|  | /* | 
|  | * Copyright (c) 2007-2013 Nicira, Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of version 2 of the GNU General Public | 
|  | * License as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
|  | * 02110-1301, USA | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include "flow.h" | 
|  | #include "datapath.h" | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/if_ether.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <net/llc_pdu.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/jhash.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/llc.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <linux/sctp.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/icmp.h> | 
|  | #include <linux/icmpv6.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/ipv6.h> | 
|  | #include <net/ndisc.h> | 
|  |  | 
|  | #include "flow_netlink.h" | 
|  |  | 
|  | static void update_range__(struct sw_flow_match *match, | 
|  | size_t offset, size_t size, bool is_mask) | 
|  | { | 
|  | struct sw_flow_key_range *range = NULL; | 
|  | size_t start = rounddown(offset, sizeof(long)); | 
|  | size_t end = roundup(offset + size, sizeof(long)); | 
|  |  | 
|  | if (!is_mask) | 
|  | range = &match->range; | 
|  | else if (match->mask) | 
|  | range = &match->mask->range; | 
|  |  | 
|  | if (!range) | 
|  | return; | 
|  |  | 
|  | if (range->start == range->end) { | 
|  | range->start = start; | 
|  | range->end = end; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (range->start > start) | 
|  | range->start = start; | 
|  |  | 
|  | if (range->end < end) | 
|  | range->end = end; | 
|  | } | 
|  |  | 
|  | #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ | 
|  | do { \ | 
|  | update_range__(match, offsetof(struct sw_flow_key, field),  \ | 
|  | sizeof((match)->key->field), is_mask); \ | 
|  | if (is_mask) {						    \ | 
|  | if ((match)->mask)				    \ | 
|  | (match)->mask->key.field = value;	    \ | 
|  | } else {                                                    \ | 
|  | (match)->key->field = value;		            \ | 
|  | }                                                           \ | 
|  | } while (0) | 
|  |  | 
|  | #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ | 
|  | do { \ | 
|  | update_range__(match, offsetof(struct sw_flow_key, field),  \ | 
|  | len, is_mask);                              \ | 
|  | if (is_mask) {						    \ | 
|  | if ((match)->mask)				    \ | 
|  | memcpy(&(match)->mask->key.field, value_p, len);\ | 
|  | } else {                                                    \ | 
|  | memcpy(&(match)->key->field, value_p, len);         \ | 
|  | }                                                           \ | 
|  | } while (0) | 
|  |  | 
|  | static u16 range_n_bytes(const struct sw_flow_key_range *range) | 
|  | { | 
|  | return range->end - range->start; | 
|  | } | 
|  |  | 
|  | static bool match_validate(const struct sw_flow_match *match, | 
|  | u64 key_attrs, u64 mask_attrs) | 
|  | { | 
|  | u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; | 
|  | u64 mask_allowed = key_attrs;  /* At most allow all key attributes */ | 
|  |  | 
|  | /* The following mask attributes allowed only if they | 
|  | * pass the validation tests. */ | 
|  | mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) | 
|  | | (1 << OVS_KEY_ATTR_IPV6) | 
|  | | (1 << OVS_KEY_ATTR_TCP) | 
|  | | (1 << OVS_KEY_ATTR_TCP_FLAGS) | 
|  | | (1 << OVS_KEY_ATTR_UDP) | 
|  | | (1 << OVS_KEY_ATTR_SCTP) | 
|  | | (1 << OVS_KEY_ATTR_ICMP) | 
|  | | (1 << OVS_KEY_ATTR_ICMPV6) | 
|  | | (1 << OVS_KEY_ATTR_ARP) | 
|  | | (1 << OVS_KEY_ATTR_ND)); | 
|  |  | 
|  | /* Always allowed mask fields. */ | 
|  | mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) | 
|  | | (1 << OVS_KEY_ATTR_IN_PORT) | 
|  | | (1 << OVS_KEY_ATTR_ETHERTYPE)); | 
|  |  | 
|  | /* Check key attributes. */ | 
|  | if (match->key->eth.type == htons(ETH_P_ARP) | 
|  | || match->key->eth.type == htons(ETH_P_RARP)) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_ARP; | 
|  | if (match->mask && (match->mask->key.eth.type == htons(0xffff))) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_ARP; | 
|  | } | 
|  |  | 
|  | if (match->key->eth.type == htons(ETH_P_IP)) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_IPV4; | 
|  | if (match->mask && (match->mask->key.eth.type == htons(0xffff))) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; | 
|  |  | 
|  | if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { | 
|  | if (match->key->ip.proto == IPPROTO_UDP) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_UDP; | 
|  | if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_UDP; | 
|  | } | 
|  |  | 
|  | if (match->key->ip.proto == IPPROTO_SCTP) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_SCTP; | 
|  | if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; | 
|  | } | 
|  |  | 
|  | if (match->key->ip.proto == IPPROTO_TCP) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_TCP; | 
|  | key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; | 
|  | if (match->mask && (match->mask->key.ip.proto == 0xff)) { | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_TCP; | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match->key->ip.proto == IPPROTO_ICMP) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_ICMP; | 
|  | if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match->key->eth.type == htons(ETH_P_IPV6)) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_IPV6; | 
|  | if (match->mask && (match->mask->key.eth.type == htons(0xffff))) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; | 
|  |  | 
|  | if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { | 
|  | if (match->key->ip.proto == IPPROTO_UDP) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_UDP; | 
|  | if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_UDP; | 
|  | } | 
|  |  | 
|  | if (match->key->ip.proto == IPPROTO_SCTP) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_SCTP; | 
|  | if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; | 
|  | } | 
|  |  | 
|  | if (match->key->ip.proto == IPPROTO_TCP) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_TCP; | 
|  | key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; | 
|  | if (match->mask && (match->mask->key.ip.proto == 0xff)) { | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_TCP; | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match->key->ip.proto == IPPROTO_ICMPV6) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; | 
|  | if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; | 
|  |  | 
|  | if (match->key->tp.src == | 
|  | htons(NDISC_NEIGHBOUR_SOLICITATION) || | 
|  | match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { | 
|  | key_expected |= 1 << OVS_KEY_ATTR_ND; | 
|  | if (match->mask && (match->mask->key.tp.src == htons(0xffff))) | 
|  | mask_allowed |= 1 << OVS_KEY_ATTR_ND; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((key_attrs & key_expected) != key_expected) { | 
|  | /* Key attributes check failed. */ | 
|  | OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n", | 
|  | (unsigned long long)key_attrs, (unsigned long long)key_expected); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if ((mask_attrs & mask_allowed) != mask_attrs) { | 
|  | /* Mask attributes check failed. */ | 
|  | OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n", | 
|  | (unsigned long long)mask_attrs, (unsigned long long)mask_allowed); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */ | 
|  | static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { | 
|  | [OVS_KEY_ATTR_ENCAP] = -1, | 
|  | [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), | 
|  | [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), | 
|  | [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32), | 
|  | [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), | 
|  | [OVS_KEY_ATTR_VLAN] = sizeof(__be16), | 
|  | [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), | 
|  | [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), | 
|  | [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), | 
|  | [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), | 
|  | [OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16), | 
|  | [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), | 
|  | [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp), | 
|  | [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), | 
|  | [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), | 
|  | [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), | 
|  | [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), | 
|  | [OVS_KEY_ATTR_TUNNEL] = -1, | 
|  | }; | 
|  |  | 
|  | static bool is_all_zero(const u8 *fp, size_t size) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!fp) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < size; i++) | 
|  | if (fp[i]) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int __parse_flow_nlattrs(const struct nlattr *attr, | 
|  | const struct nlattr *a[], | 
|  | u64 *attrsp, bool nz) | 
|  | { | 
|  | const struct nlattr *nla; | 
|  | u64 attrs; | 
|  | int rem; | 
|  |  | 
|  | attrs = *attrsp; | 
|  | nla_for_each_nested(nla, attr, rem) { | 
|  | u16 type = nla_type(nla); | 
|  | int expected_len; | 
|  |  | 
|  | if (type > OVS_KEY_ATTR_MAX) { | 
|  | OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n", | 
|  | type, OVS_KEY_ATTR_MAX); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << type)) { | 
|  | OVS_NLERR("Duplicate key attribute (type %d).\n", type); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | expected_len = ovs_key_lens[type]; | 
|  | if (nla_len(nla) != expected_len && expected_len != -1) { | 
|  | OVS_NLERR("Key attribute has unexpected length (type=%d" | 
|  | ", length=%d, expected=%d).\n", type, | 
|  | nla_len(nla), expected_len); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!nz || !is_all_zero(nla_data(nla), expected_len)) { | 
|  | attrs |= 1 << type; | 
|  | a[type] = nla; | 
|  | } | 
|  | } | 
|  | if (rem) { | 
|  | OVS_NLERR("Message has %d unknown bytes.\n", rem); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *attrsp = attrs; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int parse_flow_mask_nlattrs(const struct nlattr *attr, | 
|  | const struct nlattr *a[], u64 *attrsp) | 
|  | { | 
|  | return __parse_flow_nlattrs(attr, a, attrsp, true); | 
|  | } | 
|  |  | 
|  | static int parse_flow_nlattrs(const struct nlattr *attr, | 
|  | const struct nlattr *a[], u64 *attrsp) | 
|  | { | 
|  | return __parse_flow_nlattrs(attr, a, attrsp, false); | 
|  | } | 
|  |  | 
|  | static int ipv4_tun_from_nlattr(const struct nlattr *attr, | 
|  | struct sw_flow_match *match, bool is_mask) | 
|  | { | 
|  | struct nlattr *a; | 
|  | int rem; | 
|  | bool ttl = false; | 
|  | __be16 tun_flags = 0; | 
|  |  | 
|  | nla_for_each_nested(a, attr, rem) { | 
|  | int type = nla_type(a); | 
|  | static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { | 
|  | [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64), | 
|  | [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32), | 
|  | [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32), | 
|  | [OVS_TUNNEL_KEY_ATTR_TOS] = 1, | 
|  | [OVS_TUNNEL_KEY_ATTR_TTL] = 1, | 
|  | [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0, | 
|  | [OVS_TUNNEL_KEY_ATTR_CSUM] = 0, | 
|  | }; | 
|  |  | 
|  | if (type > OVS_TUNNEL_KEY_ATTR_MAX) { | 
|  | OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n", | 
|  | type, OVS_TUNNEL_KEY_ATTR_MAX); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ovs_tunnel_key_lens[type] != nla_len(a)) { | 
|  | OVS_NLERR("IPv4 tunnel attribute type has unexpected " | 
|  | " length (type=%d, length=%d, expected=%d).\n", | 
|  | type, nla_len(a), ovs_tunnel_key_lens[type]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | case OVS_TUNNEL_KEY_ATTR_ID: | 
|  | SW_FLOW_KEY_PUT(match, tun_key.tun_id, | 
|  | nla_get_be64(a), is_mask); | 
|  | tun_flags |= TUNNEL_KEY; | 
|  | break; | 
|  | case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: | 
|  | SW_FLOW_KEY_PUT(match, tun_key.ipv4_src, | 
|  | nla_get_be32(a), is_mask); | 
|  | break; | 
|  | case OVS_TUNNEL_KEY_ATTR_IPV4_DST: | 
|  | SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst, | 
|  | nla_get_be32(a), is_mask); | 
|  | break; | 
|  | case OVS_TUNNEL_KEY_ATTR_TOS: | 
|  | SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos, | 
|  | nla_get_u8(a), is_mask); | 
|  | break; | 
|  | case OVS_TUNNEL_KEY_ATTR_TTL: | 
|  | SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl, | 
|  | nla_get_u8(a), is_mask); | 
|  | ttl = true; | 
|  | break; | 
|  | case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: | 
|  | tun_flags |= TUNNEL_DONT_FRAGMENT; | 
|  | break; | 
|  | case OVS_TUNNEL_KEY_ATTR_CSUM: | 
|  | tun_flags |= TUNNEL_CSUM; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); | 
|  |  | 
|  | if (rem > 0) { | 
|  | OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!is_mask) { | 
|  | if (!match->key->tun_key.ipv4_dst) { | 
|  | OVS_NLERR("IPv4 tunnel destination address is zero.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!ttl) { | 
|  | OVS_NLERR("IPv4 tunnel TTL not specified.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ipv4_tun_to_nlattr(struct sk_buff *skb, | 
|  | const struct ovs_key_ipv4_tunnel *tun_key, | 
|  | const struct ovs_key_ipv4_tunnel *output) | 
|  | { | 
|  | struct nlattr *nla; | 
|  |  | 
|  | nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); | 
|  | if (!nla) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | if (output->tun_flags & TUNNEL_KEY && | 
|  | nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id)) | 
|  | return -EMSGSIZE; | 
|  | if (output->ipv4_src && | 
|  | nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src)) | 
|  | return -EMSGSIZE; | 
|  | if (output->ipv4_dst && | 
|  | nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst)) | 
|  | return -EMSGSIZE; | 
|  | if (output->ipv4_tos && | 
|  | nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos)) | 
|  | return -EMSGSIZE; | 
|  | if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl)) | 
|  | return -EMSGSIZE; | 
|  | if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && | 
|  | nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) | 
|  | return -EMSGSIZE; | 
|  | if ((output->tun_flags & TUNNEL_CSUM) && | 
|  | nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | nla_nest_end(skb, nla); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs, | 
|  | const struct nlattr **a, bool is_mask) | 
|  | { | 
|  | if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { | 
|  | SW_FLOW_KEY_PUT(match, phy.priority, | 
|  | nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); | 
|  | } | 
|  |  | 
|  | if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { | 
|  | u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); | 
|  |  | 
|  | if (is_mask) | 
|  | in_port = 0xffffffff; /* Always exact match in_port. */ | 
|  | else if (in_port >= DP_MAX_PORTS) | 
|  | return -EINVAL; | 
|  |  | 
|  | SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); | 
|  | } else if (!is_mask) { | 
|  | SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); | 
|  | } | 
|  |  | 
|  | if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { | 
|  | uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); | 
|  |  | 
|  | SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); | 
|  | } | 
|  | if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { | 
|  | if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, | 
|  | is_mask)) | 
|  | return -EINVAL; | 
|  | *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs, | 
|  | const struct nlattr **a, bool is_mask) | 
|  | { | 
|  | int err; | 
|  | u64 orig_attrs = attrs; | 
|  |  | 
|  | err = metadata_from_nlattrs(match, &attrs, a, is_mask); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { | 
|  | const struct ovs_key_ethernet *eth_key; | 
|  |  | 
|  | eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); | 
|  | SW_FLOW_KEY_MEMCPY(match, eth.src, | 
|  | eth_key->eth_src, ETH_ALEN, is_mask); | 
|  | SW_FLOW_KEY_MEMCPY(match, eth.dst, | 
|  | eth_key->eth_dst, ETH_ALEN, is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { | 
|  | __be16 tci; | 
|  |  | 
|  | tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
|  | if (!(tci & htons(VLAN_TAG_PRESENT))) { | 
|  | if (is_mask) | 
|  | OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n"); | 
|  | else | 
|  | OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n"); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_VLAN); | 
|  | } else if (!is_mask) | 
|  | SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { | 
|  | __be16 eth_type; | 
|  |  | 
|  | eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | 
|  | if (is_mask) { | 
|  | /* Always exact match EtherType. */ | 
|  | eth_type = htons(0xffff); | 
|  | } else if (ntohs(eth_type) < ETH_P_802_3_MIN) { | 
|  | OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n", | 
|  | ntohs(eth_type), ETH_P_802_3_MIN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
|  | } else if (!is_mask) { | 
|  | SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { | 
|  | const struct ovs_key_ipv4 *ipv4_key; | 
|  |  | 
|  | ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); | 
|  | if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { | 
|  | OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n", | 
|  | ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); | 
|  | return -EINVAL; | 
|  | } | 
|  | SW_FLOW_KEY_PUT(match, ip.proto, | 
|  | ipv4_key->ipv4_proto, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ip.tos, | 
|  | ipv4_key->ipv4_tos, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ip.ttl, | 
|  | ipv4_key->ipv4_ttl, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ip.frag, | 
|  | ipv4_key->ipv4_frag, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ipv4.addr.src, | 
|  | ipv4_key->ipv4_src, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ipv4.addr.dst, | 
|  | ipv4_key->ipv4_dst, is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_IPV4); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { | 
|  | const struct ovs_key_ipv6 *ipv6_key; | 
|  |  | 
|  | ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); | 
|  | if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { | 
|  | OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n", | 
|  | ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); | 
|  | return -EINVAL; | 
|  | } | 
|  | SW_FLOW_KEY_PUT(match, ipv6.label, | 
|  | ipv6_key->ipv6_label, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ip.proto, | 
|  | ipv6_key->ipv6_proto, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ip.tos, | 
|  | ipv6_key->ipv6_tclass, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ip.ttl, | 
|  | ipv6_key->ipv6_hlimit, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ip.frag, | 
|  | ipv6_key->ipv6_frag, is_mask); | 
|  | SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, | 
|  | ipv6_key->ipv6_src, | 
|  | sizeof(match->key->ipv6.addr.src), | 
|  | is_mask); | 
|  | SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, | 
|  | ipv6_key->ipv6_dst, | 
|  | sizeof(match->key->ipv6.addr.dst), | 
|  | is_mask); | 
|  |  | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_IPV6); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_ARP)) { | 
|  | const struct ovs_key_arp *arp_key; | 
|  |  | 
|  | arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); | 
|  | if (!is_mask && (arp_key->arp_op & htons(0xff00))) { | 
|  | OVS_NLERR("Unknown ARP opcode (opcode=%d).\n", | 
|  | arp_key->arp_op); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | SW_FLOW_KEY_PUT(match, ipv4.addr.src, | 
|  | arp_key->arp_sip, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ipv4.addr.dst, | 
|  | arp_key->arp_tip, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, ip.proto, | 
|  | ntohs(arp_key->arp_op), is_mask); | 
|  | SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, | 
|  | arp_key->arp_sha, ETH_ALEN, is_mask); | 
|  | SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, | 
|  | arp_key->arp_tha, ETH_ALEN, is_mask); | 
|  |  | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_ARP); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_TCP)) { | 
|  | const struct ovs_key_tcp *tcp_key; | 
|  |  | 
|  | tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); | 
|  | SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_TCP); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { | 
|  | if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { | 
|  | SW_FLOW_KEY_PUT(match, tp.flags, | 
|  | nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), | 
|  | is_mask); | 
|  | } else { | 
|  | SW_FLOW_KEY_PUT(match, tp.flags, | 
|  | nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), | 
|  | is_mask); | 
|  | } | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_UDP)) { | 
|  | const struct ovs_key_udp *udp_key; | 
|  |  | 
|  | udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); | 
|  | SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_UDP); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { | 
|  | const struct ovs_key_sctp *sctp_key; | 
|  |  | 
|  | sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); | 
|  | SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); | 
|  | SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_SCTP); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { | 
|  | const struct ovs_key_icmp *icmp_key; | 
|  |  | 
|  | icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); | 
|  | SW_FLOW_KEY_PUT(match, tp.src, | 
|  | htons(icmp_key->icmp_type), is_mask); | 
|  | SW_FLOW_KEY_PUT(match, tp.dst, | 
|  | htons(icmp_key->icmp_code), is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_ICMP); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { | 
|  | const struct ovs_key_icmpv6 *icmpv6_key; | 
|  |  | 
|  | icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); | 
|  | SW_FLOW_KEY_PUT(match, tp.src, | 
|  | htons(icmpv6_key->icmpv6_type), is_mask); | 
|  | SW_FLOW_KEY_PUT(match, tp.dst, | 
|  | htons(icmpv6_key->icmpv6_code), is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); | 
|  | } | 
|  |  | 
|  | if (attrs & (1 << OVS_KEY_ATTR_ND)) { | 
|  | const struct ovs_key_nd *nd_key; | 
|  |  | 
|  | nd_key = nla_data(a[OVS_KEY_ATTR_ND]); | 
|  | SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, | 
|  | nd_key->nd_target, | 
|  | sizeof(match->key->ipv6.nd.target), | 
|  | is_mask); | 
|  | SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, | 
|  | nd_key->nd_sll, ETH_ALEN, is_mask); | 
|  | SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, | 
|  | nd_key->nd_tll, ETH_ALEN, is_mask); | 
|  | attrs &= ~(1 << OVS_KEY_ATTR_ND); | 
|  | } | 
|  |  | 
|  | if (attrs != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sw_flow_mask_set(struct sw_flow_mask *mask, | 
|  | struct sw_flow_key_range *range, u8 val) | 
|  | { | 
|  | u8 *m = (u8 *)&mask->key + range->start; | 
|  |  | 
|  | mask->range = *range; | 
|  | memset(m, val, range_n_bytes(range)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ovs_nla_get_match - parses Netlink attributes into a flow key and | 
|  | * mask. In case the 'mask' is NULL, the flow is treated as exact match | 
|  | * flow. Otherwise, it is treated as a wildcarded flow, except the mask | 
|  | * does not include any don't care bit. | 
|  | * @match: receives the extracted flow match information. | 
|  | * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | 
|  | * sequence. The fields should of the packet that triggered the creation | 
|  | * of this flow. | 
|  | * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink | 
|  | * attribute specifies the mask field of the wildcarded flow. | 
|  | */ | 
|  | int ovs_nla_get_match(struct sw_flow_match *match, | 
|  | const struct nlattr *key, | 
|  | const struct nlattr *mask) | 
|  | { | 
|  | const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; | 
|  | const struct nlattr *encap; | 
|  | u64 key_attrs = 0; | 
|  | u64 mask_attrs = 0; | 
|  | bool encap_valid = false; | 
|  | int err; | 
|  |  | 
|  | err = parse_flow_nlattrs(key, a, &key_attrs); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && | 
|  | (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && | 
|  | (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) { | 
|  | __be16 tci; | 
|  |  | 
|  | if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && | 
|  | (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { | 
|  | OVS_NLERR("Invalid Vlan frame.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
|  | tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
|  | encap = a[OVS_KEY_ATTR_ENCAP]; | 
|  | key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); | 
|  | encap_valid = true; | 
|  |  | 
|  | if (tci & htons(VLAN_TAG_PRESENT)) { | 
|  | err = parse_flow_nlattrs(encap, a, &key_attrs); | 
|  | if (err) | 
|  | return err; | 
|  | } else if (!tci) { | 
|  | /* Corner case for truncated 802.1Q header. */ | 
|  | if (nla_len(encap)) { | 
|  | OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n"); | 
|  | return  -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = ovs_key_from_nlattrs(match, key_attrs, a, false); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (mask) { | 
|  | err = parse_flow_mask_nlattrs(mask, a, &mask_attrs); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP)  { | 
|  | __be16 eth_type = 0; | 
|  | __be16 tci = 0; | 
|  |  | 
|  | if (!encap_valid) { | 
|  | OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n"); | 
|  | return  -EINVAL; | 
|  | } | 
|  |  | 
|  | mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); | 
|  | if (a[OVS_KEY_ATTR_ETHERTYPE]) | 
|  | eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | 
|  |  | 
|  | if (eth_type == htons(0xffff)) { | 
|  | mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
|  | encap = a[OVS_KEY_ATTR_ENCAP]; | 
|  | err = parse_flow_mask_nlattrs(encap, a, &mask_attrs); | 
|  | } else { | 
|  | OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n", | 
|  | ntohs(eth_type)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (a[OVS_KEY_ATTR_VLAN]) | 
|  | tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
|  |  | 
|  | if (!(tci & htons(VLAN_TAG_PRESENT))) { | 
|  | OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci)); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = ovs_key_from_nlattrs(match, mask_attrs, a, true); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | /* Populate exact match flow's key mask. */ | 
|  | if (match->mask) | 
|  | sw_flow_mask_set(match->mask, &match->range, 0xff); | 
|  | } | 
|  |  | 
|  | if (!match_validate(match, key_attrs, mask_attrs)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. | 
|  | * @flow: Receives extracted in_port, priority, tun_key and skb_mark. | 
|  | * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | 
|  | * sequence. | 
|  | * | 
|  | * This parses a series of Netlink attributes that form a flow key, which must | 
|  | * take the same form accepted by flow_from_nlattrs(), but only enough of it to | 
|  | * get the metadata, that is, the parts of the flow key that cannot be | 
|  | * extracted from the packet itself. | 
|  | */ | 
|  |  | 
|  | int ovs_nla_get_flow_metadata(struct sw_flow *flow, | 
|  | const struct nlattr *attr) | 
|  | { | 
|  | struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key; | 
|  | const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; | 
|  | u64 attrs = 0; | 
|  | int err; | 
|  | struct sw_flow_match match; | 
|  |  | 
|  | flow->key.phy.in_port = DP_MAX_PORTS; | 
|  | flow->key.phy.priority = 0; | 
|  | flow->key.phy.skb_mark = 0; | 
|  | memset(tun_key, 0, sizeof(flow->key.tun_key)); | 
|  |  | 
|  | err = parse_flow_nlattrs(attr, a, &attrs); | 
|  | if (err) | 
|  | return -EINVAL; | 
|  |  | 
|  | memset(&match, 0, sizeof(match)); | 
|  | match.key = &flow->key; | 
|  |  | 
|  | err = metadata_from_nlattrs(&match, &attrs, a, false); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ovs_nla_put_flow(const struct sw_flow_key *swkey, | 
|  | const struct sw_flow_key *output, struct sk_buff *skb) | 
|  | { | 
|  | struct ovs_key_ethernet *eth_key; | 
|  | struct nlattr *nla, *encap; | 
|  | bool is_mask = (swkey != output); | 
|  |  | 
|  | if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | if ((swkey->tun_key.ipv4_dst || is_mask) && | 
|  | ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | if (swkey->phy.in_port == DP_MAX_PORTS) { | 
|  | if (is_mask && (output->phy.in_port == 0xffff)) | 
|  | if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) | 
|  | goto nla_put_failure; | 
|  | } else { | 
|  | u16 upper_u16; | 
|  | upper_u16 = !is_mask ? 0 : 0xffff; | 
|  |  | 
|  | if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, | 
|  | (upper_u16 << 16) | output->phy.in_port)) | 
|  | goto nla_put_failure; | 
|  | } | 
|  |  | 
|  | if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | eth_key = nla_data(nla); | 
|  | ether_addr_copy(eth_key->eth_src, output->eth.src); | 
|  | ether_addr_copy(eth_key->eth_dst, output->eth.dst); | 
|  |  | 
|  | if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { | 
|  | __be16 eth_type; | 
|  | eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff); | 
|  | if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || | 
|  | nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci)) | 
|  | goto nla_put_failure; | 
|  | encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); | 
|  | if (!swkey->eth.tci) | 
|  | goto unencap; | 
|  | } else | 
|  | encap = NULL; | 
|  |  | 
|  | if (swkey->eth.type == htons(ETH_P_802_2)) { | 
|  | /* | 
|  | * Ethertype 802.2 is represented in the netlink with omitted | 
|  | * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and | 
|  | * 0xffff in the mask attribute.  Ethertype can also | 
|  | * be wildcarded. | 
|  | */ | 
|  | if (is_mask && output->eth.type) | 
|  | if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, | 
|  | output->eth.type)) | 
|  | goto nla_put_failure; | 
|  | goto unencap; | 
|  | } | 
|  |  | 
|  | if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | if (swkey->eth.type == htons(ETH_P_IP)) { | 
|  | struct ovs_key_ipv4 *ipv4_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | ipv4_key = nla_data(nla); | 
|  | ipv4_key->ipv4_src = output->ipv4.addr.src; | 
|  | ipv4_key->ipv4_dst = output->ipv4.addr.dst; | 
|  | ipv4_key->ipv4_proto = output->ip.proto; | 
|  | ipv4_key->ipv4_tos = output->ip.tos; | 
|  | ipv4_key->ipv4_ttl = output->ip.ttl; | 
|  | ipv4_key->ipv4_frag = output->ip.frag; | 
|  | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
|  | struct ovs_key_ipv6 *ipv6_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | ipv6_key = nla_data(nla); | 
|  | memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, | 
|  | sizeof(ipv6_key->ipv6_src)); | 
|  | memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, | 
|  | sizeof(ipv6_key->ipv6_dst)); | 
|  | ipv6_key->ipv6_label = output->ipv6.label; | 
|  | ipv6_key->ipv6_proto = output->ip.proto; | 
|  | ipv6_key->ipv6_tclass = output->ip.tos; | 
|  | ipv6_key->ipv6_hlimit = output->ip.ttl; | 
|  | ipv6_key->ipv6_frag = output->ip.frag; | 
|  | } else if (swkey->eth.type == htons(ETH_P_ARP) || | 
|  | swkey->eth.type == htons(ETH_P_RARP)) { | 
|  | struct ovs_key_arp *arp_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | arp_key = nla_data(nla); | 
|  | memset(arp_key, 0, sizeof(struct ovs_key_arp)); | 
|  | arp_key->arp_sip = output->ipv4.addr.src; | 
|  | arp_key->arp_tip = output->ipv4.addr.dst; | 
|  | arp_key->arp_op = htons(output->ip.proto); | 
|  | ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); | 
|  | ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); | 
|  | } | 
|  |  | 
|  | if ((swkey->eth.type == htons(ETH_P_IP) || | 
|  | swkey->eth.type == htons(ETH_P_IPV6)) && | 
|  | swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | 
|  |  | 
|  | if (swkey->ip.proto == IPPROTO_TCP) { | 
|  | struct ovs_key_tcp *tcp_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | tcp_key = nla_data(nla); | 
|  | tcp_key->tcp_src = output->tp.src; | 
|  | tcp_key->tcp_dst = output->tp.dst; | 
|  | if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, | 
|  | output->tp.flags)) | 
|  | goto nla_put_failure; | 
|  | } else if (swkey->ip.proto == IPPROTO_UDP) { | 
|  | struct ovs_key_udp *udp_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | udp_key = nla_data(nla); | 
|  | udp_key->udp_src = output->tp.src; | 
|  | udp_key->udp_dst = output->tp.dst; | 
|  | } else if (swkey->ip.proto == IPPROTO_SCTP) { | 
|  | struct ovs_key_sctp *sctp_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | sctp_key = nla_data(nla); | 
|  | sctp_key->sctp_src = output->tp.src; | 
|  | sctp_key->sctp_dst = output->tp.dst; | 
|  | } else if (swkey->eth.type == htons(ETH_P_IP) && | 
|  | swkey->ip.proto == IPPROTO_ICMP) { | 
|  | struct ovs_key_icmp *icmp_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | icmp_key = nla_data(nla); | 
|  | icmp_key->icmp_type = ntohs(output->tp.src); | 
|  | icmp_key->icmp_code = ntohs(output->tp.dst); | 
|  | } else if (swkey->eth.type == htons(ETH_P_IPV6) && | 
|  | swkey->ip.proto == IPPROTO_ICMPV6) { | 
|  | struct ovs_key_icmpv6 *icmpv6_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, | 
|  | sizeof(*icmpv6_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | icmpv6_key = nla_data(nla); | 
|  | icmpv6_key->icmpv6_type = ntohs(output->tp.src); | 
|  | icmpv6_key->icmpv6_code = ntohs(output->tp.dst); | 
|  |  | 
|  | if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || | 
|  | icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { | 
|  | struct ovs_key_nd *nd_key; | 
|  |  | 
|  | nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); | 
|  | if (!nla) | 
|  | goto nla_put_failure; | 
|  | nd_key = nla_data(nla); | 
|  | memcpy(nd_key->nd_target, &output->ipv6.nd.target, | 
|  | sizeof(nd_key->nd_target)); | 
|  | ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); | 
|  | ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unencap: | 
|  | if (encap) | 
|  | nla_nest_end(skb, encap); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nla_put_failure: | 
|  | return -EMSGSIZE; | 
|  | } | 
|  |  | 
|  | #define MAX_ACTIONS_BUFSIZE	(32 * 1024) | 
|  |  | 
|  | struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size) | 
|  | { | 
|  | struct sw_flow_actions *sfa; | 
|  |  | 
|  | if (size > MAX_ACTIONS_BUFSIZE) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); | 
|  | if (!sfa) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | sfa->actions_len = 0; | 
|  | return sfa; | 
|  | } | 
|  |  | 
|  | /* Schedules 'sf_acts' to be freed after the next RCU grace period. | 
|  | * The caller must hold rcu_read_lock for this to be sensible. */ | 
|  | void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) | 
|  | { | 
|  | kfree_rcu(sf_acts, rcu); | 
|  | } | 
|  |  | 
|  | static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, | 
|  | int attr_len) | 
|  | { | 
|  |  | 
|  | struct sw_flow_actions *acts; | 
|  | int new_acts_size; | 
|  | int req_size = NLA_ALIGN(attr_len); | 
|  | int next_offset = offsetof(struct sw_flow_actions, actions) + | 
|  | (*sfa)->actions_len; | 
|  |  | 
|  | if (req_size <= (ksize(*sfa) - next_offset)) | 
|  | goto out; | 
|  |  | 
|  | new_acts_size = ksize(*sfa) * 2; | 
|  |  | 
|  | if (new_acts_size > MAX_ACTIONS_BUFSIZE) { | 
|  | if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) | 
|  | return ERR_PTR(-EMSGSIZE); | 
|  | new_acts_size = MAX_ACTIONS_BUFSIZE; | 
|  | } | 
|  |  | 
|  | acts = ovs_nla_alloc_flow_actions(new_acts_size); | 
|  | if (IS_ERR(acts)) | 
|  | return (void *)acts; | 
|  |  | 
|  | memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); | 
|  | acts->actions_len = (*sfa)->actions_len; | 
|  | kfree(*sfa); | 
|  | *sfa = acts; | 
|  |  | 
|  | out: | 
|  | (*sfa)->actions_len += req_size; | 
|  | return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); | 
|  | } | 
|  |  | 
|  | static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len) | 
|  | { | 
|  | struct nlattr *a; | 
|  |  | 
|  | a = reserve_sfa_size(sfa, nla_attr_size(len)); | 
|  | if (IS_ERR(a)) | 
|  | return PTR_ERR(a); | 
|  |  | 
|  | a->nla_type = attrtype; | 
|  | a->nla_len = nla_attr_size(len); | 
|  |  | 
|  | if (data) | 
|  | memcpy(nla_data(a), data, len); | 
|  | memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int add_nested_action_start(struct sw_flow_actions **sfa, | 
|  | int attrtype) | 
|  | { | 
|  | int used = (*sfa)->actions_len; | 
|  | int err; | 
|  |  | 
|  | err = add_action(sfa, attrtype, NULL, 0); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return used; | 
|  | } | 
|  |  | 
|  | static inline void add_nested_action_end(struct sw_flow_actions *sfa, | 
|  | int st_offset) | 
|  | { | 
|  | struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + | 
|  | st_offset); | 
|  |  | 
|  | a->nla_len = sfa->actions_len - st_offset; | 
|  | } | 
|  |  | 
|  | static int validate_and_copy_sample(const struct nlattr *attr, | 
|  | const struct sw_flow_key *key, int depth, | 
|  | struct sw_flow_actions **sfa) | 
|  | { | 
|  | const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; | 
|  | const struct nlattr *probability, *actions; | 
|  | const struct nlattr *a; | 
|  | int rem, start, err, st_acts; | 
|  |  | 
|  | memset(attrs, 0, sizeof(attrs)); | 
|  | nla_for_each_nested(a, attr, rem) { | 
|  | int type = nla_type(a); | 
|  | if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) | 
|  | return -EINVAL; | 
|  | attrs[type] = a; | 
|  | } | 
|  | if (rem) | 
|  | return -EINVAL; | 
|  |  | 
|  | probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; | 
|  | if (!probability || nla_len(probability) != sizeof(u32)) | 
|  | return -EINVAL; | 
|  |  | 
|  | actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; | 
|  | if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* validation done, copy sample action. */ | 
|  | start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE); | 
|  | if (start < 0) | 
|  | return start; | 
|  | err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY, | 
|  | nla_data(probability), sizeof(u32)); | 
|  | if (err) | 
|  | return err; | 
|  | st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS); | 
|  | if (st_acts < 0) | 
|  | return st_acts; | 
|  |  | 
|  | err = ovs_nla_copy_actions(actions, key, depth + 1, sfa); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | add_nested_action_end(*sfa, st_acts); | 
|  | add_nested_action_end(*sfa, start); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int validate_tp_port(const struct sw_flow_key *flow_key) | 
|  | { | 
|  | if ((flow_key->eth.type == htons(ETH_P_IP) || | 
|  | flow_key->eth.type == htons(ETH_P_IPV6)) && | 
|  | (flow_key->tp.src || flow_key->tp.dst)) | 
|  | return 0; | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | void ovs_match_init(struct sw_flow_match *match, | 
|  | struct sw_flow_key *key, | 
|  | struct sw_flow_mask *mask) | 
|  | { | 
|  | memset(match, 0, sizeof(*match)); | 
|  | match->key = key; | 
|  | match->mask = mask; | 
|  |  | 
|  | memset(key, 0, sizeof(*key)); | 
|  |  | 
|  | if (mask) { | 
|  | memset(&mask->key, 0, sizeof(mask->key)); | 
|  | mask->range.start = mask->range.end = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int validate_and_copy_set_tun(const struct nlattr *attr, | 
|  | struct sw_flow_actions **sfa) | 
|  | { | 
|  | struct sw_flow_match match; | 
|  | struct sw_flow_key key; | 
|  | int err, start; | 
|  |  | 
|  | ovs_match_init(&match, &key, NULL); | 
|  | err = ipv4_tun_from_nlattr(nla_data(attr), &match, false); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET); | 
|  | if (start < 0) | 
|  | return start; | 
|  |  | 
|  | err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key, | 
|  | sizeof(match.key->tun_key)); | 
|  | add_nested_action_end(*sfa, start); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int validate_set(const struct nlattr *a, | 
|  | const struct sw_flow_key *flow_key, | 
|  | struct sw_flow_actions **sfa, | 
|  | bool *set_tun) | 
|  | { | 
|  | const struct nlattr *ovs_key = nla_data(a); | 
|  | int key_type = nla_type(ovs_key); | 
|  |  | 
|  | /* There can be only one key in a action */ | 
|  | if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (key_type > OVS_KEY_ATTR_MAX || | 
|  | (ovs_key_lens[key_type] != nla_len(ovs_key) && | 
|  | ovs_key_lens[key_type] != -1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (key_type) { | 
|  | const struct ovs_key_ipv4 *ipv4_key; | 
|  | const struct ovs_key_ipv6 *ipv6_key; | 
|  | int err; | 
|  |  | 
|  | case OVS_KEY_ATTR_PRIORITY: | 
|  | case OVS_KEY_ATTR_SKB_MARK: | 
|  | case OVS_KEY_ATTR_ETHERNET: | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_TUNNEL: | 
|  | *set_tun = true; | 
|  | err = validate_and_copy_set_tun(a, sfa); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_IPV4: | 
|  | if (flow_key->eth.type != htons(ETH_P_IP)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!flow_key->ip.proto) | 
|  | return -EINVAL; | 
|  |  | 
|  | ipv4_key = nla_data(ovs_key); | 
|  | if (ipv4_key->ipv4_proto != flow_key->ip.proto) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ipv4_key->ipv4_frag != flow_key->ip.frag) | 
|  | return -EINVAL; | 
|  |  | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_IPV6: | 
|  | if (flow_key->eth.type != htons(ETH_P_IPV6)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!flow_key->ip.proto) | 
|  | return -EINVAL; | 
|  |  | 
|  | ipv6_key = nla_data(ovs_key); | 
|  | if (ipv6_key->ipv6_proto != flow_key->ip.proto) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ipv6_key->ipv6_frag != flow_key->ip.frag) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) | 
|  | return -EINVAL; | 
|  |  | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_TCP: | 
|  | if (flow_key->ip.proto != IPPROTO_TCP) | 
|  | return -EINVAL; | 
|  |  | 
|  | return validate_tp_port(flow_key); | 
|  |  | 
|  | case OVS_KEY_ATTR_UDP: | 
|  | if (flow_key->ip.proto != IPPROTO_UDP) | 
|  | return -EINVAL; | 
|  |  | 
|  | return validate_tp_port(flow_key); | 
|  |  | 
|  | case OVS_KEY_ATTR_SCTP: | 
|  | if (flow_key->ip.proto != IPPROTO_SCTP) | 
|  | return -EINVAL; | 
|  |  | 
|  | return validate_tp_port(flow_key); | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int validate_userspace(const struct nlattr *attr) | 
|  | { | 
|  | static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { | 
|  | [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, | 
|  | [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, | 
|  | }; | 
|  | struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; | 
|  | int error; | 
|  |  | 
|  | error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, | 
|  | attr, userspace_policy); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (!a[OVS_USERSPACE_ATTR_PID] || | 
|  | !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int copy_action(const struct nlattr *from, | 
|  | struct sw_flow_actions **sfa) | 
|  | { | 
|  | int totlen = NLA_ALIGN(from->nla_len); | 
|  | struct nlattr *to; | 
|  |  | 
|  | to = reserve_sfa_size(sfa, from->nla_len); | 
|  | if (IS_ERR(to)) | 
|  | return PTR_ERR(to); | 
|  |  | 
|  | memcpy(to, from, totlen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ovs_nla_copy_actions(const struct nlattr *attr, | 
|  | const struct sw_flow_key *key, | 
|  | int depth, | 
|  | struct sw_flow_actions **sfa) | 
|  | { | 
|  | const struct nlattr *a; | 
|  | int rem, err; | 
|  |  | 
|  | if (depth >= SAMPLE_ACTION_DEPTH) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | nla_for_each_nested(a, attr, rem) { | 
|  | /* Expected argument lengths, (u32)-1 for variable length. */ | 
|  | static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { | 
|  | [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), | 
|  | [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, | 
|  | [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), | 
|  | [OVS_ACTION_ATTR_POP_VLAN] = 0, | 
|  | [OVS_ACTION_ATTR_SET] = (u32)-1, | 
|  | [OVS_ACTION_ATTR_SAMPLE] = (u32)-1 | 
|  | }; | 
|  | const struct ovs_action_push_vlan *vlan; | 
|  | int type = nla_type(a); | 
|  | bool skip_copy; | 
|  |  | 
|  | if (type > OVS_ACTION_ATTR_MAX || | 
|  | (action_lens[type] != nla_len(a) && | 
|  | action_lens[type] != (u32)-1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | skip_copy = false; | 
|  | switch (type) { | 
|  | case OVS_ACTION_ATTR_UNSPEC: | 
|  | return -EINVAL; | 
|  |  | 
|  | case OVS_ACTION_ATTR_USERSPACE: | 
|  | err = validate_userspace(a); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_OUTPUT: | 
|  | if (nla_get_u32(a) >= DP_MAX_PORTS) | 
|  | return -EINVAL; | 
|  | break; | 
|  |  | 
|  |  | 
|  | case OVS_ACTION_ATTR_POP_VLAN: | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_PUSH_VLAN: | 
|  | vlan = nla_data(a); | 
|  | if (vlan->vlan_tpid != htons(ETH_P_8021Q)) | 
|  | return -EINVAL; | 
|  | if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) | 
|  | return -EINVAL; | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_SET: | 
|  | err = validate_set(a, key, sfa, &skip_copy); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_SAMPLE: | 
|  | err = validate_and_copy_sample(a, key, depth, sfa); | 
|  | if (err) | 
|  | return err; | 
|  | skip_copy = true; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!skip_copy) { | 
|  | err = copy_action(a, sfa); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rem > 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) | 
|  | { | 
|  | const struct nlattr *a; | 
|  | struct nlattr *start; | 
|  | int err = 0, rem; | 
|  |  | 
|  | start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); | 
|  | if (!start) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | nla_for_each_nested(a, attr, rem) { | 
|  | int type = nla_type(a); | 
|  | struct nlattr *st_sample; | 
|  |  | 
|  | switch (type) { | 
|  | case OVS_SAMPLE_ATTR_PROBABILITY: | 
|  | if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY, | 
|  | sizeof(u32), nla_data(a))) | 
|  | return -EMSGSIZE; | 
|  | break; | 
|  | case OVS_SAMPLE_ATTR_ACTIONS: | 
|  | st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); | 
|  | if (!st_sample) | 
|  | return -EMSGSIZE; | 
|  | err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); | 
|  | if (err) | 
|  | return err; | 
|  | nla_nest_end(skb, st_sample); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | nla_nest_end(skb, start); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) | 
|  | { | 
|  | const struct nlattr *ovs_key = nla_data(a); | 
|  | int key_type = nla_type(ovs_key); | 
|  | struct nlattr *start; | 
|  | int err; | 
|  |  | 
|  | switch (key_type) { | 
|  | case OVS_KEY_ATTR_IPV4_TUNNEL: | 
|  | start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); | 
|  | if (!start) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key), | 
|  | nla_data(ovs_key)); | 
|  | if (err) | 
|  | return err; | 
|  | nla_nest_end(skb, start); | 
|  | break; | 
|  | default: | 
|  | if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) | 
|  | return -EMSGSIZE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) | 
|  | { | 
|  | const struct nlattr *a; | 
|  | int rem, err; | 
|  |  | 
|  | nla_for_each_attr(a, attr, len, rem) { | 
|  | int type = nla_type(a); | 
|  |  | 
|  | switch (type) { | 
|  | case OVS_ACTION_ATTR_SET: | 
|  | err = set_action_to_attr(a, skb); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_SAMPLE: | 
|  | err = sample_action_to_attr(a, skb); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | default: | 
|  | if (nla_put(skb, type, nla_len(a), nla_data(a))) | 
|  | return -EMSGSIZE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |