| /* | 
 |  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams | 
 |  * with Common Isochronous Packet (IEC 61883-1) headers | 
 |  * | 
 |  * Copyright (c) Clemens Ladisch <clemens@ladisch.de> | 
 |  * Licensed under the terms of the GNU General Public License, version 2. | 
 |  */ | 
 |  | 
 | #include <linux/device.h> | 
 | #include <linux/err.h> | 
 | #include <linux/firewire.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched.h> | 
 | #include <sound/pcm.h> | 
 | #include <sound/pcm_params.h> | 
 | #include <sound/rawmidi.h> | 
 | #include "amdtp.h" | 
 |  | 
 | #define TICKS_PER_CYCLE		3072 | 
 | #define CYCLES_PER_SECOND	8000 | 
 | #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND) | 
 |  | 
 | /* | 
 |  * Nominally 3125 bytes/second, but the MIDI port's clock might be | 
 |  * 1% too slow, and the bus clock 100 ppm too fast. | 
 |  */ | 
 | #define MIDI_BYTES_PER_SECOND	3093 | 
 |  | 
 | /* | 
 |  * Several devices look only at the first eight data blocks. | 
 |  * In any case, this is more than enough for the MIDI data rate. | 
 |  */ | 
 | #define MAX_MIDI_RX_BLOCKS	8 | 
 |  | 
 | #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */ | 
 |  | 
 | /* isochronous header parameters */ | 
 | #define ISO_DATA_LENGTH_SHIFT	16 | 
 | #define TAG_CIP			1 | 
 |  | 
 | /* common isochronous packet header parameters */ | 
 | #define CIP_EOH_SHIFT		31 | 
 | #define CIP_EOH			(1u << CIP_EOH_SHIFT) | 
 | #define CIP_EOH_MASK		0x80000000 | 
 | #define CIP_SID_SHIFT		24 | 
 | #define CIP_SID_MASK		0x3f000000 | 
 | #define CIP_DBS_MASK		0x00ff0000 | 
 | #define CIP_DBS_SHIFT		16 | 
 | #define CIP_DBC_MASK		0x000000ff | 
 | #define CIP_FMT_SHIFT		24 | 
 | #define CIP_FMT_MASK		0x3f000000 | 
 | #define CIP_FDF_MASK		0x00ff0000 | 
 | #define CIP_FDF_SHIFT		16 | 
 | #define CIP_SYT_MASK		0x0000ffff | 
 | #define CIP_SYT_NO_INFO		0xffff | 
 |  | 
 | /* | 
 |  * Audio and Music transfer protocol specific parameters | 
 |  * only "Clock-based rate control mode" is supported | 
 |  */ | 
 | #define CIP_FMT_AM		(0x10 << CIP_FMT_SHIFT) | 
 | #define AMDTP_FDF_AM824		(0 << (CIP_FDF_SHIFT + 3)) | 
 | #define AMDTP_FDF_NO_DATA	0xff | 
 |  | 
 | /* TODO: make these configurable */ | 
 | #define INTERRUPT_INTERVAL	16 | 
 | #define QUEUE_LENGTH		48 | 
 |  | 
 | #define IN_PACKET_HEADER_SIZE	4 | 
 | #define OUT_PACKET_HEADER_SIZE	0 | 
 |  | 
 | static void pcm_period_tasklet(unsigned long data); | 
 |  | 
 | /** | 
 |  * amdtp_stream_init - initialize an AMDTP stream structure | 
 |  * @s: the AMDTP stream to initialize | 
 |  * @unit: the target of the stream | 
 |  * @dir: the direction of stream | 
 |  * @flags: the packet transmission method to use | 
 |  */ | 
 | int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, | 
 | 		      enum amdtp_stream_direction dir, enum cip_flags flags) | 
 | { | 
 | 	s->unit = unit; | 
 | 	s->direction = dir; | 
 | 	s->flags = flags; | 
 | 	s->context = ERR_PTR(-1); | 
 | 	mutex_init(&s->mutex); | 
 | 	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s); | 
 | 	s->packet_index = 0; | 
 |  | 
 | 	init_waitqueue_head(&s->callback_wait); | 
 | 	s->callbacked = false; | 
 | 	s->sync_slave = NULL; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_init); | 
 |  | 
 | /** | 
 |  * amdtp_stream_destroy - free stream resources | 
 |  * @s: the AMDTP stream to destroy | 
 |  */ | 
 | void amdtp_stream_destroy(struct amdtp_stream *s) | 
 | { | 
 | 	WARN_ON(amdtp_stream_running(s)); | 
 | 	mutex_destroy(&s->mutex); | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_destroy); | 
 |  | 
 | const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { | 
 | 	[CIP_SFC_32000]  =  8, | 
 | 	[CIP_SFC_44100]  =  8, | 
 | 	[CIP_SFC_48000]  =  8, | 
 | 	[CIP_SFC_88200]  = 16, | 
 | 	[CIP_SFC_96000]  = 16, | 
 | 	[CIP_SFC_176400] = 32, | 
 | 	[CIP_SFC_192000] = 32, | 
 | }; | 
 | EXPORT_SYMBOL(amdtp_syt_intervals); | 
 |  | 
 | const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { | 
 | 	[CIP_SFC_32000]  =  32000, | 
 | 	[CIP_SFC_44100]  =  44100, | 
 | 	[CIP_SFC_48000]  =  48000, | 
 | 	[CIP_SFC_88200]  =  88200, | 
 | 	[CIP_SFC_96000]  =  96000, | 
 | 	[CIP_SFC_176400] = 176400, | 
 | 	[CIP_SFC_192000] = 192000, | 
 | }; | 
 | EXPORT_SYMBOL(amdtp_rate_table); | 
 |  | 
 | /** | 
 |  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream | 
 |  * @s:		the AMDTP stream, which must be initialized. | 
 |  * @runtime:	the PCM substream runtime | 
 |  */ | 
 | int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, | 
 | 					struct snd_pcm_runtime *runtime) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* AM824 in IEC 61883-6 can deliver 24bit data */ | 
 | 	err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); | 
 | 	if (err < 0) | 
 | 		goto end; | 
 |  | 
 | 	/* | 
 | 	 * Currently firewire-lib processes 16 packets in one software | 
 | 	 * interrupt callback. This equals to 2msec but actually the | 
 | 	 * interval of the interrupts has a jitter. | 
 | 	 * Additionally, even if adding a constraint to fit period size to | 
 | 	 * 2msec, actual calculated frames per period doesn't equal to 2msec, | 
 | 	 * depending on sampling rate. | 
 | 	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec. | 
 | 	 * Here let us use 5msec for safe period interrupt. | 
 | 	 */ | 
 | 	err = snd_pcm_hw_constraint_minmax(runtime, | 
 | 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME, | 
 | 					   5000, UINT_MAX); | 
 | 	if (err < 0) | 
 | 		goto end; | 
 |  | 
 | 	/* Non-Blocking stream has no more constraints */ | 
 | 	if (!(s->flags & CIP_BLOCKING)) | 
 | 		goto end; | 
 |  | 
 | 	/* | 
 | 	 * One AMDTP packet can include some frames. In blocking mode, the | 
 | 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, | 
 | 	 * depending on its sampling rate. For accurate period interrupt, it's | 
 | 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL. | 
 | 	 * | 
 | 	 * TODO: These constraints can be improved with proper rules. | 
 | 	 * Currently apply LCM of SYT_INTERVALs. | 
 | 	 */ | 
 | 	err = snd_pcm_hw_constraint_step(runtime, 0, | 
 | 					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32); | 
 | 	if (err < 0) | 
 | 		goto end; | 
 | 	err = snd_pcm_hw_constraint_step(runtime, 0, | 
 | 					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32); | 
 | end: | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); | 
 |  | 
 | /** | 
 |  * amdtp_stream_set_parameters - set stream parameters | 
 |  * @s: the AMDTP stream to configure | 
 |  * @rate: the sample rate | 
 |  * @pcm_channels: the number of PCM samples in each data block, to be encoded | 
 |  *                as AM824 multi-bit linear audio | 
 |  * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels) | 
 |  * | 
 |  * The parameters must be set before the stream is started, and must not be | 
 |  * changed while the stream is running. | 
 |  */ | 
 | void amdtp_stream_set_parameters(struct amdtp_stream *s, | 
 | 				 unsigned int rate, | 
 | 				 unsigned int pcm_channels, | 
 | 				 unsigned int midi_ports) | 
 | { | 
 | 	unsigned int i, sfc, midi_channels; | 
 |  | 
 | 	midi_channels = DIV_ROUND_UP(midi_ports, 8); | 
 |  | 
 | 	if (WARN_ON(amdtp_stream_running(s)) | | 
 | 	    WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) | | 
 | 	    WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI)) | 
 | 		return; | 
 |  | 
 | 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) | 
 | 		if (amdtp_rate_table[sfc] == rate) | 
 | 			goto sfc_found; | 
 | 	WARN_ON(1); | 
 | 	return; | 
 |  | 
 | sfc_found: | 
 | 	s->pcm_channels = pcm_channels; | 
 | 	s->sfc = sfc; | 
 | 	s->data_block_quadlets = s->pcm_channels + midi_channels; | 
 | 	s->midi_ports = midi_ports; | 
 |  | 
 | 	s->syt_interval = amdtp_syt_intervals[sfc]; | 
 |  | 
 | 	/* default buffering in the device */ | 
 | 	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; | 
 | 	if (s->flags & CIP_BLOCKING) | 
 | 		/* additional buffering needed to adjust for no-data packets */ | 
 | 		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; | 
 |  | 
 | 	/* init the position map for PCM and MIDI channels */ | 
 | 	for (i = 0; i < pcm_channels; i++) | 
 | 		s->pcm_positions[i] = i; | 
 | 	s->midi_position = s->pcm_channels; | 
 |  | 
 | 	/* | 
 | 	 * We do not know the actual MIDI FIFO size of most devices.  Just | 
 | 	 * assume two bytes, i.e., one byte can be received over the bus while | 
 | 	 * the previous one is transmitted over MIDI. | 
 | 	 * (The value here is adjusted for midi_ratelimit_per_packet().) | 
 | 	 */ | 
 | 	s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_set_parameters); | 
 |  | 
 | /** | 
 |  * amdtp_stream_get_max_payload - get the stream's packet size | 
 |  * @s: the AMDTP stream | 
 |  * | 
 |  * This function must not be called before the stream has been configured | 
 |  * with amdtp_stream_set_parameters(). | 
 |  */ | 
 | unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) | 
 | { | 
 | 	unsigned int multiplier = 1; | 
 |  | 
 | 	if (s->flags & CIP_JUMBO_PAYLOAD) | 
 | 		multiplier = 5; | 
 |  | 
 | 	return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_get_max_payload); | 
 |  | 
 | static void write_pcm_s16(struct amdtp_stream *s, | 
 | 			  struct snd_pcm_substream *pcm, | 
 | 			  __be32 *buffer, unsigned int frames); | 
 | static void write_pcm_s32(struct amdtp_stream *s, | 
 | 			  struct snd_pcm_substream *pcm, | 
 | 			  __be32 *buffer, unsigned int frames); | 
 | static void read_pcm_s32(struct amdtp_stream *s, | 
 | 			 struct snd_pcm_substream *pcm, | 
 | 			 __be32 *buffer, unsigned int frames); | 
 |  | 
 | /** | 
 |  * amdtp_stream_set_pcm_format - set the PCM format | 
 |  * @s: the AMDTP stream to configure | 
 |  * @format: the format of the ALSA PCM device | 
 |  * | 
 |  * The sample format must be set after the other parameters (rate/PCM channels/ | 
 |  * MIDI) and before the stream is started, and must not be changed while the | 
 |  * stream is running. | 
 |  */ | 
 | void amdtp_stream_set_pcm_format(struct amdtp_stream *s, | 
 | 				 snd_pcm_format_t format) | 
 | { | 
 | 	if (WARN_ON(amdtp_stream_pcm_running(s))) | 
 | 		return; | 
 |  | 
 | 	switch (format) { | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 		/* fall through */ | 
 | 	case SNDRV_PCM_FORMAT_S16: | 
 | 		if (s->direction == AMDTP_OUT_STREAM) { | 
 | 			s->transfer_samples = write_pcm_s16; | 
 | 			break; | 
 | 		} | 
 | 		WARN_ON(1); | 
 | 		/* fall through */ | 
 | 	case SNDRV_PCM_FORMAT_S32: | 
 | 		if (s->direction == AMDTP_OUT_STREAM) | 
 | 			s->transfer_samples = write_pcm_s32; | 
 | 		else | 
 | 			s->transfer_samples = read_pcm_s32; | 
 | 		break; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_set_pcm_format); | 
 |  | 
 | /** | 
 |  * amdtp_stream_pcm_prepare - prepare PCM device for running | 
 |  * @s: the AMDTP stream | 
 |  * | 
 |  * This function should be called from the PCM device's .prepare callback. | 
 |  */ | 
 | void amdtp_stream_pcm_prepare(struct amdtp_stream *s) | 
 | { | 
 | 	tasklet_kill(&s->period_tasklet); | 
 | 	s->pcm_buffer_pointer = 0; | 
 | 	s->pcm_period_pointer = 0; | 
 | 	s->pointer_flush = true; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_pcm_prepare); | 
 |  | 
 | static unsigned int calculate_data_blocks(struct amdtp_stream *s, | 
 | 					  unsigned int syt) | 
 | { | 
 | 	unsigned int phase, data_blocks; | 
 |  | 
 | 	/* Blocking mode. */ | 
 | 	if (s->flags & CIP_BLOCKING) { | 
 | 		/* This module generate empty packet for 'no data'. */ | 
 | 		if (syt == CIP_SYT_NO_INFO) | 
 | 			data_blocks = 0; | 
 | 		else | 
 | 			data_blocks = s->syt_interval; | 
 | 	/* Non-blocking mode. */ | 
 | 	} else { | 
 | 		if (!cip_sfc_is_base_44100(s->sfc)) { | 
 | 			/* Sample_rate / 8000 is an integer, and precomputed. */ | 
 | 			data_blocks = s->data_block_state; | 
 | 		} else { | 
 | 			phase = s->data_block_state; | 
 |  | 
 | 		/* | 
 | 		 * This calculates the number of data blocks per packet so that | 
 | 		 * 1) the overall rate is correct and exactly synchronized to | 
 | 		 *    the bus clock, and | 
 | 		 * 2) packets with a rounded-up number of blocks occur as early | 
 | 		 *    as possible in the sequence (to prevent underruns of the | 
 | 		 *    device's buffer). | 
 | 		 */ | 
 | 			if (s->sfc == CIP_SFC_44100) | 
 | 				/* 6 6 5 6 5 6 5 ... */ | 
 | 				data_blocks = 5 + ((phase & 1) ^ | 
 | 						   (phase == 0 || phase >= 40)); | 
 | 			else | 
 | 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ | 
 | 				data_blocks = 11 * (s->sfc >> 1) + (phase == 0); | 
 | 			if (++phase >= (80 >> (s->sfc >> 1))) | 
 | 				phase = 0; | 
 | 			s->data_block_state = phase; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return data_blocks; | 
 | } | 
 |  | 
 | static unsigned int calculate_syt(struct amdtp_stream *s, | 
 | 				  unsigned int cycle) | 
 | { | 
 | 	unsigned int syt_offset, phase, index, syt; | 
 |  | 
 | 	if (s->last_syt_offset < TICKS_PER_CYCLE) { | 
 | 		if (!cip_sfc_is_base_44100(s->sfc)) | 
 | 			syt_offset = s->last_syt_offset + s->syt_offset_state; | 
 | 		else { | 
 | 		/* | 
 | 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is: | 
 | 		 *   n * SYT_INTERVAL * 24576000 / sample_rate | 
 | 		 * Modulo TICKS_PER_CYCLE, the difference between successive | 
 | 		 * elements is about 1386.23.  Rounding the results of this | 
 | 		 * formula to the SYT precision results in a sequence of | 
 | 		 * differences that begins with: | 
 | 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... | 
 | 		 * This code generates _exactly_ the same sequence. | 
 | 		 */ | 
 | 			phase = s->syt_offset_state; | 
 | 			index = phase % 13; | 
 | 			syt_offset = s->last_syt_offset; | 
 | 			syt_offset += 1386 + ((index && !(index & 3)) || | 
 | 					      phase == 146); | 
 | 			if (++phase >= 147) | 
 | 				phase = 0; | 
 | 			s->syt_offset_state = phase; | 
 | 		} | 
 | 	} else | 
 | 		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE; | 
 | 	s->last_syt_offset = syt_offset; | 
 |  | 
 | 	if (syt_offset < TICKS_PER_CYCLE) { | 
 | 		syt_offset += s->transfer_delay; | 
 | 		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12; | 
 | 		syt += syt_offset % TICKS_PER_CYCLE; | 
 |  | 
 | 		return syt & CIP_SYT_MASK; | 
 | 	} else { | 
 | 		return CIP_SYT_NO_INFO; | 
 | 	} | 
 | } | 
 |  | 
 | static void write_pcm_s32(struct amdtp_stream *s, | 
 | 			  struct snd_pcm_substream *pcm, | 
 | 			  __be32 *buffer, unsigned int frames) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = pcm->runtime; | 
 | 	unsigned int channels, remaining_frames, i, c; | 
 | 	const u32 *src; | 
 |  | 
 | 	channels = s->pcm_channels; | 
 | 	src = (void *)runtime->dma_area + | 
 | 			frames_to_bytes(runtime, s->pcm_buffer_pointer); | 
 | 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; | 
 |  | 
 | 	for (i = 0; i < frames; ++i) { | 
 | 		for (c = 0; c < channels; ++c) { | 
 | 			buffer[s->pcm_positions[c]] = | 
 | 					cpu_to_be32((*src >> 8) | 0x40000000); | 
 | 			src++; | 
 | 		} | 
 | 		buffer += s->data_block_quadlets; | 
 | 		if (--remaining_frames == 0) | 
 | 			src = (void *)runtime->dma_area; | 
 | 	} | 
 | } | 
 |  | 
 | static void write_pcm_s16(struct amdtp_stream *s, | 
 | 			  struct snd_pcm_substream *pcm, | 
 | 			  __be32 *buffer, unsigned int frames) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = pcm->runtime; | 
 | 	unsigned int channels, remaining_frames, i, c; | 
 | 	const u16 *src; | 
 |  | 
 | 	channels = s->pcm_channels; | 
 | 	src = (void *)runtime->dma_area + | 
 | 			frames_to_bytes(runtime, s->pcm_buffer_pointer); | 
 | 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; | 
 |  | 
 | 	for (i = 0; i < frames; ++i) { | 
 | 		for (c = 0; c < channels; ++c) { | 
 | 			buffer[s->pcm_positions[c]] = | 
 | 					cpu_to_be32((*src << 8) | 0x42000000); | 
 | 			src++; | 
 | 		} | 
 | 		buffer += s->data_block_quadlets; | 
 | 		if (--remaining_frames == 0) | 
 | 			src = (void *)runtime->dma_area; | 
 | 	} | 
 | } | 
 |  | 
 | static void read_pcm_s32(struct amdtp_stream *s, | 
 | 			 struct snd_pcm_substream *pcm, | 
 | 			 __be32 *buffer, unsigned int frames) | 
 | { | 
 | 	struct snd_pcm_runtime *runtime = pcm->runtime; | 
 | 	unsigned int channels, remaining_frames, i, c; | 
 | 	u32 *dst; | 
 |  | 
 | 	channels = s->pcm_channels; | 
 | 	dst  = (void *)runtime->dma_area + | 
 | 			frames_to_bytes(runtime, s->pcm_buffer_pointer); | 
 | 	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; | 
 |  | 
 | 	for (i = 0; i < frames; ++i) { | 
 | 		for (c = 0; c < channels; ++c) { | 
 | 			*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8; | 
 | 			dst++; | 
 | 		} | 
 | 		buffer += s->data_block_quadlets; | 
 | 		if (--remaining_frames == 0) | 
 | 			dst = (void *)runtime->dma_area; | 
 | 	} | 
 | } | 
 |  | 
 | static void write_pcm_silence(struct amdtp_stream *s, | 
 | 			      __be32 *buffer, unsigned int frames) | 
 | { | 
 | 	unsigned int i, c; | 
 |  | 
 | 	for (i = 0; i < frames; ++i) { | 
 | 		for (c = 0; c < s->pcm_channels; ++c) | 
 | 			buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000); | 
 | 		buffer += s->data_block_quadlets; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * To avoid sending MIDI bytes at too high a rate, assume that the receiving | 
 |  * device has a FIFO, and track how much it is filled.  This values increases | 
 |  * by one whenever we send one byte in a packet, but the FIFO empties at | 
 |  * a constant rate independent of our packet rate.  One packet has syt_interval | 
 |  * samples, so the number of bytes that empty out of the FIFO, per packet(!), | 
 |  * is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate.  To avoid storing | 
 |  * fractional values, the values in midi_fifo_used[] are measured in bytes | 
 |  * multiplied by the sample rate. | 
 |  */ | 
 | static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port) | 
 | { | 
 | 	int used; | 
 |  | 
 | 	used = s->midi_fifo_used[port]; | 
 | 	if (used == 0) /* common shortcut */ | 
 | 		return true; | 
 |  | 
 | 	used -= MIDI_BYTES_PER_SECOND * s->syt_interval; | 
 | 	used = max(used, 0); | 
 | 	s->midi_fifo_used[port] = used; | 
 |  | 
 | 	return used < s->midi_fifo_limit; | 
 | } | 
 |  | 
 | static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port) | 
 | { | 
 | 	s->midi_fifo_used[port] += amdtp_rate_table[s->sfc]; | 
 | } | 
 |  | 
 | static void write_midi_messages(struct amdtp_stream *s, | 
 | 				__be32 *buffer, unsigned int frames) | 
 | { | 
 | 	unsigned int f, port; | 
 | 	u8 *b; | 
 |  | 
 | 	for (f = 0; f < frames; f++) { | 
 | 		b = (u8 *)&buffer[s->midi_position]; | 
 |  | 
 | 		port = (s->data_block_counter + f) % 8; | 
 | 		if (f < MAX_MIDI_RX_BLOCKS && | 
 | 		    midi_ratelimit_per_packet(s, port) && | 
 | 		    s->midi[port] != NULL && | 
 | 		    snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) { | 
 | 			midi_rate_use_one_byte(s, port); | 
 | 			b[0] = 0x81; | 
 | 		} else { | 
 | 			b[0] = 0x80; | 
 | 			b[1] = 0; | 
 | 		} | 
 | 		b[2] = 0; | 
 | 		b[3] = 0; | 
 |  | 
 | 		buffer += s->data_block_quadlets; | 
 | 	} | 
 | } | 
 |  | 
 | static void read_midi_messages(struct amdtp_stream *s, | 
 | 			       __be32 *buffer, unsigned int frames) | 
 | { | 
 | 	unsigned int f, port; | 
 | 	int len; | 
 | 	u8 *b; | 
 |  | 
 | 	for (f = 0; f < frames; f++) { | 
 | 		port = (s->data_block_counter + f) % 8; | 
 | 		b = (u8 *)&buffer[s->midi_position]; | 
 |  | 
 | 		len = b[0] - 0x80; | 
 | 		if ((1 <= len) &&  (len <= 3) && (s->midi[port])) | 
 | 			snd_rawmidi_receive(s->midi[port], b + 1, len); | 
 |  | 
 | 		buffer += s->data_block_quadlets; | 
 | 	} | 
 | } | 
 |  | 
 | static void update_pcm_pointers(struct amdtp_stream *s, | 
 | 				struct snd_pcm_substream *pcm, | 
 | 				unsigned int frames) | 
 | { | 
 | 	unsigned int ptr; | 
 |  | 
 | 	/* | 
 | 	 * In IEC 61883-6, one data block represents one event. In ALSA, one | 
 | 	 * event equals to one PCM frame. But Dice has a quirk to transfer | 
 | 	 * two PCM frames in one data block. | 
 | 	 */ | 
 | 	if (s->double_pcm_frames) | 
 | 		frames *= 2; | 
 |  | 
 | 	ptr = s->pcm_buffer_pointer + frames; | 
 | 	if (ptr >= pcm->runtime->buffer_size) | 
 | 		ptr -= pcm->runtime->buffer_size; | 
 | 	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr; | 
 |  | 
 | 	s->pcm_period_pointer += frames; | 
 | 	if (s->pcm_period_pointer >= pcm->runtime->period_size) { | 
 | 		s->pcm_period_pointer -= pcm->runtime->period_size; | 
 | 		s->pointer_flush = false; | 
 | 		tasklet_hi_schedule(&s->period_tasklet); | 
 | 	} | 
 | } | 
 |  | 
 | static void pcm_period_tasklet(unsigned long data) | 
 | { | 
 | 	struct amdtp_stream *s = (void *)data; | 
 | 	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm); | 
 |  | 
 | 	if (pcm) | 
 | 		snd_pcm_period_elapsed(pcm); | 
 | } | 
 |  | 
 | static int queue_packet(struct amdtp_stream *s, | 
 | 			unsigned int header_length, | 
 | 			unsigned int payload_length, bool skip) | 
 | { | 
 | 	struct fw_iso_packet p = {0}; | 
 | 	int err = 0; | 
 |  | 
 | 	if (IS_ERR(s->context)) | 
 | 		goto end; | 
 |  | 
 | 	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL); | 
 | 	p.tag = TAG_CIP; | 
 | 	p.header_length = header_length; | 
 | 	p.payload_length = (!skip) ? payload_length : 0; | 
 | 	p.skip = skip; | 
 | 	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer, | 
 | 				   s->buffer.packets[s->packet_index].offset); | 
 | 	if (err < 0) { | 
 | 		dev_err(&s->unit->device, "queueing error: %d\n", err); | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	if (++s->packet_index >= QUEUE_LENGTH) | 
 | 		s->packet_index = 0; | 
 | end: | 
 | 	return err; | 
 | } | 
 |  | 
 | static inline int queue_out_packet(struct amdtp_stream *s, | 
 | 				   unsigned int payload_length, bool skip) | 
 | { | 
 | 	return queue_packet(s, OUT_PACKET_HEADER_SIZE, | 
 | 			    payload_length, skip); | 
 | } | 
 |  | 
 | static inline int queue_in_packet(struct amdtp_stream *s) | 
 | { | 
 | 	return queue_packet(s, IN_PACKET_HEADER_SIZE, | 
 | 			    amdtp_stream_get_max_payload(s), false); | 
 | } | 
 |  | 
 | static int handle_out_packet(struct amdtp_stream *s, unsigned int data_blocks, | 
 | 			     unsigned int syt) | 
 | { | 
 | 	__be32 *buffer; | 
 | 	unsigned int payload_length; | 
 | 	struct snd_pcm_substream *pcm; | 
 |  | 
 | 	buffer = s->buffer.packets[s->packet_index].buffer; | 
 | 	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) | | 
 | 				(s->data_block_quadlets << CIP_DBS_SHIFT) | | 
 | 				s->data_block_counter); | 
 | 	buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 | | 
 | 				(s->sfc << CIP_FDF_SHIFT) | syt); | 
 | 	buffer += 2; | 
 |  | 
 | 	pcm = ACCESS_ONCE(s->pcm); | 
 | 	if (pcm) | 
 | 		s->transfer_samples(s, pcm, buffer, data_blocks); | 
 | 	else | 
 | 		write_pcm_silence(s, buffer, data_blocks); | 
 | 	if (s->midi_ports) | 
 | 		write_midi_messages(s, buffer, data_blocks); | 
 |  | 
 | 	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff; | 
 |  | 
 | 	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets; | 
 | 	if (queue_out_packet(s, payload_length, false) < 0) | 
 | 		return -EIO; | 
 |  | 
 | 	if (pcm) | 
 | 		update_pcm_pointers(s, pcm, data_blocks); | 
 |  | 
 | 	/* No need to return the number of handled data blocks. */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_in_packet(struct amdtp_stream *s, | 
 | 			    unsigned int payload_quadlets, __be32 *buffer, | 
 | 			    unsigned int *data_blocks) | 
 | { | 
 | 	u32 cip_header[2]; | 
 | 	unsigned int data_block_quadlets, data_block_counter, dbc_interval; | 
 | 	struct snd_pcm_substream *pcm = NULL; | 
 | 	bool lost; | 
 |  | 
 | 	cip_header[0] = be32_to_cpu(buffer[0]); | 
 | 	cip_header[1] = be32_to_cpu(buffer[1]); | 
 |  | 
 | 	/* | 
 | 	 * This module supports 'Two-quadlet CIP header with SYT field'. | 
 | 	 * For convenience, also check FMT field is AM824 or not. | 
 | 	 */ | 
 | 	if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || | 
 | 	    ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) || | 
 | 	    ((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) { | 
 | 		dev_info_ratelimited(&s->unit->device, | 
 | 				"Invalid CIP header for AMDTP: %08X:%08X\n", | 
 | 				cip_header[0], cip_header[1]); | 
 | 		*data_blocks = 0; | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	/* Calculate data blocks */ | 
 | 	if (payload_quadlets < 3 || | 
 | 	    ((cip_header[1] & CIP_FDF_MASK) == | 
 | 				(AMDTP_FDF_NO_DATA << CIP_FDF_SHIFT))) { | 
 | 		*data_blocks = 0; | 
 | 	} else { | 
 | 		data_block_quadlets = | 
 | 			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; | 
 | 		/* avoid division by zero */ | 
 | 		if (data_block_quadlets == 0) { | 
 | 			dev_err(&s->unit->device, | 
 | 				"Detect invalid value in dbs field: %08X\n", | 
 | 				cip_header[0]); | 
 | 			return -EPROTO; | 
 | 		} | 
 | 		if (s->flags & CIP_WRONG_DBS) | 
 | 			data_block_quadlets = s->data_block_quadlets; | 
 |  | 
 | 		*data_blocks = (payload_quadlets - 2) / data_block_quadlets; | 
 | 	} | 
 |  | 
 | 	/* Check data block counter continuity */ | 
 | 	data_block_counter = cip_header[0] & CIP_DBC_MASK; | 
 | 	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && | 
 | 	    s->data_block_counter != UINT_MAX) | 
 | 		data_block_counter = s->data_block_counter; | 
 |  | 
 | 	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && | 
 | 	     data_block_counter == s->tx_first_dbc) || | 
 | 	    s->data_block_counter == UINT_MAX) { | 
 | 		lost = false; | 
 | 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { | 
 | 		lost = data_block_counter != s->data_block_counter; | 
 | 	} else { | 
 | 		if ((*data_blocks > 0) && (s->tx_dbc_interval > 0)) | 
 | 			dbc_interval = s->tx_dbc_interval; | 
 | 		else | 
 | 			dbc_interval = *data_blocks; | 
 |  | 
 | 		lost = data_block_counter != | 
 | 		       ((s->data_block_counter + dbc_interval) & 0xff); | 
 | 	} | 
 |  | 
 | 	if (lost) { | 
 | 		dev_err(&s->unit->device, | 
 | 			"Detect discontinuity of CIP: %02X %02X\n", | 
 | 			s->data_block_counter, data_block_counter); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (*data_blocks > 0) { | 
 | 		buffer += 2; | 
 |  | 
 | 		pcm = ACCESS_ONCE(s->pcm); | 
 | 		if (pcm) | 
 | 			s->transfer_samples(s, pcm, buffer, *data_blocks); | 
 |  | 
 | 		if (s->midi_ports) | 
 | 			read_midi_messages(s, buffer, *data_blocks); | 
 | 	} | 
 |  | 
 | 	if (s->flags & CIP_DBC_IS_END_EVENT) | 
 | 		s->data_block_counter = data_block_counter; | 
 | 	else | 
 | 		s->data_block_counter = | 
 | 				(data_block_counter + *data_blocks) & 0xff; | 
 | end: | 
 | 	if (queue_in_packet(s) < 0) | 
 | 		return -EIO; | 
 |  | 
 | 	if (pcm) | 
 | 		update_pcm_pointers(s, pcm, *data_blocks); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void out_stream_callback(struct fw_iso_context *context, u32 cycle, | 
 | 				size_t header_length, void *header, | 
 | 				void *private_data) | 
 | { | 
 | 	struct amdtp_stream *s = private_data; | 
 | 	unsigned int i, syt, packets = header_length / 4; | 
 | 	unsigned int data_blocks; | 
 |  | 
 | 	if (s->packet_index < 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Compute the cycle of the last queued packet. | 
 | 	 * (We need only the four lowest bits for the SYT, so we can ignore | 
 | 	 * that bits 0-11 must wrap around at 3072.) | 
 | 	 */ | 
 | 	cycle += QUEUE_LENGTH - packets; | 
 |  | 
 | 	for (i = 0; i < packets; ++i) { | 
 | 		syt = calculate_syt(s, ++cycle); | 
 | 		data_blocks = calculate_data_blocks(s, syt); | 
 |  | 
 | 		if (handle_out_packet(s, data_blocks, syt) < 0) { | 
 | 			s->packet_index = -1; | 
 | 			amdtp_stream_pcm_abort(s); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	fw_iso_context_queue_flush(s->context); | 
 | } | 
 |  | 
 | static void in_stream_callback(struct fw_iso_context *context, u32 cycle, | 
 | 			       size_t header_length, void *header, | 
 | 			       void *private_data) | 
 | { | 
 | 	struct amdtp_stream *s = private_data; | 
 | 	unsigned int p, syt, packets; | 
 | 	unsigned int payload_quadlets, max_payload_quadlets; | 
 | 	unsigned int data_blocks; | 
 | 	__be32 *buffer, *headers = header; | 
 |  | 
 | 	if (s->packet_index < 0) | 
 | 		return; | 
 |  | 
 | 	/* The number of packets in buffer */ | 
 | 	packets = header_length / IN_PACKET_HEADER_SIZE; | 
 |  | 
 | 	/* For buffer-over-run prevention. */ | 
 | 	max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4; | 
 |  | 
 | 	for (p = 0; p < packets; p++) { | 
 | 		buffer = s->buffer.packets[s->packet_index].buffer; | 
 |  | 
 | 		/* The number of quadlets in this packet */ | 
 | 		payload_quadlets = | 
 | 			(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4; | 
 | 		if (payload_quadlets > max_payload_quadlets) { | 
 | 			dev_err(&s->unit->device, | 
 | 				"Detect jumbo payload: %02x %02x\n", | 
 | 				payload_quadlets, max_payload_quadlets); | 
 | 			s->packet_index = -1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (handle_in_packet(s, payload_quadlets, buffer, | 
 | 							&data_blocks) < 0) { | 
 | 			s->packet_index = -1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Process sync slave stream */ | 
 | 		if (s->sync_slave && s->sync_slave->callbacked) { | 
 | 			syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK; | 
 | 			if (handle_out_packet(s->sync_slave, | 
 | 					      data_blocks, syt) < 0) { | 
 | 				s->packet_index = -1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Queueing error or detecting discontinuity */ | 
 | 	if (s->packet_index < 0) { | 
 | 		amdtp_stream_pcm_abort(s); | 
 |  | 
 | 		/* Abort sync slave. */ | 
 | 		if (s->sync_slave) { | 
 | 			s->sync_slave->packet_index = -1; | 
 | 			amdtp_stream_pcm_abort(s->sync_slave); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* when sync to device, flush the packets for slave stream */ | 
 | 	if (s->sync_slave && s->sync_slave->callbacked) | 
 | 		fw_iso_context_queue_flush(s->sync_slave->context); | 
 |  | 
 | 	fw_iso_context_queue_flush(s->context); | 
 | } | 
 |  | 
 | /* processing is done by master callback */ | 
 | static void slave_stream_callback(struct fw_iso_context *context, u32 cycle, | 
 | 				  size_t header_length, void *header, | 
 | 				  void *private_data) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 | /* this is executed one time */ | 
 | static void amdtp_stream_first_callback(struct fw_iso_context *context, | 
 | 					u32 cycle, size_t header_length, | 
 | 					void *header, void *private_data) | 
 | { | 
 | 	struct amdtp_stream *s = private_data; | 
 |  | 
 | 	/* | 
 | 	 * For in-stream, first packet has come. | 
 | 	 * For out-stream, prepared to transmit first packet | 
 | 	 */ | 
 | 	s->callbacked = true; | 
 | 	wake_up(&s->callback_wait); | 
 |  | 
 | 	if (s->direction == AMDTP_IN_STREAM) | 
 | 		context->callback.sc = in_stream_callback; | 
 | 	else if (s->flags & CIP_SYNC_TO_DEVICE) | 
 | 		context->callback.sc = slave_stream_callback; | 
 | 	else | 
 | 		context->callback.sc = out_stream_callback; | 
 |  | 
 | 	context->callback.sc(context, cycle, header_length, header, s); | 
 | } | 
 |  | 
 | /** | 
 |  * amdtp_stream_start - start transferring packets | 
 |  * @s: the AMDTP stream to start | 
 |  * @channel: the isochronous channel on the bus | 
 |  * @speed: firewire speed code | 
 |  * | 
 |  * The stream cannot be started until it has been configured with | 
 |  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI | 
 |  * device can be started. | 
 |  */ | 
 | int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed) | 
 | { | 
 | 	static const struct { | 
 | 		unsigned int data_block; | 
 | 		unsigned int syt_offset; | 
 | 	} initial_state[] = { | 
 | 		[CIP_SFC_32000]  = {  4, 3072 }, | 
 | 		[CIP_SFC_48000]  = {  6, 1024 }, | 
 | 		[CIP_SFC_96000]  = { 12, 1024 }, | 
 | 		[CIP_SFC_192000] = { 24, 1024 }, | 
 | 		[CIP_SFC_44100]  = {  0,   67 }, | 
 | 		[CIP_SFC_88200]  = {  0,   67 }, | 
 | 		[CIP_SFC_176400] = {  0,   67 }, | 
 | 	}; | 
 | 	unsigned int header_size; | 
 | 	enum dma_data_direction dir; | 
 | 	int type, tag, err; | 
 |  | 
 | 	mutex_lock(&s->mutex); | 
 |  | 
 | 	if (WARN_ON(amdtp_stream_running(s) || | 
 | 		    (s->data_block_quadlets < 1))) { | 
 | 		err = -EBADFD; | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	if (s->direction == AMDTP_IN_STREAM && | 
 | 	    s->flags & CIP_SKIP_INIT_DBC_CHECK) | 
 | 		s->data_block_counter = UINT_MAX; | 
 | 	else | 
 | 		s->data_block_counter = 0; | 
 | 	s->data_block_state = initial_state[s->sfc].data_block; | 
 | 	s->syt_offset_state = initial_state[s->sfc].syt_offset; | 
 | 	s->last_syt_offset = TICKS_PER_CYCLE; | 
 |  | 
 | 	/* initialize packet buffer */ | 
 | 	if (s->direction == AMDTP_IN_STREAM) { | 
 | 		dir = DMA_FROM_DEVICE; | 
 | 		type = FW_ISO_CONTEXT_RECEIVE; | 
 | 		header_size = IN_PACKET_HEADER_SIZE; | 
 | 	} else { | 
 | 		dir = DMA_TO_DEVICE; | 
 | 		type = FW_ISO_CONTEXT_TRANSMIT; | 
 | 		header_size = OUT_PACKET_HEADER_SIZE; | 
 | 	} | 
 | 	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH, | 
 | 				      amdtp_stream_get_max_payload(s), dir); | 
 | 	if (err < 0) | 
 | 		goto err_unlock; | 
 |  | 
 | 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, | 
 | 					   type, channel, speed, header_size, | 
 | 					   amdtp_stream_first_callback, s); | 
 | 	if (IS_ERR(s->context)) { | 
 | 		err = PTR_ERR(s->context); | 
 | 		if (err == -EBUSY) | 
 | 			dev_err(&s->unit->device, | 
 | 				"no free stream on this controller\n"); | 
 | 		goto err_buffer; | 
 | 	} | 
 |  | 
 | 	amdtp_stream_update(s); | 
 |  | 
 | 	s->packet_index = 0; | 
 | 	do { | 
 | 		if (s->direction == AMDTP_IN_STREAM) | 
 | 			err = queue_in_packet(s); | 
 | 		else | 
 | 			err = queue_out_packet(s, 0, true); | 
 | 		if (err < 0) | 
 | 			goto err_context; | 
 | 	} while (s->packet_index > 0); | 
 |  | 
 | 	/* NOTE: TAG1 matches CIP. This just affects in stream. */ | 
 | 	tag = FW_ISO_CONTEXT_MATCH_TAG1; | 
 | 	if (s->flags & CIP_EMPTY_WITH_TAG0) | 
 | 		tag |= FW_ISO_CONTEXT_MATCH_TAG0; | 
 |  | 
 | 	s->callbacked = false; | 
 | 	err = fw_iso_context_start(s->context, -1, 0, tag); | 
 | 	if (err < 0) | 
 | 		goto err_context; | 
 |  | 
 | 	mutex_unlock(&s->mutex); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_context: | 
 | 	fw_iso_context_destroy(s->context); | 
 | 	s->context = ERR_PTR(-1); | 
 | err_buffer: | 
 | 	iso_packets_buffer_destroy(&s->buffer, s->unit); | 
 | err_unlock: | 
 | 	mutex_unlock(&s->mutex); | 
 |  | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_start); | 
 |  | 
 | /** | 
 |  * amdtp_stream_pcm_pointer - get the PCM buffer position | 
 |  * @s: the AMDTP stream that transports the PCM data | 
 |  * | 
 |  * Returns the current buffer position, in frames. | 
 |  */ | 
 | unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s) | 
 | { | 
 | 	/* this optimization is allowed to be racy */ | 
 | 	if (s->pointer_flush && amdtp_stream_running(s)) | 
 | 		fw_iso_context_flush_completions(s->context); | 
 | 	else | 
 | 		s->pointer_flush = true; | 
 |  | 
 | 	return ACCESS_ONCE(s->pcm_buffer_pointer); | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_pcm_pointer); | 
 |  | 
 | /** | 
 |  * amdtp_stream_update - update the stream after a bus reset | 
 |  * @s: the AMDTP stream | 
 |  */ | 
 | void amdtp_stream_update(struct amdtp_stream *s) | 
 | { | 
 | 	/* Precomputing. */ | 
 | 	ACCESS_ONCE(s->source_node_id_field) = | 
 | 		(fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & | 
 | 								CIP_SID_MASK; | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_update); | 
 |  | 
 | /** | 
 |  * amdtp_stream_stop - stop sending packets | 
 |  * @s: the AMDTP stream to stop | 
 |  * | 
 |  * All PCM and MIDI devices of the stream must be stopped before the stream | 
 |  * itself can be stopped. | 
 |  */ | 
 | void amdtp_stream_stop(struct amdtp_stream *s) | 
 | { | 
 | 	mutex_lock(&s->mutex); | 
 |  | 
 | 	if (!amdtp_stream_running(s)) { | 
 | 		mutex_unlock(&s->mutex); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tasklet_kill(&s->period_tasklet); | 
 | 	fw_iso_context_stop(s->context); | 
 | 	fw_iso_context_destroy(s->context); | 
 | 	s->context = ERR_PTR(-1); | 
 | 	iso_packets_buffer_destroy(&s->buffer, s->unit); | 
 |  | 
 | 	s->callbacked = false; | 
 |  | 
 | 	mutex_unlock(&s->mutex); | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_stop); | 
 |  | 
 | /** | 
 |  * amdtp_stream_pcm_abort - abort the running PCM device | 
 |  * @s: the AMDTP stream about to be stopped | 
 |  * | 
 |  * If the isochronous stream needs to be stopped asynchronously, call this | 
 |  * function first to stop the PCM device. | 
 |  */ | 
 | void amdtp_stream_pcm_abort(struct amdtp_stream *s) | 
 | { | 
 | 	struct snd_pcm_substream *pcm; | 
 |  | 
 | 	pcm = ACCESS_ONCE(s->pcm); | 
 | 	if (pcm) | 
 | 		snd_pcm_stop_xrun(pcm); | 
 | } | 
 | EXPORT_SYMBOL(amdtp_stream_pcm_abort); |