|  | /* | 
|  | * Frontswap frontend | 
|  | * | 
|  | * This code provides the generic "frontend" layer to call a matching | 
|  | * "backend" driver implementation of frontswap.  See | 
|  | * Documentation/vm/frontswap.txt for more information. | 
|  | * | 
|  | * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved. | 
|  | * Author: Dan Magenheimer | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2. | 
|  | */ | 
|  |  | 
|  | #include <linux/mman.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/frontswap.h> | 
|  | #include <linux/swapfile.h> | 
|  |  | 
|  | /* | 
|  | * frontswap_ops is set by frontswap_register_ops to contain the pointers | 
|  | * to the frontswap "backend" implementation functions. | 
|  | */ | 
|  | static struct frontswap_ops *frontswap_ops __read_mostly; | 
|  |  | 
|  | /* | 
|  | * If enabled, frontswap_store will return failure even on success.  As | 
|  | * a result, the swap subsystem will always write the page to swap, in | 
|  | * effect converting frontswap into a writethrough cache.  In this mode, | 
|  | * there is no direct reduction in swap writes, but a frontswap backend | 
|  | * can unilaterally "reclaim" any pages in use with no data loss, thus | 
|  | * providing increases control over maximum memory usage due to frontswap. | 
|  | */ | 
|  | static bool frontswap_writethrough_enabled __read_mostly; | 
|  |  | 
|  | /* | 
|  | * If enabled, the underlying tmem implementation is capable of doing | 
|  | * exclusive gets, so frontswap_load, on a successful tmem_get must | 
|  | * mark the page as no longer in frontswap AND mark it dirty. | 
|  | */ | 
|  | static bool frontswap_tmem_exclusive_gets_enabled __read_mostly; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | /* | 
|  | * Counters available via /sys/kernel/debug/frontswap (if debugfs is | 
|  | * properly configured).  These are for information only so are not protected | 
|  | * against increment races. | 
|  | */ | 
|  | static u64 frontswap_loads; | 
|  | static u64 frontswap_succ_stores; | 
|  | static u64 frontswap_failed_stores; | 
|  | static u64 frontswap_invalidates; | 
|  |  | 
|  | static inline void inc_frontswap_loads(void) { | 
|  | frontswap_loads++; | 
|  | } | 
|  | static inline void inc_frontswap_succ_stores(void) { | 
|  | frontswap_succ_stores++; | 
|  | } | 
|  | static inline void inc_frontswap_failed_stores(void) { | 
|  | frontswap_failed_stores++; | 
|  | } | 
|  | static inline void inc_frontswap_invalidates(void) { | 
|  | frontswap_invalidates++; | 
|  | } | 
|  | #else | 
|  | static inline void inc_frontswap_loads(void) { } | 
|  | static inline void inc_frontswap_succ_stores(void) { } | 
|  | static inline void inc_frontswap_failed_stores(void) { } | 
|  | static inline void inc_frontswap_invalidates(void) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Due to the asynchronous nature of the backends loading potentially | 
|  | * _after_ the swap system has been activated, we have chokepoints | 
|  | * on all frontswap functions to not call the backend until the backend | 
|  | * has registered. | 
|  | * | 
|  | * Specifically when no backend is registered (nobody called | 
|  | * frontswap_register_ops) all calls to frontswap_init (which is done via | 
|  | * swapon -> enable_swap_info -> frontswap_init) are registered and remembered | 
|  | * (via the setting of need_init bitmap) but fail to create tmem_pools. When a | 
|  | * backend registers with frontswap at some later point the previous | 
|  | * calls to frontswap_init are executed (by iterating over the need_init | 
|  | * bitmap) to create tmem_pools and set the respective poolids. All of that is | 
|  | * guarded by us using atomic bit operations on the 'need_init' bitmap. | 
|  | * | 
|  | * This would not guards us against the user deciding to call swapoff right as | 
|  | * we are calling the backend to initialize (so swapon is in action). | 
|  | * Fortunatly for us, the swapon_mutex has been taked by the callee so we are | 
|  | * OK. The other scenario where calls to frontswap_store (called via | 
|  | * swap_writepage) is racing with frontswap_invalidate_area (called via | 
|  | * swapoff) is again guarded by the swap subsystem. | 
|  | * | 
|  | * While no backend is registered all calls to frontswap_[store|load| | 
|  | * invalidate_area|invalidate_page] are ignored or fail. | 
|  | * | 
|  | * The time between the backend being registered and the swap file system | 
|  | * calling the backend (via the frontswap_* functions) is indeterminate as | 
|  | * frontswap_ops is not atomic_t (or a value guarded by a spinlock). | 
|  | * That is OK as we are comfortable missing some of these calls to the newly | 
|  | * registered backend. | 
|  | * | 
|  | * Obviously the opposite (unloading the backend) must be done after all | 
|  | * the frontswap_[store|load|invalidate_area|invalidate_page] start | 
|  | * ignorning or failing the requests - at which point frontswap_ops | 
|  | * would have to be made in some fashion atomic. | 
|  | */ | 
|  | static DECLARE_BITMAP(need_init, MAX_SWAPFILES); | 
|  |  | 
|  | /* | 
|  | * Register operations for frontswap, returning previous thus allowing | 
|  | * detection of multiple backends and possible nesting. | 
|  | */ | 
|  | struct frontswap_ops *frontswap_register_ops(struct frontswap_ops *ops) | 
|  | { | 
|  | struct frontswap_ops *old = frontswap_ops; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_SWAPFILES; i++) { | 
|  | if (test_and_clear_bit(i, need_init)) { | 
|  | struct swap_info_struct *sis = swap_info[i]; | 
|  | /* __frontswap_init _should_ have set it! */ | 
|  | if (!sis->frontswap_map) | 
|  | return ERR_PTR(-EINVAL); | 
|  | ops->init(i); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * We MUST have frontswap_ops set _after_ the frontswap_init's | 
|  | * have been called. Otherwise __frontswap_store might fail. Hence | 
|  | * the barrier to make sure compiler does not re-order us. | 
|  | */ | 
|  | barrier(); | 
|  | frontswap_ops = ops; | 
|  | return old; | 
|  | } | 
|  | EXPORT_SYMBOL(frontswap_register_ops); | 
|  |  | 
|  | /* | 
|  | * Enable/disable frontswap writethrough (see above). | 
|  | */ | 
|  | void frontswap_writethrough(bool enable) | 
|  | { | 
|  | frontswap_writethrough_enabled = enable; | 
|  | } | 
|  | EXPORT_SYMBOL(frontswap_writethrough); | 
|  |  | 
|  | /* | 
|  | * Enable/disable frontswap exclusive gets (see above). | 
|  | */ | 
|  | void frontswap_tmem_exclusive_gets(bool enable) | 
|  | { | 
|  | frontswap_tmem_exclusive_gets_enabled = enable; | 
|  | } | 
|  | EXPORT_SYMBOL(frontswap_tmem_exclusive_gets); | 
|  |  | 
|  | /* | 
|  | * Called when a swap device is swapon'd. | 
|  | */ | 
|  | void __frontswap_init(unsigned type, unsigned long *map) | 
|  | { | 
|  | struct swap_info_struct *sis = swap_info[type]; | 
|  |  | 
|  | BUG_ON(sis == NULL); | 
|  |  | 
|  | /* | 
|  | * p->frontswap is a bitmap that we MUST have to figure out which page | 
|  | * has gone in frontswap. Without it there is no point of continuing. | 
|  | */ | 
|  | if (WARN_ON(!map)) | 
|  | return; | 
|  | /* | 
|  | * Irregardless of whether the frontswap backend has been loaded | 
|  | * before this function or it will be later, we _MUST_ have the | 
|  | * p->frontswap set to something valid to work properly. | 
|  | */ | 
|  | frontswap_map_set(sis, map); | 
|  | if (frontswap_ops) | 
|  | frontswap_ops->init(type); | 
|  | else { | 
|  | BUG_ON(type > MAX_SWAPFILES); | 
|  | set_bit(type, need_init); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__frontswap_init); | 
|  |  | 
|  | bool __frontswap_test(struct swap_info_struct *sis, | 
|  | pgoff_t offset) | 
|  | { | 
|  | bool ret = false; | 
|  |  | 
|  | if (frontswap_ops && sis->frontswap_map) | 
|  | ret = test_bit(offset, sis->frontswap_map); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__frontswap_test); | 
|  |  | 
|  | static inline void __frontswap_clear(struct swap_info_struct *sis, | 
|  | pgoff_t offset) | 
|  | { | 
|  | clear_bit(offset, sis->frontswap_map); | 
|  | atomic_dec(&sis->frontswap_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * "Store" data from a page to frontswap and associate it with the page's | 
|  | * swaptype and offset.  Page must be locked and in the swap cache. | 
|  | * If frontswap already contains a page with matching swaptype and | 
|  | * offset, the frontswap implementation may either overwrite the data and | 
|  | * return success or invalidate the page from frontswap and return failure. | 
|  | */ | 
|  | int __frontswap_store(struct page *page) | 
|  | { | 
|  | int ret = -1, dup = 0; | 
|  | swp_entry_t entry = { .val = page_private(page), }; | 
|  | int type = swp_type(entry); | 
|  | struct swap_info_struct *sis = swap_info[type]; | 
|  | pgoff_t offset = swp_offset(entry); | 
|  |  | 
|  | /* | 
|  | * Return if no backend registed. | 
|  | * Don't need to inc frontswap_failed_stores here. | 
|  | */ | 
|  | if (!frontswap_ops) | 
|  | return ret; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | BUG_ON(sis == NULL); | 
|  | if (__frontswap_test(sis, offset)) | 
|  | dup = 1; | 
|  | ret = frontswap_ops->store(type, offset, page); | 
|  | if (ret == 0) { | 
|  | set_bit(offset, sis->frontswap_map); | 
|  | inc_frontswap_succ_stores(); | 
|  | if (!dup) | 
|  | atomic_inc(&sis->frontswap_pages); | 
|  | } else { | 
|  | /* | 
|  | failed dup always results in automatic invalidate of | 
|  | the (older) page from frontswap | 
|  | */ | 
|  | inc_frontswap_failed_stores(); | 
|  | if (dup) | 
|  | __frontswap_clear(sis, offset); | 
|  | } | 
|  | if (frontswap_writethrough_enabled) | 
|  | /* report failure so swap also writes to swap device */ | 
|  | ret = -1; | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__frontswap_store); | 
|  |  | 
|  | /* | 
|  | * "Get" data from frontswap associated with swaptype and offset that were | 
|  | * specified when the data was put to frontswap and use it to fill the | 
|  | * specified page with data. Page must be locked and in the swap cache. | 
|  | */ | 
|  | int __frontswap_load(struct page *page) | 
|  | { | 
|  | int ret = -1; | 
|  | swp_entry_t entry = { .val = page_private(page), }; | 
|  | int type = swp_type(entry); | 
|  | struct swap_info_struct *sis = swap_info[type]; | 
|  | pgoff_t offset = swp_offset(entry); | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | BUG_ON(sis == NULL); | 
|  | /* | 
|  | * __frontswap_test() will check whether there is backend registered | 
|  | */ | 
|  | if (__frontswap_test(sis, offset)) | 
|  | ret = frontswap_ops->load(type, offset, page); | 
|  | if (ret == 0) { | 
|  | inc_frontswap_loads(); | 
|  | if (frontswap_tmem_exclusive_gets_enabled) { | 
|  | SetPageDirty(page); | 
|  | __frontswap_clear(sis, offset); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__frontswap_load); | 
|  |  | 
|  | /* | 
|  | * Invalidate any data from frontswap associated with the specified swaptype | 
|  | * and offset so that a subsequent "get" will fail. | 
|  | */ | 
|  | void __frontswap_invalidate_page(unsigned type, pgoff_t offset) | 
|  | { | 
|  | struct swap_info_struct *sis = swap_info[type]; | 
|  |  | 
|  | BUG_ON(sis == NULL); | 
|  | /* | 
|  | * __frontswap_test() will check whether there is backend registered | 
|  | */ | 
|  | if (__frontswap_test(sis, offset)) { | 
|  | frontswap_ops->invalidate_page(type, offset); | 
|  | __frontswap_clear(sis, offset); | 
|  | inc_frontswap_invalidates(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__frontswap_invalidate_page); | 
|  |  | 
|  | /* | 
|  | * Invalidate all data from frontswap associated with all offsets for the | 
|  | * specified swaptype. | 
|  | */ | 
|  | void __frontswap_invalidate_area(unsigned type) | 
|  | { | 
|  | struct swap_info_struct *sis = swap_info[type]; | 
|  |  | 
|  | if (frontswap_ops) { | 
|  | BUG_ON(sis == NULL); | 
|  | if (sis->frontswap_map == NULL) | 
|  | return; | 
|  | frontswap_ops->invalidate_area(type); | 
|  | atomic_set(&sis->frontswap_pages, 0); | 
|  | bitmap_zero(sis->frontswap_map, sis->max); | 
|  | } | 
|  | clear_bit(type, need_init); | 
|  | } | 
|  | EXPORT_SYMBOL(__frontswap_invalidate_area); | 
|  |  | 
|  | static unsigned long __frontswap_curr_pages(void) | 
|  | { | 
|  | int type; | 
|  | unsigned long totalpages = 0; | 
|  | struct swap_info_struct *si = NULL; | 
|  |  | 
|  | assert_spin_locked(&swap_lock); | 
|  | for (type = swap_list.head; type >= 0; type = si->next) { | 
|  | si = swap_info[type]; | 
|  | totalpages += atomic_read(&si->frontswap_pages); | 
|  | } | 
|  | return totalpages; | 
|  | } | 
|  |  | 
|  | static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused, | 
|  | int *swapid) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | struct swap_info_struct *si = NULL; | 
|  | int si_frontswap_pages; | 
|  | unsigned long total_pages_to_unuse = total; | 
|  | unsigned long pages = 0, pages_to_unuse = 0; | 
|  | int type; | 
|  |  | 
|  | assert_spin_locked(&swap_lock); | 
|  | for (type = swap_list.head; type >= 0; type = si->next) { | 
|  | si = swap_info[type]; | 
|  | si_frontswap_pages = atomic_read(&si->frontswap_pages); | 
|  | if (total_pages_to_unuse < si_frontswap_pages) { | 
|  | pages = pages_to_unuse = total_pages_to_unuse; | 
|  | } else { | 
|  | pages = si_frontswap_pages; | 
|  | pages_to_unuse = 0; /* unuse all */ | 
|  | } | 
|  | /* ensure there is enough RAM to fetch pages from frontswap */ | 
|  | if (security_vm_enough_memory_mm(current->mm, pages)) { | 
|  | ret = -ENOMEM; | 
|  | continue; | 
|  | } | 
|  | vm_unacct_memory(pages); | 
|  | *unused = pages_to_unuse; | 
|  | *swapid = type; | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to check if it's necessory and feasible to unuse pages. | 
|  | * Return 1 when nothing to do, 0 when need to shink pages, | 
|  | * error code when there is an error. | 
|  | */ | 
|  | static int __frontswap_shrink(unsigned long target_pages, | 
|  | unsigned long *pages_to_unuse, | 
|  | int *type) | 
|  | { | 
|  | unsigned long total_pages = 0, total_pages_to_unuse; | 
|  |  | 
|  | assert_spin_locked(&swap_lock); | 
|  |  | 
|  | total_pages = __frontswap_curr_pages(); | 
|  | if (total_pages <= target_pages) { | 
|  | /* Nothing to do */ | 
|  | *pages_to_unuse = 0; | 
|  | return 1; | 
|  | } | 
|  | total_pages_to_unuse = total_pages - target_pages; | 
|  | return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Frontswap, like a true swap device, may unnecessarily retain pages | 
|  | * under certain circumstances; "shrink" frontswap is essentially a | 
|  | * "partial swapoff" and works by calling try_to_unuse to attempt to | 
|  | * unuse enough frontswap pages to attempt to -- subject to memory | 
|  | * constraints -- reduce the number of pages in frontswap to the | 
|  | * number given in the parameter target_pages. | 
|  | */ | 
|  | void frontswap_shrink(unsigned long target_pages) | 
|  | { | 
|  | unsigned long pages_to_unuse = 0; | 
|  | int uninitialized_var(type), ret; | 
|  |  | 
|  | /* | 
|  | * we don't want to hold swap_lock while doing a very | 
|  | * lengthy try_to_unuse, but swap_list may change | 
|  | * so restart scan from swap_list.head each time | 
|  | */ | 
|  | spin_lock(&swap_lock); | 
|  | ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type); | 
|  | spin_unlock(&swap_lock); | 
|  | if (ret == 0) | 
|  | try_to_unuse(type, true, pages_to_unuse); | 
|  | return; | 
|  | } | 
|  | EXPORT_SYMBOL(frontswap_shrink); | 
|  |  | 
|  | /* | 
|  | * Count and return the number of frontswap pages across all | 
|  | * swap devices.  This is exported so that backend drivers can | 
|  | * determine current usage without reading debugfs. | 
|  | */ | 
|  | unsigned long frontswap_curr_pages(void) | 
|  | { | 
|  | unsigned long totalpages = 0; | 
|  |  | 
|  | spin_lock(&swap_lock); | 
|  | totalpages = __frontswap_curr_pages(); | 
|  | spin_unlock(&swap_lock); | 
|  |  | 
|  | return totalpages; | 
|  | } | 
|  | EXPORT_SYMBOL(frontswap_curr_pages); | 
|  |  | 
|  | static int __init init_frontswap(void) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | struct dentry *root = debugfs_create_dir("frontswap", NULL); | 
|  | if (root == NULL) | 
|  | return -ENXIO; | 
|  | debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads); | 
|  | debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores); | 
|  | debugfs_create_u64("failed_stores", S_IRUGO, root, | 
|  | &frontswap_failed_stores); | 
|  | debugfs_create_u64("invalidates", S_IRUGO, | 
|  | root, &frontswap_invalidates); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(init_frontswap); |