_offset[VX_REG_MAX] = { |
| [VX_ICR] = 0x00, |
| [VX_CVR] = 0x04, |
| [VX_ISR] = 0x08, |
| [VX_IVR] = 0x0c, |
| [VX_RXH] = 0x14, |
| [VX_RXM] = 0x18, |
| [VX_RXL] = 0x1c, |
| [VX_DMA] = 0x10, |
| [VX_CDSP] = 0x20, |
| [VX_CFG] = 0x24, |
| [VX_RUER] = 0x28, |
| [VX_DATA] = 0x2c, |
| [VX_STATUS] = 0x30, |
| [VX_LOFREQ] = 0x34, |
| [VX_HIFREQ] = 0x38, |
| [VX_CSUER] = 0x3c, |
| [VX_SELMIC] = 0x40, |
| [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate |
| [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate |
| [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate |
| [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET |
| [VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET |
| [VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030) |
| }; |
| |
| static int vx2_reg_index[VX_REG_MAX] = { |
| [VX_ICR] = 1, |
| [VX_CVR] = 1, |
| [VX_ISR] = 1, |
| [VX_IVR] = 1, |
| [VX_RXH] = 1, |
| [VX_RXM] = 1, |
| [VX_RXL] = 1, |
| [VX_DMA] = 1, |
| [VX_CDSP] = 1, |
| [VX_CFG] = 1, |
| [VX_RUER] = 1, |
| [VX_DATA] = 1, |
| [VX_STATUS] = 1, |
| [VX_LOFREQ] = 1, |
| [VX_HIFREQ] = 1, |
| [VX_CSUER] = 1, |
| [VX_SELMIC] = 1, |
| [VX_COMPOT] = 1, |
| [VX_SCOMPR] = 1, |
| [VX_GLIMIT] = 1, |
| [VX_INTCSR] = 0, /* on the PLX */ |
| [VX_CNTRL] = 0, /* on the PLX */ |
| [VX_GPIOC] = 0, /* on the PLX */ |
| }; |
| |
| static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg) |
| { |
| struct snd_vx222 *chip = to_vx222(_chip); |
| return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg]; |
| } |
| |
| /** |
| * snd_vx_inb - read a byte from the register |
| * @chip: VX core instance |
| * @offset: register enum |
| */ |
| static unsigned char vx2_inb(struct vx_core *chip, int offset) |
| { |
| return inb(vx2_reg_addr(chip, offset)); |
| } |
| |
| /** |
| * snd_vx_outb - write a byte on the register |
| * @chip: VX core instance |
| * @offset: the register offset |
| * @val: the value to write |
| */ |
| static void vx2_outb(struct vx_core *chip, int offset, unsigned char val) |
| { |
| outb(val, vx2_reg_addr(chip, offset)); |
| /* |
| dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset)); |
| */ |
| } |
| |
| /** |
| * snd_vx_inl - read a 32bit word from the register |
| * @chip: VX core instance |
| * @offset: register enum |
| */ |
| static unsigned int vx2_inl(struct vx_core *chip, int offset) |
| { |
| return inl(vx2_reg_addr(chip, offset)); |
| } |
| |
| /** |
| * snd_vx_outl - write a 32bit word on the register |
| * @chip: VX core instance |
| * @offset: the register enum |
| * @val: the value to write |
| */ |
| static void vx2_outl(struct vx_core *chip, int offset, unsigned int val) |
| { |
| /* |
| dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset)); |
| */ |
| outl(val, vx2_reg_addr(chip, offset)); |
| } |
| |
| /* |
| * redefine macros to call directly |
| */ |
| #undef vx_inb |
| #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg) |
| #undef vx_outb |
| #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val) |
| #undef vx_inl |
| #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg) |
| #undef vx_outl |
| #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val) |
| |
| |
| /* |
| * vx_reset_dsp - reset the DSP |
| */ |
| |
| #define XX_DSP_RESET_WAIT_TIME 2 /* ms */ |
| |
| static void vx2_reset_dsp(struct vx_core *_chip) |
| { |
| struct snd_vx222 *chip = to_vx222(_chip); |
| |
| /* set the reset dsp bit to 0 */ |
| vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK); |
| |
| mdelay(XX_DSP_RESET_WAIT_TIME); |
| |
| chip->regCDSP |= VX_CDSP_DSP_RESET_MASK; |
| /* set the reset dsp bit to 1 */ |
| vx_outl(chip, CDSP, chip->regCDSP); |
| } |
| |
| |
| static int vx2_test_xilinx(struct vx_core *_chip) |
| { |
| struct snd_vx222 *chip = to_vx222(_chip); |
| unsigned int data; |
| |
| dev_dbg(_chip->card->dev, "testing xilinx...\n"); |
| /* This test uses several write/read sequences on TEST0 and TEST1 bits |
| * to figure out whever or not the xilinx was correctly loaded |
| */ |
| |
| /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */ |
| vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK); |
| vx_inl(chip, ISR); |
| data = vx_inl(chip, STATUS); |
| if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) { |
| dev_dbg(_chip->card->dev, "bad!\n"); |
| return -ENODEV; |
| } |
| |
| /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */ |
| vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK); |
| vx_inl(chip, ISR); |
| data = vx_inl(chip, STATUS); |
| if (! (data & VX_STATUS_VAL_TEST0_MASK)) { |
| dev_dbg(_chip->card->dev, "bad! #2\n"); |
| return -ENODEV; |
| } |
| |
| if (_chip->type == VX_TYPE_BOARD) { |
| /* not implemented on VX_2_BOARDS */ |
| /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */ |
| vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK); |
| vx_inl(chip, ISR); |
| data = vx_inl(chip, STATUS); |
| if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) { |
| dev_dbg(_chip->card->dev, "bad! #3\n"); |
| return -ENODEV; |
| } |
| |
| /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */ |
| vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK); |
| vx_inl(chip, ISR); |
| data = vx_inl(chip, STATUS); |
| if (! (data & VX_STATUS_VAL_TEST1_MASK)) { |
| dev_dbg(_chip->card->dev, "bad! #4\n"); |
| return -ENODEV; |
| } |
| } |
| dev_dbg(_chip->card->dev, "ok, xilinx fine.\n"); |
| return 0; |
| } |
| |
| |
| /** |
| * vx_setup_pseudo_dma - set up the pseudo dma read/write mode. |
| * @chip: VX core instance |
| * @do_write: 0 = read, 1 = set up for DMA write |
| */ |
| static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write) |
| { |
| /* Interrupt mode and HREQ pin enabled for host transmit data transfers |
| * (in case of the use of the pseudo-dma facility). |
| */ |
| vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ); |
| |
| /* Reset the pseudo-dma register (in case of the use of the |
| * pseudo-dma facility). |
| */ |
| vx_outl(chip, RESET_DMA, 0); |
| } |
| |
| /* |
| * vx_release_pseudo_dma - disable the pseudo-DMA mode |
| */ |
| static inline void vx2_release_pseudo_dma(struct vx_core *chip) |
| { |
| /* HREQ pin disabled. */ |
| vx_outl(chip, ICR, 0); |
| } |
| |
| |
| |
| /* pseudo-dma write */ |
| static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime, |
| struct vx_pipe *pipe, int count) |
| { |
| unsigned long port = vx2_reg_addr(chip, VX_DMA); |
| int offset = pipe->hw_ptr; |
| u32 *addr = (u32 *)(runtime->dma_area + offset); |
| |
| if (snd_BUG_ON(count % 4)) |
| return; |
| |
| vx2_setup_pseudo_dma(chip, 1); |
| |
| /* Transfer using pseudo-dma. |
| */ |
| if (offset + count >= pipe->buffer_bytes) { |
| int length = pipe->buffer_bytes - offset; |
| count -= length; |
| length >>= 2; /* in 32bit words */ |
| /* Transfer using pseudo-dma. */ |
| for (; length > 0; length--) { |
| outl(cpu_to_le32(*addr), port); |
| addr++; |
| } |
| addr = (u32 *)runtime->dma_area; |
| pipe->hw_ptr = 0; |
| } |
| pipe->hw_ptr += count; |
| count >>= 2; /* in 32bit words */ |
| /* Transfer using pseudo-dma. */ |
| for (; count > 0; count--) { |
| outl(cpu_to_le32(*addr), port); |
| addr++; |
| } |
| |
| vx2_release_pseudo_dma(chip); |
| } |
| |
| |
| /* pseudo dma read */ |
| static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime, |
| struct vx_pipe *pipe, int count) |
| { |
| int offset = pipe->hw_ptr; |
| u32 *addr = (u32 *)(runtime->dma_area + offset); |
| unsigned long port = vx2_reg_addr(chip, VX_DMA); |
| |
| if (snd_BUG_ON(count % 4)) |
| return; |
| |
| vx2_setup_pseudo_dma(chip, 0); |
| /* Transfer using pseudo-dma. |
| */ |
| if (offset + count >= pipe->buffer_bytes) { |
| int length = pipe->buffer_bytes - offset; |
| count -= length; |
| length >>= 2; /* in 32bit words */ |
| /* Transfer using pseudo-dma. */ |
| for (; length > 0; length--) |
| *addr++ = le32_to_cpu(inl(port)); |
| addr = (u32 *)runtime->dma_area; |
| pipe->hw_ptr = 0; |
| } |
| pipe->hw_ptr += count; |
| count >>= 2; /* in 32bit words */ |
| /* Transfer using pseudo-dma. */ |
| for (; count > 0; count--) |
| *addr++ = le32_to_cpu(inl(port)); |
| |
| vx2_release_pseudo_dma(chip); |
| } |
| |
| #define VX_XILINX_RESET_MASK 0x40000000 |
| #define VX_USERBIT0_MASK 0x00000004 |
| #define VX_USERBIT1_MASK 0x00000020 |
| #define VX_CNTRL_REGISTER_VALUE 0x00172012 |
| |
| /* |
| * transfer counts bits to PLX |
| */ |
| static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < counts; i++) { |
| unsigned int val; |
| |
| /* set the clock bit to 0. */ |
| val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK; |
| vx2_outl(chip, port, val); |
| vx2_inl(chip, port); |
| udelay(1); |
| |
| if (data & (1 << i)) |
| val |= VX_USERBIT1_MASK; |
| else |
| val &= ~VX_USERBIT1_MASK; |
| vx2_outl(chip, port, val); |
| vx2_inl(chip, port); |
| |
| /* set the clock bit to 1. */ |
| val |= VX_USERBIT0_MASK; |
| vx2_outl(chip, port, val); |
| vx2_inl(chip, port); |
| udelay(1); |
| } |
| return 0; |
| } |
| |
| /* |
| * load the xilinx image |
| */ |
| static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx) |
| { |
| unsigned int i; |
| unsigned int port; |
| const unsigned char *image; |
| |
| /* XILINX reset (wait at least 1 millisecond between reset on and off). */ |
| vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK); |
| vx_inl(chip, CNTRL); |
| msleep(10); |
| vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE); |
| vx_inl(chip, CNTRL); |
| msleep(10); |
| |
| if (chip->type == VX_TYPE_BOARD) |
| port = VX_CNTRL; |
| else |
| port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */ |
| |
| image = xilinx->data; |
| for (i = 0; i < xilinx->size; i++, image++) { |
| if (put_xilinx_data(chip, port, 8, *image) < 0) |
| return -EINVAL; |
| /* don't take too much time in this loop... */ |
| cond_resched(); |
| } |
| put_xilinx_data(chip, port, 4, 0xff); /* end signature */ |
| |
| msleep(200); |
| |
| /* test after loading (is buggy with VX222) */ |
| if (chip->type != VX_TYPE_BOARD) { |
| /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */ |
| i = vx_inl(chip, GPIOC); |
| if (i & 0x0100) |
| return 0; |
| dev_err(chip->card->dev, |
| "xilinx test failed after load, GPIOC=0x%x\n", i); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * load the boot/dsp images |
| */ |
| static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp) |
| { |
| int err; |
| |
| switch (index) { |
| case 1: |
| /* xilinx image */ |
| if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0) |
| return err; |
| if ((err = vx2_test_xilinx(vx)) < 0) |
| return err; |
| return 0; |
| case 2: |
| /* DSP boot */ |
| return snd_vx_dsp_boot(vx, dsp); |
| case 3: |
| /* DSP image */ |
| return snd_vx_dsp_load(vx, dsp); |
| default: |
| snd_BUG(); |
| return -EINVAL; |
| } |
| } |
| |
| |
| /* |
| * vx_test_and_ack - test and acknowledge interrupt |
| * |
| * called from irq hander, too |
| * |
| * spinlock held! |
| */ |
| static int vx2_test_and_ack(struct vx_core *chip) |
| { |
| /* not booted yet? */ |
| if (! (chip->chip_status & VX_STAT_XILINX_LOADED)) |
| return -ENXIO; |
| |
| if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK)) |
| return -EIO; |
| |
| /* ok, interrupts generated, now ack it */ |
| /* set ACQUIT bit up and down */ |
| vx_outl(chip, STATUS, 0); |
| /* useless read just to spend some time and maintain |
| * the ACQUIT signal up for a while ( a bus cycle ) |
| */ |
| vx_inl(chip, STATUS); |
| /* ack */ |
| vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK); |
| /* useless read just to spend some time and maintain |
| * the ACQUIT signal up for a while ( a bus cycle ) */ |
| vx_inl(chip, STATUS); |
| /* clear */ |
| vx_outl(chip, STATUS, 0); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * vx_validate_irq - enable/disable IRQ |
| */ |
| static void vx2_validate_irq(struct vx_core *_chip, int enable) |
| { |
| struct snd_vx222 *chip = to_vx222(_chip); |
| |
| /* Set the interrupt enable bit to 1 in CDSP register */ |
| if (enable) { |
| /* Set the PCI interrupt enable bit to 1.*/ |
| vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK); |
| chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK; |
| } else { |
| /* Set the PCI interrupt enable bit to 0. */ |
| vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK); |
| chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK; |
| } |
| vx_outl(chip, CDSP, chip->regCDSP); |
| } |
| |
| |
| /* |
| * write an AKM codec data (24bit) |
| */ |
| static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data) |
| { |
| unsigned int i; |
| |
| vx_inl(chip, HIFREQ); |
| |
| /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */ |
| for (i = 0; i < 24; i++, data <<= 1) |
| vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0)); |
| /* Terminate access to codec registers */ |
| vx_inl(chip, RUER); |
| } |
| |
| |
| #define AKM_CODEC_POWER_CONTROL_CMD 0xA007 |
| #define AKM_CODEC_RESET_ON_CMD 0xA100 |
| #define AKM_CODEC_RESET_OFF_CMD 0xA103 |
| #define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240 |
| #define AKM_CODEC_MUTE_CMD 0xA38D |
| #define AKM_CODEC_UNMUTE_CMD 0xA30D |
| #define AKM_CODEC_LEFT_LEVEL_CMD 0xA400 |
| #define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500 |
| |
| static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = { |
| 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB) |
| 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB) |
| 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB) |
| 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB) |
| 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB) |
| 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB) |
| 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB) |
| 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB) |
| 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB) |
| 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB) |
| 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB) |
| 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB) |
| 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB) |
| 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB) |
| 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB) |
| 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB) |
| 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB) |
| 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB) |
| 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB) |
| 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB) |
| 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB) |
| 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB) |
| 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB) |
| 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB) |
| 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB) |
| 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB) |
| 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB) |
| 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB) |
| 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB) |
| 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB) |
| 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB) |
| 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB) |
| 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB) |
| 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB) |
| 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB) |
| 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB) |
| 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB) |
| 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB) |
| 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB) |
| 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB) |
| 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB) |
| 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB) |
| 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB) |
| 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB) |
| 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB) |
| 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB) |
| 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB) |
| 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB) |
| 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB) |
| 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB) |
| 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB) |
| 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB) |
| 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB) |
| 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB) |
| 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB) |
| 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB) |
| 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB) |
| 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB) |
| 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB) |
| 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB) |
| 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB) |
| 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB) |
| 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB) |
| 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB) |
| 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB) |
| 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB) |
| 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB) |
| 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB) |
| 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB) |
| 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB) |
| 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB) |
| 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB) |
| 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB) |
| 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB) |
| 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB) |
| 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB) |
| 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB) |
| 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB) |
| 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB) |
| 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB) |
| 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB) |
| 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB) |
| 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB) |
| 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB) |
| 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB) |
| 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB) |
| 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB) |
| 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB) |
| 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB) |
| 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB) |
| 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB) |
| 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB) |
| 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB) |
| 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB) |
| 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB) |
| 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB) |
| 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB) |
| 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB) |
| 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB) |
| 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB) |
| 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB) |
| 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB) |
| 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB) |
| 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB) |
| 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB) |
| 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB) |
| 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB) |
| 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB) |
| 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB) |
| 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB) |
| 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB) |
| 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB) |
| 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB) |
| 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB) |
| 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB) |
| 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB) |
| 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB) |
| 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB) |
| 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB) |
| 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB) |
| 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB) |
| 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB) |
| 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB) |
| 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB) |
| 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB) |
| 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB) |
| 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB) |
| 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB) |
| 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB) |
| 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB) |
| 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB) |
| 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB) |
| 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB) |
| 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB) |
| 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB) |
| 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB) |
| 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB) |
| 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB) |
| 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB) |
| 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB) |
| 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB) |
| 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB) |
| 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB) |
| 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB) |
| 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB) |
| 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB) |
| 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB) |
| 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini) |
| |
| /* |
| * pseudo-codec write entry |
| */ |
| static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data) |
| { |
| unsigned int val; |
| |
| if (reg == XX_CODEC_DAC_CONTROL_REGISTER) { |
| vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD); |
| return; |
| } |
| |
| /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need |
| a look up table, as there is no linear matching between the driver codec values |
| and the real dBu value |
| */ |
| if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut))) |
| return; |
| |
| switch (reg) { |
| case XX_CODEC_LEVEL_LEFT_REGISTER: |
| val = AKM_CODEC_LEFT_LEVEL_CMD; |
| break; |
| case XX_CODEC_LEVEL_RIGHT_REGISTER: |
| val = AKM_CODEC_RIGHT_LEVEL_CMD; |
| break; |
| default: |
| snd_BUG(); |
| return; |
| } |
| val |= vx2_akm_gains_lut[data]; |
| |
| vx2_write_codec_reg(chip, val); |
| } |
| |
| |
| /* |
| * write codec bit for old VX222 board |
| */ |
| static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data) |
| { |
| int i; |
| |
| /* activate access to codec registers */ |
| vx_inl(chip, HIFREQ); |
| |
| for (i = 0; i < 24; i++, data <<= 1) |
| vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0)); |
| |
| /* Terminate access to codec registers */ |
| vx_inl(chip, RUER); |
| } |
| |
| |
| /* |
| * reset codec bit |
| */ |
| static void vx2_reset_codec(struct vx_core *_chip) |
| { |
| struct snd_vx222 *chip = to_vx222(_chip); |
| |
| /* Set the reset CODEC bit to 0. */ |
| vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK); |
| vx_inl(chip, CDSP); |
| msleep(10); |
| /* Set the reset CODEC bit to 1. */ |
| chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK; |
| vx_outl(chip, CDSP, chip->regCDSP); |
| vx_inl(chip, CDSP); |
| if (_chip->type == VX_TYPE_BOARD) { |
| msleep(1); |
| return; |
| } |
| |
| msleep(5); /* additionnel wait time for AKM's */ |
| |
| vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */ |
| |
| vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */ |
| vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */ |
| vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */ |
| |
| if (_chip->type == VX_TYPE_MIC) { |
| /* set up the micro input selector */ |
| chip->regSELMIC = MICRO_SELECT_INPUT_NORM | |
| MICRO_SELECT_PREAMPLI_G_0 | |
| MICRO_SELECT_NOISE_T_52DB; |
| |
| /* reset phantom power supply */ |
| chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM; |
| |
| vx_outl(_chip, SELMIC, chip->regSELMIC); |
| } |
| } |
| |
| |
| /* |
| * change the audio source |
| */ |
| static void vx2_change_audio_source(struct vx_core *_chip, int src) |
| { |
| struct snd_vx222 *chip = to_vx222(_chip); |
| |
| switch (src) { |
| case VX_AUDIO_SRC_DIGITAL: |
| chip->regCFG |= VX_CFG_DATAIN_SEL_MASK; |
| break; |
| default: |
| chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK; |
| break; |
| } |
| vx_outl(chip, CFG, chip->regCFG); |
| } |
| |
| |
| /* |
| * set the clock source |
| */ |
| static void vx2_set_clock_source(struct vx_core *_chip, int source) |
| { |
| struct snd_vx222 *chip = to_vx222(_chip); |
| |
| if (source == INTERNAL_QUARTZ) |
| chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK; |
| else |
| chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK; |
| vx_outl(chip, CFG, chip->regCFG); |
| } |
| |
| /* |
| * reset the board |
| */ |
| static void vx2_reset_board(struct vx_core *_chip, int cold_reset) |
| { |
| struct snd_vx222 *chip = to_vx222(_chip); |
| |
| /* initialize the register values */ |
| chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ; |
| chip->regCFG = 0; |
| } |
| |
| |
| |
| /* |
| * input level controls for VX222 Mic |
| */ |
| |
| /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318), |
| * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli) |
| * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset ! |
| */ |
| #define V2_MICRO_LEVEL_RANGE (318 - 255) |
| |
| static void vx2_set_input_level(struct snd_vx222 *chip) |
| { |
| int i, miclevel, preamp; |
| unsigned int data; |
| |
| miclevel = chip->mic_level; |
| miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */ |
| preamp = 0; |
| while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */ |
| preamp++; /* raise pre ampli + 18dB */ |
| miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */ |
| } |
| if (snd_BUG_ON(preamp >= 4)) |
| return; |
| |
| /* set pre-amp level */ |
| chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK; |
| chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK; |
| vx_outl(chip, SELMIC, chip->regSELMIC); |
| |
| data = (unsigned int)miclevel << 16 | |
| (unsigned int)chip->input_level[1] << 8 | |
| (unsigned int)chip->input_level[0]; |
| vx_inl(chip, DATA); /* Activate input level programming */ |
| |
| /* We have to send 32 bits (4 x 8 bits) */ |
| for (i = 0; i < 32; i++, data <<= 1) |
| vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0)); |
| |
| vx_inl(chip, RUER); /* Terminate input level programming */ |
| } |
| |
| |
| #define MIC_LEVEL_MAX 0xff |
| |
| static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0); |
| |
| /* |
| * controls API for input levels |
| */ |
| |
| /* input levels */ |
| static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) |
| { |
| uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; |
| uinfo->count = 2; |
| uinfo->value.integer.min = 0; |
| uinfo->value.integer.max = MIC_LEVEL_MAX; |
| return 0; |
| } |
| |
| static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) |
| { |
| struct vx_core *_chip = snd_kcontrol_chip(kcontrol); |
| struct snd_vx222 *chip = to_vx222(_chip); |
| mutex_lock(&_chip->mixer_mutex); |
| ucontrol->value.integer.value[0] = chip->input_level[0]; |
| ucontrol->value.integer.value[1] = chip->input_level[1]; |
| mutex_unlock(&_chip->mixer_mutex); |
| return 0; |
| } |
| |
| static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) |
| { |
| struct vx_core *_chip = snd_kcontrol_chip(kcontrol); |
| struct snd_vx222 *chip = to_vx222(_chip); |
| if (ucontrol->value.integer.value[0] < 0 || |
| ucontrol->value.integer.value[0] > MIC_LEVEL_MAX) |
| return -EINVAL; |
| if (ucontrol->value.integer.value[1] < 0 || |
| ucontrol->value.integer.value[1] > MIC_LEVEL_MAX) |
| return -EINVAL; |
| mutex_lock(&_chip->mixer_mutex); |
| if (chip->input_level[0] != ucontrol->value.integer.value[0] || |
| chip->input_level[1] != ucontrol->value.integer.value[1]) { |
| chip->input_level[0] = ucontrol->value.integer.value[0]; |
| chip->input_level[1] = ucontrol->value.integer.value[1]; |
| vx2_set_input_level(chip); |
| mutex_unlock(&_chip->mixer_mutex); |
| return 1; |
| } |
| mutex_unlock(&_chip->mixer_mutex); |
| return 0; |
| } |
| |
| /* mic level */ |
| static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) |
| { |
| uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; |
| uinfo->count = 1; |
| uinfo->value.integer.min = 0; |
| uinfo->value.integer.max = MIC_LEVEL_MAX; |
| return 0; |
| } |
| |
| static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) |
| { |
| struct vx_core *_chip = snd_kcontrol_chip(kcontrol); |
| struct snd_vx222 *chip = to_vx222(_chip); |
| ucontrol->value.integer.value[0] = chip->mic_level; |
| return 0; |
| } |
| |
| static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) |
| { |
| struct vx_core *_chip = snd_kcontrol_chip(kcontrol); |
| struct snd_vx222 *chip = to_vx222(_chip); |
| if (ucontrol->value.integer.value[0] < 0 || |
| ucontrol->value.integer.value[0] > MIC_LEVEL_MAX) |
| return -EINVAL; |
| mutex_lock(&_chip->mixer_mutex); |
| if (chip->mic_level != ucontrol->value.integer.value[0]) { |
| chip->mic_level = ucontrol->value.integer.value[0]; |
| vx2_set_input_level(chip); |
| mutex_unlock(&_chip->mixer_mutex); |
| return 1; |
| } |
| mutex_unlock(&_chip->mixer_mutex); |
| return 0; |
| } |
| |
| static const struct snd_kcontrol_new vx_control_input_level = { |
| .iface = SNDRV_CTL_ELEM_IFACE_MIXER, |
| .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | |
| SNDRV_CTL_ELEM_ACCESS_TLV_READ), |
| .name = "Capture Volume", |
| .info = vx_input_level_info, |
| .get = vx_input_level_get, |
| .put = vx_input_level_put, |
| .tlv = { .p = db_scale_mic }, |
| }; |
| |
| static const struct snd_kcontrol_new vx_control_mic_level = { |
| .iface = SNDRV_CTL_ELEM_IFACE_MIXER, |
| .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | |
| SNDRV_CTL_ELEM_ACCESS_TLV_READ), |
| .name = "Mic Capture Volume", |
| .info = vx_mic_level_info, |
| .get = vx_mic_level_get, |
| .put = vx_mic_level_put, |
| .tlv = { .p = db_scale_mic }, |
| }; |
| |
| /* |
| * FIXME: compressor/limiter implementation is missing yet... |
| */ |
| |
| static int vx2_add_mic_controls(struct vx_core *_chip) |
| { |
| struct snd_vx222 *chip = to_vx222(_chip); |
| int err; |
| |
| if (_chip->type != VX_TYPE_MIC) |
| return 0; |
| |
| /* mute input levels */ |
| chip->input_level[0] = chip->input_level[1] = 0; |
| chip->mic_level = 0; |
| vx2_set_input_level(chip); |
| |
| /* controls */ |
| if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0) |
| return err; |
| if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| |
| /* |
| * callbacks |
| */ |
| struct snd_vx_ops vx222_ops = { |
| .in8 = vx2_inb, |
| .in32 = vx2_inl, |
| .out8 = vx2_outb, |
| .out32 = vx2_outl, |
| .test_and_ack = vx2_test_and_ack, |
| .validate_irq = vx2_validate_irq, |
| .akm_write = vx2_write_akm, |
| .reset_codec = vx2_reset_codec, |
| .change_audio_source = vx2_change_audio_source, |
| .set_clock_source = vx2_set_clock_source, |
| .load_dsp = vx2_load_dsp, |
| .reset_dsp = vx2_reset_dsp, |
| .reset_board = vx2_reset_board, |
| .dma_write = vx2_dma_write, |
| .dma_read = vx2_dma_read, |
| .add_controls = vx2_add_mic_controls, |
| }; |
| |
| /* for old VX222 board */ |
| struct snd_vx_ops vx222_old_ops = { |
| .in8 = vx2_inb, |
| .in32 = vx2_inl, |
| .out8 = vx2_outb, |
| .out32 = vx2_outl, |
| .test_and_ack = vx2_test_and_ack, |
| .validate_irq = vx2_validate_irq, |
| .write_codec = vx2_old_write_codec_bit, |
| .reset_codec = vx2_reset_codec, |
| .change_audio_source = vx2_change_audio_source, |
| .set_clock_source = vx2_set_clock_source, |
| .load_dsp = vx2_load_dsp, |
| .reset_dsp = vx2_reset_dsp, |
| .reset_board = vx2_reset_board, |
| .dma_write = vx2_dma_write, |
| .dma_read = vx2_dma_read, |
| }; |
| |