|  | /* | 
|  | * Copyright 2012 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h>      /* printk() */ | 
|  | #include <linux/slab.h>        /* kmalloc() */ | 
|  | #include <linux/errno.h>       /* error codes */ | 
|  | #include <linux/types.h>       /* size_t */ | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/netdevice.h>   /* struct device, and other headers */ | 
|  | #include <linux/etherdevice.h> /* eth_type_trans */ | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/ioctl.h> | 
|  | #include <linux/cdev.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/in6.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/tcp.h> | 
|  |  | 
|  | #include <asm/checksum.h> | 
|  | #include <asm/homecache.h> | 
|  | #include <gxio/mpipe.h> | 
|  | #include <arch/sim.h> | 
|  |  | 
|  | /* Default transmit lockup timeout period, in jiffies. */ | 
|  | #define TILE_NET_TIMEOUT (5 * HZ) | 
|  |  | 
|  | /* The maximum number of distinct channels (idesc.channel is 5 bits). */ | 
|  | #define TILE_NET_CHANNELS 32 | 
|  |  | 
|  | /* Maximum number of idescs to handle per "poll". */ | 
|  | #define TILE_NET_BATCH 128 | 
|  |  | 
|  | /* Maximum number of packets to handle per "poll". */ | 
|  | #define TILE_NET_WEIGHT 64 | 
|  |  | 
|  | /* Number of entries in each iqueue. */ | 
|  | #define IQUEUE_ENTRIES 512 | 
|  |  | 
|  | /* Number of entries in each equeue. */ | 
|  | #define EQUEUE_ENTRIES 2048 | 
|  |  | 
|  | /* Total header bytes per equeue slot.  Must be big enough for 2 bytes | 
|  | * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to | 
|  | * 60 bytes of actual TCP header.  We round up to align to cache lines. | 
|  | */ | 
|  | #define HEADER_BYTES 128 | 
|  |  | 
|  | /* Maximum completions per cpu per device (must be a power of two). | 
|  | * ISSUE: What is the right number here?  If this is too small, then | 
|  | * egress might block waiting for free space in a completions array. | 
|  | * ISSUE: At the least, allocate these only for initialized echannels. | 
|  | */ | 
|  | #define TILE_NET_MAX_COMPS 64 | 
|  |  | 
|  | #define MAX_FRAGS (MAX_SKB_FRAGS + 1) | 
|  |  | 
|  | /* Size of completions data to allocate. | 
|  | * ISSUE: Probably more than needed since we don't use all the channels. | 
|  | */ | 
|  | #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps)) | 
|  |  | 
|  | /* Size of NotifRing data to allocate. */ | 
|  | #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t)) | 
|  |  | 
|  | /* Timeout to wake the per-device TX timer after we stop the queue. | 
|  | * We don't want the timeout too short (adds overhead, and might end | 
|  | * up causing stop/wake/stop/wake cycles) or too long (affects performance). | 
|  | * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets. | 
|  | */ | 
|  | #define TX_TIMER_DELAY_USEC 30 | 
|  |  | 
|  | /* Timeout to wake the per-cpu egress timer to free completions. */ | 
|  | #define EGRESS_TIMER_DELAY_USEC 1000 | 
|  |  | 
|  | MODULE_AUTHOR("Tilera Corporation"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | /* A "packet fragment" (a chunk of memory). */ | 
|  | struct frag { | 
|  | void *buf; | 
|  | size_t length; | 
|  | }; | 
|  |  | 
|  | /* A single completion. */ | 
|  | struct tile_net_comp { | 
|  | /* The "complete_count" when the completion will be complete. */ | 
|  | s64 when; | 
|  | /* The buffer to be freed when the completion is complete. */ | 
|  | struct sk_buff *skb; | 
|  | }; | 
|  |  | 
|  | /* The completions for a given cpu and echannel. */ | 
|  | struct tile_net_comps { | 
|  | /* The completions. */ | 
|  | struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS]; | 
|  | /* The number of completions used. */ | 
|  | unsigned long comp_next; | 
|  | /* The number of completions freed. */ | 
|  | unsigned long comp_last; | 
|  | }; | 
|  |  | 
|  | /* The transmit wake timer for a given cpu and echannel. */ | 
|  | struct tile_net_tx_wake { | 
|  | struct hrtimer timer; | 
|  | struct net_device *dev; | 
|  | }; | 
|  |  | 
|  | /* Info for a specific cpu. */ | 
|  | struct tile_net_info { | 
|  | /* The NAPI struct. */ | 
|  | struct napi_struct napi; | 
|  | /* Packet queue. */ | 
|  | gxio_mpipe_iqueue_t iqueue; | 
|  | /* Our cpu. */ | 
|  | int my_cpu; | 
|  | /* True if iqueue is valid. */ | 
|  | bool has_iqueue; | 
|  | /* NAPI flags. */ | 
|  | bool napi_added; | 
|  | bool napi_enabled; | 
|  | /* Number of small sk_buffs which must still be provided. */ | 
|  | unsigned int num_needed_small_buffers; | 
|  | /* Number of large sk_buffs which must still be provided. */ | 
|  | unsigned int num_needed_large_buffers; | 
|  | /* A timer for handling egress completions. */ | 
|  | struct hrtimer egress_timer; | 
|  | /* True if "egress_timer" is scheduled. */ | 
|  | bool egress_timer_scheduled; | 
|  | /* Comps for each egress channel. */ | 
|  | struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS]; | 
|  | /* Transmit wake timer for each egress channel. */ | 
|  | struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS]; | 
|  | }; | 
|  |  | 
|  | /* Info for egress on a particular egress channel. */ | 
|  | struct tile_net_egress { | 
|  | /* The "equeue". */ | 
|  | gxio_mpipe_equeue_t *equeue; | 
|  | /* The headers for TSO. */ | 
|  | unsigned char *headers; | 
|  | }; | 
|  |  | 
|  | /* Info for a specific device. */ | 
|  | struct tile_net_priv { | 
|  | /* Our network device. */ | 
|  | struct net_device *dev; | 
|  | /* The primary link. */ | 
|  | gxio_mpipe_link_t link; | 
|  | /* The primary channel, if open, else -1. */ | 
|  | int channel; | 
|  | /* The "loopify" egress link, if needed. */ | 
|  | gxio_mpipe_link_t loopify_link; | 
|  | /* The "loopify" egress channel, if open, else -1. */ | 
|  | int loopify_channel; | 
|  | /* The egress channel (channel or loopify_channel). */ | 
|  | int echannel; | 
|  | /* Total stats. */ | 
|  | struct net_device_stats stats; | 
|  | }; | 
|  |  | 
|  | /* Egress info, indexed by "priv->echannel" (lazily created as needed). */ | 
|  | static struct tile_net_egress egress_for_echannel[TILE_NET_CHANNELS]; | 
|  |  | 
|  | /* Devices currently associated with each channel. | 
|  | * NOTE: The array entry can become NULL after ifconfig down, but | 
|  | * we do not free the underlying net_device structures, so it is | 
|  | * safe to use a pointer after reading it from this array. | 
|  | */ | 
|  | static struct net_device *tile_net_devs_for_channel[TILE_NET_CHANNELS]; | 
|  |  | 
|  | /* A mutex for "tile_net_devs_for_channel". */ | 
|  | static DEFINE_MUTEX(tile_net_devs_for_channel_mutex); | 
|  |  | 
|  | /* The per-cpu info. */ | 
|  | static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info); | 
|  |  | 
|  | /* The "context" for all devices. */ | 
|  | static gxio_mpipe_context_t context; | 
|  |  | 
|  | /* Buffer sizes and mpipe enum codes for buffer stacks. | 
|  | * See arch/tile/include/gxio/mpipe.h for the set of possible values. | 
|  | */ | 
|  | #define BUFFER_SIZE_SMALL_ENUM GXIO_MPIPE_BUFFER_SIZE_128 | 
|  | #define BUFFER_SIZE_SMALL 128 | 
|  | #define BUFFER_SIZE_LARGE_ENUM GXIO_MPIPE_BUFFER_SIZE_1664 | 
|  | #define BUFFER_SIZE_LARGE 1664 | 
|  |  | 
|  | /* The small/large "buffer stacks". */ | 
|  | static int small_buffer_stack = -1; | 
|  | static int large_buffer_stack = -1; | 
|  |  | 
|  | /* Amount of memory allocated for each buffer stack. */ | 
|  | static size_t buffer_stack_size; | 
|  |  | 
|  | /* The actual memory allocated for the buffer stacks. */ | 
|  | static void *small_buffer_stack_va; | 
|  | static void *large_buffer_stack_va; | 
|  |  | 
|  | /* The buckets. */ | 
|  | static int first_bucket = -1; | 
|  | static int num_buckets = 1; | 
|  |  | 
|  | /* The ingress irq. */ | 
|  | static int ingress_irq = -1; | 
|  |  | 
|  | /* Text value of tile_net.cpus if passed as a module parameter. */ | 
|  | static char *network_cpus_string; | 
|  |  | 
|  | /* The actual cpus in "network_cpus". */ | 
|  | static struct cpumask network_cpus_map; | 
|  |  | 
|  | /* If "loopify=LINK" was specified, this is "LINK". */ | 
|  | static char *loopify_link_name; | 
|  |  | 
|  | /* If "tile_net.custom" was specified, this is non-NULL. */ | 
|  | static char *custom_str; | 
|  |  | 
|  | /* The "tile_net.cpus" argument specifies the cpus that are dedicated | 
|  | * to handle ingress packets. | 
|  | * | 
|  | * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where | 
|  | * m, n, x, y are integer numbers that represent the cpus that can be | 
|  | * neither a dedicated cpu nor a dataplane cpu. | 
|  | */ | 
|  | static bool network_cpus_init(void) | 
|  | { | 
|  | char buf[1024]; | 
|  | int rc; | 
|  |  | 
|  | if (network_cpus_string == NULL) | 
|  | return false; | 
|  |  | 
|  | rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map); | 
|  | if (rc != 0) { | 
|  | pr_warn("tile_net.cpus=%s: malformed cpu list\n", | 
|  | network_cpus_string); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Remove dedicated cpus. */ | 
|  | cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask); | 
|  |  | 
|  | if (cpumask_empty(&network_cpus_map)) { | 
|  | pr_warn("Ignoring empty tile_net.cpus='%s'.\n", | 
|  | network_cpus_string); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map); | 
|  | pr_info("Linux network CPUs: %s\n", buf); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | module_param_named(cpus, network_cpus_string, charp, 0444); | 
|  | MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts"); | 
|  |  | 
|  | /* The "tile_net.loopify=LINK" argument causes the named device to | 
|  | * actually use "loop0" for ingress, and "loop1" for egress.  This | 
|  | * allows an app to sit between the actual link and linux, passing | 
|  | * (some) packets along to linux, and forwarding (some) packets sent | 
|  | * out by linux. | 
|  | */ | 
|  | module_param_named(loopify, loopify_link_name, charp, 0444); | 
|  | MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress"); | 
|  |  | 
|  | /* The "tile_net.custom" argument causes us to ignore the "conventional" | 
|  | * classifier metadata, in particular, the "l2_offset". | 
|  | */ | 
|  | module_param_named(custom, custom_str, charp, 0444); | 
|  | MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier"); | 
|  |  | 
|  | /* Atomically update a statistics field. | 
|  | * Note that on TILE-Gx, this operation is fire-and-forget on the | 
|  | * issuing core (single-cycle dispatch) and takes only a few cycles | 
|  | * longer than a regular store when the request reaches the home cache. | 
|  | * No expensive bus management overhead is required. | 
|  | */ | 
|  | static void tile_net_stats_add(unsigned long value, unsigned long *field) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long)); | 
|  | atomic_long_add(value, (atomic_long_t *)field); | 
|  | } | 
|  |  | 
|  | /* Allocate and push a buffer. */ | 
|  | static bool tile_net_provide_buffer(bool small) | 
|  | { | 
|  | int stack = small ? small_buffer_stack : large_buffer_stack; | 
|  | const unsigned long buffer_alignment = 128; | 
|  | struct sk_buff *skb; | 
|  | int len; | 
|  |  | 
|  | len = sizeof(struct sk_buff **) + buffer_alignment; | 
|  | len += (small ? BUFFER_SIZE_SMALL : BUFFER_SIZE_LARGE); | 
|  | skb = dev_alloc_skb(len); | 
|  | if (skb == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Make room for a back-pointer to 'skb' and guarantee alignment. */ | 
|  | skb_reserve(skb, sizeof(struct sk_buff **)); | 
|  | skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1)); | 
|  |  | 
|  | /* Save a back-pointer to 'skb'. */ | 
|  | *(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb; | 
|  |  | 
|  | /* Make sure "skb" and the back-pointer have been flushed. */ | 
|  | wmb(); | 
|  |  | 
|  | gxio_mpipe_push_buffer(&context, stack, | 
|  | (void *)va_to_tile_io_addr(skb->data)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Convert a raw mpipe buffer to its matching skb pointer. */ | 
|  | static struct sk_buff *mpipe_buf_to_skb(void *va) | 
|  | { | 
|  | /* Acquire the associated "skb". */ | 
|  | struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); | 
|  | struct sk_buff *skb = *skb_ptr; | 
|  |  | 
|  | /* Paranoia. */ | 
|  | if (skb->data != va) { | 
|  | /* Panic here since there's a reasonable chance | 
|  | * that corrupt buffers means generic memory | 
|  | * corruption, with unpredictable system effects. | 
|  | */ | 
|  | panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p", | 
|  | va, skb, skb->data); | 
|  | } | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static void tile_net_pop_all_buffers(int stack) | 
|  | { | 
|  | for (;;) { | 
|  | tile_io_addr_t addr = | 
|  | (tile_io_addr_t)gxio_mpipe_pop_buffer(&context, stack); | 
|  | if (addr == 0) | 
|  | break; | 
|  | dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Provide linux buffers to mPIPE. */ | 
|  | static void tile_net_provide_needed_buffers(void) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  |  | 
|  | while (info->num_needed_small_buffers != 0) { | 
|  | if (!tile_net_provide_buffer(true)) | 
|  | goto oops; | 
|  | info->num_needed_small_buffers--; | 
|  | } | 
|  |  | 
|  | while (info->num_needed_large_buffers != 0) { | 
|  | if (!tile_net_provide_buffer(false)) | 
|  | goto oops; | 
|  | info->num_needed_large_buffers--; | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | oops: | 
|  | /* Add a description to the page allocation failure dump. */ | 
|  | pr_notice("Tile %d still needs some buffers\n", info->my_cpu); | 
|  | } | 
|  |  | 
|  | static inline bool filter_packet(struct net_device *dev, void *buf) | 
|  | { | 
|  | /* Filter packets received before we're up. */ | 
|  | if (dev == NULL || !(dev->flags & IFF_UP)) | 
|  | return true; | 
|  |  | 
|  | /* Filter out packets that aren't for us. */ | 
|  | if (!(dev->flags & IFF_PROMISC) && | 
|  | !is_multicast_ether_addr(buf) && | 
|  | compare_ether_addr(dev->dev_addr, buf) != 0) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb, | 
|  | gxio_mpipe_idesc_t *idesc, unsigned long len) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | struct tile_net_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | /* Encode the actual packet length. */ | 
|  | skb_put(skb, len); | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, dev); | 
|  |  | 
|  | /* Acknowledge "good" hardware checksums. */ | 
|  | if (idesc->cs && idesc->csum_seed_val == 0xFFFF) | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  |  | 
|  | netif_receive_skb(skb); | 
|  |  | 
|  | /* Update stats. */ | 
|  | tile_net_stats_add(1, &priv->stats.rx_packets); | 
|  | tile_net_stats_add(len, &priv->stats.rx_bytes); | 
|  |  | 
|  | /* Need a new buffer. */ | 
|  | if (idesc->size == BUFFER_SIZE_SMALL_ENUM) | 
|  | info->num_needed_small_buffers++; | 
|  | else | 
|  | info->num_needed_large_buffers++; | 
|  | } | 
|  |  | 
|  | /* Handle a packet.  Return true if "processed", false if "filtered". */ | 
|  | static bool tile_net_handle_packet(gxio_mpipe_idesc_t *idesc) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | struct net_device *dev = tile_net_devs_for_channel[idesc->channel]; | 
|  | uint8_t l2_offset; | 
|  | void *va; | 
|  | void *buf; | 
|  | unsigned long len; | 
|  | bool filter; | 
|  |  | 
|  | /* Drop packets for which no buffer was available. | 
|  | * NOTE: This happens under heavy load. | 
|  | */ | 
|  | if (idesc->be) { | 
|  | struct tile_net_priv *priv = netdev_priv(dev); | 
|  | tile_net_stats_add(1, &priv->stats.rx_dropped); | 
|  | gxio_mpipe_iqueue_consume(&info->iqueue, idesc); | 
|  | if (net_ratelimit()) | 
|  | pr_info("Dropping packet (insufficient buffers).\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Get the "l2_offset", if allowed. */ | 
|  | l2_offset = custom_str ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc); | 
|  |  | 
|  | /* Get the raw buffer VA (includes "headroom"). */ | 
|  | va = tile_io_addr_to_va((unsigned long)(long)idesc->va); | 
|  |  | 
|  | /* Get the actual packet start/length. */ | 
|  | buf = va + l2_offset; | 
|  | len = idesc->l2_size - l2_offset; | 
|  |  | 
|  | /* Point "va" at the raw buffer. */ | 
|  | va -= NET_IP_ALIGN; | 
|  |  | 
|  | filter = filter_packet(dev, buf); | 
|  | if (filter) { | 
|  | gxio_mpipe_iqueue_drop(&info->iqueue, idesc); | 
|  | } else { | 
|  | struct sk_buff *skb = mpipe_buf_to_skb(va); | 
|  |  | 
|  | /* Skip headroom, and any custom header. */ | 
|  | skb_reserve(skb, NET_IP_ALIGN + l2_offset); | 
|  |  | 
|  | tile_net_receive_skb(dev, skb, idesc, len); | 
|  | } | 
|  |  | 
|  | gxio_mpipe_iqueue_consume(&info->iqueue, idesc); | 
|  | return !filter; | 
|  | } | 
|  |  | 
|  | /* Handle some packets for the current CPU. | 
|  | * | 
|  | * This function handles up to TILE_NET_BATCH idescs per call. | 
|  | * | 
|  | * ISSUE: Since we do not provide new buffers until this function is | 
|  | * complete, we must initially provide enough buffers for each network | 
|  | * cpu to fill its iqueue and also its batched idescs. | 
|  | * | 
|  | * ISSUE: The "rotting packet" race condition occurs if a packet | 
|  | * arrives after the queue appears to be empty, and before the | 
|  | * hypervisor interrupt is re-enabled. | 
|  | */ | 
|  | static int tile_net_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | unsigned int work = 0; | 
|  | gxio_mpipe_idesc_t *idesc; | 
|  | int i, n; | 
|  |  | 
|  | /* Process packets. */ | 
|  | while ((n = gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc)) > 0) { | 
|  | for (i = 0; i < n; i++) { | 
|  | if (i == TILE_NET_BATCH) | 
|  | goto done; | 
|  | if (tile_net_handle_packet(idesc + i)) { | 
|  | if (++work >= budget) | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* There are no packets left. */ | 
|  | napi_complete(&info->napi); | 
|  |  | 
|  | /* Re-enable hypervisor interrupts. */ | 
|  | gxio_mpipe_enable_notif_ring_interrupt(&context, info->iqueue.ring); | 
|  |  | 
|  | /* HACK: Avoid the "rotting packet" problem. */ | 
|  | if (gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc) > 0) | 
|  | napi_schedule(&info->napi); | 
|  |  | 
|  | /* ISSUE: Handle completions? */ | 
|  |  | 
|  | done: | 
|  | tile_net_provide_needed_buffers(); | 
|  |  | 
|  | return work; | 
|  | } | 
|  |  | 
|  | /* Handle an ingress interrupt on the current cpu. */ | 
|  | static irqreturn_t tile_net_handle_ingress_irq(int irq, void *unused) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | napi_schedule(&info->napi); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Free some completions.  This must be called with interrupts blocked. */ | 
|  | static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue, | 
|  | struct tile_net_comps *comps, | 
|  | int limit, bool force_update) | 
|  | { | 
|  | int n = 0; | 
|  | while (comps->comp_last < comps->comp_next) { | 
|  | unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS; | 
|  | struct tile_net_comp *comp = &comps->comp_queue[cid]; | 
|  | if (!gxio_mpipe_equeue_is_complete(equeue, comp->when, | 
|  | force_update || n == 0)) | 
|  | break; | 
|  | dev_kfree_skb_irq(comp->skb); | 
|  | comps->comp_last++; | 
|  | if (++n == limit) | 
|  | break; | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* Add a completion.  This must be called with interrupts blocked. | 
|  | * tile_net_equeue_try_reserve() will have ensured a free completion entry. | 
|  | */ | 
|  | static void add_comp(gxio_mpipe_equeue_t *equeue, | 
|  | struct tile_net_comps *comps, | 
|  | uint64_t when, struct sk_buff *skb) | 
|  | { | 
|  | int cid = comps->comp_next % TILE_NET_MAX_COMPS; | 
|  | comps->comp_queue[cid].when = when; | 
|  | comps->comp_queue[cid].skb = skb; | 
|  | comps->comp_next++; | 
|  | } | 
|  |  | 
|  | static void tile_net_schedule_tx_wake_timer(struct net_device *dev) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | struct tile_net_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | hrtimer_start(&info->tx_wake[priv->echannel].timer, | 
|  | ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL), | 
|  | HRTIMER_MODE_REL_PINNED); | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t) | 
|  | { | 
|  | struct tile_net_tx_wake *tx_wake = | 
|  | container_of(t, struct tile_net_tx_wake, timer); | 
|  | netif_wake_subqueue(tx_wake->dev, smp_processor_id()); | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | /* Make sure the egress timer is scheduled. */ | 
|  | static void tile_net_schedule_egress_timer(void) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  |  | 
|  | if (!info->egress_timer_scheduled) { | 
|  | hrtimer_start(&info->egress_timer, | 
|  | ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL), | 
|  | HRTIMER_MODE_REL_PINNED); | 
|  | info->egress_timer_scheduled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The "function" for "info->egress_timer". | 
|  | * | 
|  | * This timer will reschedule itself as long as there are any pending | 
|  | * completions expected for this tile. | 
|  | */ | 
|  | static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | unsigned long irqflags; | 
|  | bool pending = false; | 
|  | int i; | 
|  |  | 
|  | local_irq_save(irqflags); | 
|  |  | 
|  | /* The timer is no longer scheduled. */ | 
|  | info->egress_timer_scheduled = false; | 
|  |  | 
|  | /* Free all possible comps for this tile. */ | 
|  | for (i = 0; i < TILE_NET_CHANNELS; i++) { | 
|  | struct tile_net_egress *egress = &egress_for_echannel[i]; | 
|  | struct tile_net_comps *comps = info->comps_for_echannel[i]; | 
|  | if (comps->comp_last >= comps->comp_next) | 
|  | continue; | 
|  | tile_net_free_comps(egress->equeue, comps, -1, true); | 
|  | pending = pending || (comps->comp_last < comps->comp_next); | 
|  | } | 
|  |  | 
|  | /* Reschedule timer if needed. */ | 
|  | if (pending) | 
|  | tile_net_schedule_egress_timer(); | 
|  |  | 
|  | local_irq_restore(irqflags); | 
|  |  | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | /* Helper function for "tile_net_update()". | 
|  | * "dev" (i.e. arg) is the device being brought up or down, | 
|  | * or NULL if all devices are now down. | 
|  | */ | 
|  | static void tile_net_update_cpu(void *arg) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | struct net_device *dev = arg; | 
|  |  | 
|  | if (!info->has_iqueue) | 
|  | return; | 
|  |  | 
|  | if (dev != NULL) { | 
|  | if (!info->napi_added) { | 
|  | netif_napi_add(dev, &info->napi, | 
|  | tile_net_poll, TILE_NET_WEIGHT); | 
|  | info->napi_added = true; | 
|  | } | 
|  | if (!info->napi_enabled) { | 
|  | napi_enable(&info->napi); | 
|  | info->napi_enabled = true; | 
|  | } | 
|  | enable_percpu_irq(ingress_irq, 0); | 
|  | } else { | 
|  | disable_percpu_irq(ingress_irq); | 
|  | if (info->napi_enabled) { | 
|  | napi_disable(&info->napi); | 
|  | info->napi_enabled = false; | 
|  | } | 
|  | /* FIXME: Drain the iqueue. */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Helper function for tile_net_open() and tile_net_stop(). | 
|  | * Always called under tile_net_devs_for_channel_mutex. | 
|  | */ | 
|  | static int tile_net_update(struct net_device *dev) | 
|  | { | 
|  | static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */ | 
|  | bool saw_channel = false; | 
|  | int channel; | 
|  | int rc; | 
|  | int cpu; | 
|  |  | 
|  | gxio_mpipe_rules_init(&rules, &context); | 
|  |  | 
|  | for (channel = 0; channel < TILE_NET_CHANNELS; channel++) { | 
|  | if (tile_net_devs_for_channel[channel] == NULL) | 
|  | continue; | 
|  | if (!saw_channel) { | 
|  | saw_channel = true; | 
|  | gxio_mpipe_rules_begin(&rules, first_bucket, | 
|  | num_buckets, NULL); | 
|  | gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN); | 
|  | } | 
|  | gxio_mpipe_rules_add_channel(&rules, channel); | 
|  | } | 
|  |  | 
|  | /* NOTE: This can fail if there is no classifier. | 
|  | * ISSUE: Can anything else cause it to fail? | 
|  | */ | 
|  | rc = gxio_mpipe_rules_commit(&rules); | 
|  | if (rc != 0) { | 
|  | netdev_warn(dev, "gxio_mpipe_rules_commit failed: %d\n", rc); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Update all cpus, sequentially (to protect "netif_napi_add()"). */ | 
|  | for_each_online_cpu(cpu) | 
|  | smp_call_function_single(cpu, tile_net_update_cpu, | 
|  | (saw_channel ? dev : NULL), 1); | 
|  |  | 
|  | /* HACK: Allow packets to flow in the simulator. */ | 
|  | if (saw_channel) | 
|  | sim_enable_mpipe_links(0, -1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize mpipe buffer stacks, and register them in | 
|  | * the mPIPE TLBs, for both small and large packet sizes. | 
|  | * This routine supports tile_net_init_mpipe(), below. | 
|  | */ | 
|  | static int init_buffer_stacks(struct net_device *dev, int num_buffers) | 
|  | { | 
|  | pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH); | 
|  | int rc; | 
|  |  | 
|  | /* Compute stack bytes; we round up to 64KB and then use | 
|  | * alloc_pages() so we get the required 64KB alignment as well. | 
|  | */ | 
|  | buffer_stack_size = | 
|  | ALIGN(gxio_mpipe_calc_buffer_stack_bytes(num_buffers), | 
|  | 64 * 1024); | 
|  |  | 
|  | /* Allocate two buffer stack indices. */ | 
|  | rc = gxio_mpipe_alloc_buffer_stacks(&context, 2, 0, 0); | 
|  | if (rc < 0) { | 
|  | netdev_err(dev, "gxio_mpipe_alloc_buffer_stacks failed: %d\n", | 
|  | rc); | 
|  | return rc; | 
|  | } | 
|  | small_buffer_stack = rc; | 
|  | large_buffer_stack = rc + 1; | 
|  |  | 
|  | /* Allocate the small memory stack. */ | 
|  | small_buffer_stack_va = | 
|  | alloc_pages_exact(buffer_stack_size, GFP_KERNEL); | 
|  | if (small_buffer_stack_va == NULL) { | 
|  | netdev_err(dev, | 
|  | "Could not alloc %zd bytes for buffer stacks\n", | 
|  | buffer_stack_size); | 
|  | return -ENOMEM; | 
|  | } | 
|  | rc = gxio_mpipe_init_buffer_stack(&context, small_buffer_stack, | 
|  | BUFFER_SIZE_SMALL_ENUM, | 
|  | small_buffer_stack_va, | 
|  | buffer_stack_size, 0); | 
|  | if (rc != 0) { | 
|  | netdev_err(dev, "gxio_mpipe_init_buffer_stack: %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  | rc = gxio_mpipe_register_client_memory(&context, small_buffer_stack, | 
|  | hash_pte, 0); | 
|  | if (rc != 0) { | 
|  | netdev_err(dev, | 
|  | "gxio_mpipe_register_buffer_memory failed: %d\n", | 
|  | rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Allocate the large buffer stack. */ | 
|  | large_buffer_stack_va = | 
|  | alloc_pages_exact(buffer_stack_size, GFP_KERNEL); | 
|  | if (large_buffer_stack_va == NULL) { | 
|  | netdev_err(dev, | 
|  | "Could not alloc %zd bytes for buffer stacks\n", | 
|  | buffer_stack_size); | 
|  | return -ENOMEM; | 
|  | } | 
|  | rc = gxio_mpipe_init_buffer_stack(&context, large_buffer_stack, | 
|  | BUFFER_SIZE_LARGE_ENUM, | 
|  | large_buffer_stack_va, | 
|  | buffer_stack_size, 0); | 
|  | if (rc != 0) { | 
|  | netdev_err(dev, "gxio_mpipe_init_buffer_stack failed: %d\n", | 
|  | rc); | 
|  | return rc; | 
|  | } | 
|  | rc = gxio_mpipe_register_client_memory(&context, large_buffer_stack, | 
|  | hash_pte, 0); | 
|  | if (rc != 0) { | 
|  | netdev_err(dev, | 
|  | "gxio_mpipe_register_buffer_memory failed: %d\n", | 
|  | rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allocate per-cpu resources (memory for completions and idescs). | 
|  | * This routine supports tile_net_init_mpipe(), below. | 
|  | */ | 
|  | static int alloc_percpu_mpipe_resources(struct net_device *dev, | 
|  | int cpu, int ring) | 
|  | { | 
|  | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | 
|  | int order, i, rc; | 
|  | struct page *page; | 
|  | void *addr; | 
|  |  | 
|  | /* Allocate the "comps". */ | 
|  | order = get_order(COMPS_SIZE); | 
|  | page = homecache_alloc_pages(GFP_KERNEL, order, cpu); | 
|  | if (page == NULL) { | 
|  | netdev_err(dev, "Failed to alloc %zd bytes comps memory\n", | 
|  | COMPS_SIZE); | 
|  | return -ENOMEM; | 
|  | } | 
|  | addr = pfn_to_kaddr(page_to_pfn(page)); | 
|  | memset(addr, 0, COMPS_SIZE); | 
|  | for (i = 0; i < TILE_NET_CHANNELS; i++) | 
|  | info->comps_for_echannel[i] = | 
|  | addr + i * sizeof(struct tile_net_comps); | 
|  |  | 
|  | /* If this is a network cpu, create an iqueue. */ | 
|  | if (cpu_isset(cpu, network_cpus_map)) { | 
|  | order = get_order(NOTIF_RING_SIZE); | 
|  | page = homecache_alloc_pages(GFP_KERNEL, order, cpu); | 
|  | if (page == NULL) { | 
|  | netdev_err(dev, | 
|  | "Failed to alloc %zd bytes iqueue memory\n", | 
|  | NOTIF_RING_SIZE); | 
|  | return -ENOMEM; | 
|  | } | 
|  | addr = pfn_to_kaddr(page_to_pfn(page)); | 
|  | rc = gxio_mpipe_iqueue_init(&info->iqueue, &context, ring++, | 
|  | addr, NOTIF_RING_SIZE, 0); | 
|  | if (rc < 0) { | 
|  | netdev_err(dev, | 
|  | "gxio_mpipe_iqueue_init failed: %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  | info->has_iqueue = true; | 
|  | } | 
|  |  | 
|  | return ring; | 
|  | } | 
|  |  | 
|  | /* Initialize NotifGroup and buckets. | 
|  | * This routine supports tile_net_init_mpipe(), below. | 
|  | */ | 
|  | static int init_notif_group_and_buckets(struct net_device *dev, | 
|  | int ring, int network_cpus_count) | 
|  | { | 
|  | int group, rc; | 
|  |  | 
|  | /* Allocate one NotifGroup. */ | 
|  | rc = gxio_mpipe_alloc_notif_groups(&context, 1, 0, 0); | 
|  | if (rc < 0) { | 
|  | netdev_err(dev, "gxio_mpipe_alloc_notif_groups failed: %d\n", | 
|  | rc); | 
|  | return rc; | 
|  | } | 
|  | group = rc; | 
|  |  | 
|  | /* Initialize global num_buckets value. */ | 
|  | if (network_cpus_count > 4) | 
|  | num_buckets = 256; | 
|  | else if (network_cpus_count > 1) | 
|  | num_buckets = 16; | 
|  |  | 
|  | /* Allocate some buckets, and set global first_bucket value. */ | 
|  | rc = gxio_mpipe_alloc_buckets(&context, num_buckets, 0, 0); | 
|  | if (rc < 0) { | 
|  | netdev_err(dev, "gxio_mpipe_alloc_buckets failed: %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  | first_bucket = rc; | 
|  |  | 
|  | /* Init group and buckets. */ | 
|  | rc = gxio_mpipe_init_notif_group_and_buckets( | 
|  | &context, group, ring, network_cpus_count, | 
|  | first_bucket, num_buckets, | 
|  | GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY); | 
|  | if (rc != 0) { | 
|  | netdev_err( | 
|  | dev, | 
|  | "gxio_mpipe_init_notif_group_and_buckets failed: %d\n", | 
|  | rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Create an irq and register it, then activate the irq and request | 
|  | * interrupts on all cores.  Note that "ingress_irq" being initialized | 
|  | * is how we know not to call tile_net_init_mpipe() again. | 
|  | * This routine supports tile_net_init_mpipe(), below. | 
|  | */ | 
|  | static int tile_net_setup_interrupts(struct net_device *dev) | 
|  | { | 
|  | int cpu, rc; | 
|  |  | 
|  | rc = create_irq(); | 
|  | if (rc < 0) { | 
|  | netdev_err(dev, "create_irq failed: %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  | ingress_irq = rc; | 
|  | tile_irq_activate(ingress_irq, TILE_IRQ_PERCPU); | 
|  | rc = request_irq(ingress_irq, tile_net_handle_ingress_irq, | 
|  | 0, NULL, NULL); | 
|  | if (rc != 0) { | 
|  | netdev_err(dev, "request_irq failed: %d\n", rc); | 
|  | destroy_irq(ingress_irq); | 
|  | ingress_irq = -1; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | 
|  | if (info->has_iqueue) { | 
|  | gxio_mpipe_request_notif_ring_interrupt( | 
|  | &context, cpu_x(cpu), cpu_y(cpu), | 
|  | 1, ingress_irq, info->iqueue.ring); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */ | 
|  | static void tile_net_init_mpipe_fail(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* Do cleanups that require the mpipe context first. */ | 
|  | if (small_buffer_stack >= 0) | 
|  | tile_net_pop_all_buffers(small_buffer_stack); | 
|  | if (large_buffer_stack >= 0) | 
|  | tile_net_pop_all_buffers(large_buffer_stack); | 
|  |  | 
|  | /* Destroy mpipe context so the hardware no longer owns any memory. */ | 
|  | gxio_mpipe_destroy(&context); | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | 
|  | free_pages((unsigned long)(info->comps_for_echannel[0]), | 
|  | get_order(COMPS_SIZE)); | 
|  | info->comps_for_echannel[0] = NULL; | 
|  | free_pages((unsigned long)(info->iqueue.idescs), | 
|  | get_order(NOTIF_RING_SIZE)); | 
|  | info->iqueue.idescs = NULL; | 
|  | } | 
|  |  | 
|  | if (small_buffer_stack_va) | 
|  | free_pages_exact(small_buffer_stack_va, buffer_stack_size); | 
|  | if (large_buffer_stack_va) | 
|  | free_pages_exact(large_buffer_stack_va, buffer_stack_size); | 
|  |  | 
|  | small_buffer_stack_va = NULL; | 
|  | large_buffer_stack_va = NULL; | 
|  | large_buffer_stack = -1; | 
|  | small_buffer_stack = -1; | 
|  | first_bucket = -1; | 
|  | } | 
|  |  | 
|  | /* The first time any tilegx network device is opened, we initialize | 
|  | * the global mpipe state.  If this step fails, we fail to open the | 
|  | * device, but if it succeeds, we never need to do it again, and since | 
|  | * tile_net can't be unloaded, we never undo it. | 
|  | * | 
|  | * Note that some resources in this path (buffer stack indices, | 
|  | * bindings from init_buffer_stack, etc.) are hypervisor resources | 
|  | * that are freed implicitly by gxio_mpipe_destroy(). | 
|  | */ | 
|  | static int tile_net_init_mpipe(struct net_device *dev) | 
|  | { | 
|  | int i, num_buffers, rc; | 
|  | int cpu; | 
|  | int first_ring, ring; | 
|  | int network_cpus_count = cpus_weight(network_cpus_map); | 
|  |  | 
|  | if (!hash_default) { | 
|  | netdev_err(dev, "Networking requires hash_default!\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | rc = gxio_mpipe_init(&context, 0); | 
|  | if (rc != 0) { | 
|  | netdev_err(dev, "gxio_mpipe_init failed: %d\n", rc); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Set up the buffer stacks. */ | 
|  | num_buffers = | 
|  | network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH); | 
|  | rc = init_buffer_stacks(dev, num_buffers); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  |  | 
|  | /* Provide initial buffers. */ | 
|  | rc = -ENOMEM; | 
|  | for (i = 0; i < num_buffers; i++) { | 
|  | if (!tile_net_provide_buffer(true)) { | 
|  | netdev_err(dev, "Cannot allocate initial sk_bufs!\n"); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < num_buffers; i++) { | 
|  | if (!tile_net_provide_buffer(false)) { | 
|  | netdev_err(dev, "Cannot allocate initial sk_bufs!\n"); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate one NotifRing for each network cpu. */ | 
|  | rc = gxio_mpipe_alloc_notif_rings(&context, network_cpus_count, 0, 0); | 
|  | if (rc < 0) { | 
|  | netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n", | 
|  | rc); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Init NotifRings per-cpu. */ | 
|  | first_ring = rc; | 
|  | ring = first_ring; | 
|  | for_each_online_cpu(cpu) { | 
|  | rc = alloc_percpu_mpipe_resources(dev, cpu, ring); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | ring = rc; | 
|  | } | 
|  |  | 
|  | /* Initialize NotifGroup and buckets. */ | 
|  | rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  |  | 
|  | /* Create and enable interrupts. */ | 
|  | rc = tile_net_setup_interrupts(dev); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | tile_net_init_mpipe_fail(); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Create persistent egress info for a given egress channel. | 
|  | * Note that this may be shared between, say, "gbe0" and "xgbe0". | 
|  | * ISSUE: Defer header allocation until TSO is actually needed? | 
|  | */ | 
|  | static int tile_net_init_egress(struct net_device *dev, int echannel) | 
|  | { | 
|  | struct page *headers_page, *edescs_page, *equeue_page; | 
|  | gxio_mpipe_edesc_t *edescs; | 
|  | gxio_mpipe_equeue_t *equeue; | 
|  | unsigned char *headers; | 
|  | int headers_order, edescs_order, equeue_order; | 
|  | size_t edescs_size; | 
|  | int edma; | 
|  | int rc = -ENOMEM; | 
|  |  | 
|  | /* Only initialize once. */ | 
|  | if (egress_for_echannel[echannel].equeue != NULL) | 
|  | return 0; | 
|  |  | 
|  | /* Allocate memory for the "headers". */ | 
|  | headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES); | 
|  | headers_page = alloc_pages(GFP_KERNEL, headers_order); | 
|  | if (headers_page == NULL) { | 
|  | netdev_warn(dev, | 
|  | "Could not alloc %zd bytes for TSO headers.\n", | 
|  | PAGE_SIZE << headers_order); | 
|  | goto fail; | 
|  | } | 
|  | headers = pfn_to_kaddr(page_to_pfn(headers_page)); | 
|  |  | 
|  | /* Allocate memory for the "edescs". */ | 
|  | edescs_size = EQUEUE_ENTRIES * sizeof(*edescs); | 
|  | edescs_order = get_order(edescs_size); | 
|  | edescs_page = alloc_pages(GFP_KERNEL, edescs_order); | 
|  | if (edescs_page == NULL) { | 
|  | netdev_warn(dev, | 
|  | "Could not alloc %zd bytes for eDMA ring.\n", | 
|  | edescs_size); | 
|  | goto fail_headers; | 
|  | } | 
|  | edescs = pfn_to_kaddr(page_to_pfn(edescs_page)); | 
|  |  | 
|  | /* Allocate memory for the "equeue". */ | 
|  | equeue_order = get_order(sizeof(*equeue)); | 
|  | equeue_page = alloc_pages(GFP_KERNEL, equeue_order); | 
|  | if (equeue_page == NULL) { | 
|  | netdev_warn(dev, | 
|  | "Could not alloc %zd bytes for equeue info.\n", | 
|  | PAGE_SIZE << equeue_order); | 
|  | goto fail_edescs; | 
|  | } | 
|  | equeue = pfn_to_kaddr(page_to_pfn(equeue_page)); | 
|  |  | 
|  | /* Allocate an edma ring.  Note that in practice this can't | 
|  | * fail, which is good, because we will leak an edma ring if so. | 
|  | */ | 
|  | rc = gxio_mpipe_alloc_edma_rings(&context, 1, 0, 0); | 
|  | if (rc < 0) { | 
|  | netdev_warn(dev, "gxio_mpipe_alloc_edma_rings failed: %d\n", | 
|  | rc); | 
|  | goto fail_equeue; | 
|  | } | 
|  | edma = rc; | 
|  |  | 
|  | /* Initialize the equeue. */ | 
|  | rc = gxio_mpipe_equeue_init(equeue, &context, edma, echannel, | 
|  | edescs, edescs_size, 0); | 
|  | if (rc != 0) { | 
|  | netdev_err(dev, "gxio_mpipe_equeue_init failed: %d\n", rc); | 
|  | goto fail_equeue; | 
|  | } | 
|  |  | 
|  | /* Done. */ | 
|  | egress_for_echannel[echannel].equeue = equeue; | 
|  | egress_for_echannel[echannel].headers = headers; | 
|  | return 0; | 
|  |  | 
|  | fail_equeue: | 
|  | __free_pages(equeue_page, equeue_order); | 
|  |  | 
|  | fail_edescs: | 
|  | __free_pages(edescs_page, edescs_order); | 
|  |  | 
|  | fail_headers: | 
|  | __free_pages(headers_page, headers_order); | 
|  |  | 
|  | fail: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Return channel number for a newly-opened link. */ | 
|  | static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link, | 
|  | const char *link_name) | 
|  | { | 
|  | int rc = gxio_mpipe_link_open(link, &context, link_name, 0); | 
|  | if (rc < 0) { | 
|  | netdev_err(dev, "Failed to open '%s'\n", link_name); | 
|  | return rc; | 
|  | } | 
|  | rc = gxio_mpipe_link_channel(link); | 
|  | if (rc < 0 || rc >= TILE_NET_CHANNELS) { | 
|  | netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc); | 
|  | gxio_mpipe_link_close(link); | 
|  | return -EINVAL; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Help the kernel activate the given network interface. */ | 
|  | static int tile_net_open(struct net_device *dev) | 
|  | { | 
|  | struct tile_net_priv *priv = netdev_priv(dev); | 
|  | int cpu, rc; | 
|  |  | 
|  | mutex_lock(&tile_net_devs_for_channel_mutex); | 
|  |  | 
|  | /* Do one-time initialization the first time any device is opened. */ | 
|  | if (ingress_irq < 0) { | 
|  | rc = tile_net_init_mpipe(dev); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Determine if this is the "loopify" device. */ | 
|  | if (unlikely((loopify_link_name != NULL) && | 
|  | !strcmp(dev->name, loopify_link_name))) { | 
|  | rc = tile_net_link_open(dev, &priv->link, "loop0"); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | priv->channel = rc; | 
|  | rc = tile_net_link_open(dev, &priv->loopify_link, "loop1"); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | priv->loopify_channel = rc; | 
|  | priv->echannel = rc; | 
|  | } else { | 
|  | rc = tile_net_link_open(dev, &priv->link, dev->name); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | priv->channel = rc; | 
|  | priv->echannel = rc; | 
|  | } | 
|  |  | 
|  | /* Initialize egress info (if needed).  Once ever, per echannel. */ | 
|  | rc = tile_net_init_egress(dev, priv->echannel); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  |  | 
|  | tile_net_devs_for_channel[priv->channel] = dev; | 
|  |  | 
|  | rc = tile_net_update(dev); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  |  | 
|  | mutex_unlock(&tile_net_devs_for_channel_mutex); | 
|  |  | 
|  | /* Initialize the transmit wake timer for this device for each cpu. */ | 
|  | for_each_online_cpu(cpu) { | 
|  | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | 
|  | struct tile_net_tx_wake *tx_wake = | 
|  | &info->tx_wake[priv->echannel]; | 
|  |  | 
|  | hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC, | 
|  | HRTIMER_MODE_REL); | 
|  | tx_wake->timer.function = tile_net_handle_tx_wake_timer; | 
|  | tx_wake->dev = dev; | 
|  | } | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | netif_start_subqueue(dev, cpu); | 
|  | netif_carrier_on(dev); | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | if (priv->loopify_channel >= 0) { | 
|  | if (gxio_mpipe_link_close(&priv->loopify_link) != 0) | 
|  | netdev_warn(dev, "Failed to close loopify link!\n"); | 
|  | priv->loopify_channel = -1; | 
|  | } | 
|  | if (priv->channel >= 0) { | 
|  | if (gxio_mpipe_link_close(&priv->link) != 0) | 
|  | netdev_warn(dev, "Failed to close link!\n"); | 
|  | priv->channel = -1; | 
|  | } | 
|  | priv->echannel = -1; | 
|  | tile_net_devs_for_channel[priv->channel] = NULL; | 
|  | mutex_unlock(&tile_net_devs_for_channel_mutex); | 
|  |  | 
|  | /* Don't return raw gxio error codes to generic Linux. */ | 
|  | return (rc > -512) ? rc : -EIO; | 
|  | } | 
|  |  | 
|  | /* Help the kernel deactivate the given network interface. */ | 
|  | static int tile_net_stop(struct net_device *dev) | 
|  | { | 
|  | struct tile_net_priv *priv = netdev_priv(dev); | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | 
|  | struct tile_net_tx_wake *tx_wake = | 
|  | &info->tx_wake[priv->echannel]; | 
|  |  | 
|  | hrtimer_cancel(&tx_wake->timer); | 
|  | netif_stop_subqueue(dev, cpu); | 
|  | } | 
|  |  | 
|  | mutex_lock(&tile_net_devs_for_channel_mutex); | 
|  | tile_net_devs_for_channel[priv->channel] = NULL; | 
|  | (void)tile_net_update(dev); | 
|  | if (priv->loopify_channel >= 0) { | 
|  | if (gxio_mpipe_link_close(&priv->loopify_link) != 0) | 
|  | netdev_warn(dev, "Failed to close loopify link!\n"); | 
|  | priv->loopify_channel = -1; | 
|  | } | 
|  | if (priv->channel >= 0) { | 
|  | if (gxio_mpipe_link_close(&priv->link) != 0) | 
|  | netdev_warn(dev, "Failed to close link!\n"); | 
|  | priv->channel = -1; | 
|  | } | 
|  | priv->echannel = -1; | 
|  | mutex_unlock(&tile_net_devs_for_channel_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Determine the VA for a fragment. */ | 
|  | static inline void *tile_net_frag_buf(skb_frag_t *f) | 
|  | { | 
|  | unsigned long pfn = page_to_pfn(skb_frag_page(f)); | 
|  | return pfn_to_kaddr(pfn) + f->page_offset; | 
|  | } | 
|  |  | 
|  | /* Acquire a completion entry and an egress slot, or if we can't, | 
|  | * stop the queue and schedule the tx_wake timer. | 
|  | */ | 
|  | static s64 tile_net_equeue_try_reserve(struct net_device *dev, | 
|  | struct tile_net_comps *comps, | 
|  | gxio_mpipe_equeue_t *equeue, | 
|  | int num_edescs) | 
|  | { | 
|  | /* Try to acquire a completion entry. */ | 
|  | if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 || | 
|  | tile_net_free_comps(equeue, comps, 32, false) != 0) { | 
|  |  | 
|  | /* Try to acquire an egress slot. */ | 
|  | s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs); | 
|  | if (slot >= 0) | 
|  | return slot; | 
|  |  | 
|  | /* Freeing some completions gives the equeue time to drain. */ | 
|  | tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false); | 
|  |  | 
|  | slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs); | 
|  | if (slot >= 0) | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | /* Still nothing; give up and stop the queue for a short while. */ | 
|  | netif_stop_subqueue(dev, smp_processor_id()); | 
|  | tile_net_schedule_tx_wake_timer(dev); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Determine how many edesc's are needed for TSO. | 
|  | * | 
|  | * Sometimes, if "sendfile()" requires copying, we will be called with | 
|  | * "data" containing the header and payload, with "frags" being empty. | 
|  | * Sometimes, for example when using NFS over TCP, a single segment can | 
|  | * span 3 fragments.  This requires special care. | 
|  | */ | 
|  | static int tso_count_edescs(struct sk_buff *skb) | 
|  | { | 
|  | struct skb_shared_info *sh = skb_shinfo(skb); | 
|  | unsigned int data_len = skb->data_len; | 
|  | unsigned int p_len = sh->gso_size; | 
|  | long f_id = -1;    /* id of the current fragment */ | 
|  | long f_size = -1;  /* size of the current fragment */ | 
|  | long f_used = -1;  /* bytes used from the current fragment */ | 
|  | long n;            /* size of the current piece of payload */ | 
|  | int num_edescs = 0; | 
|  | int segment; | 
|  |  | 
|  | for (segment = 0; segment < sh->gso_segs; segment++) { | 
|  |  | 
|  | unsigned int p_used = 0; | 
|  |  | 
|  | /* One edesc for header and for each piece of the payload. */ | 
|  | for (num_edescs++; p_used < p_len; num_edescs++) { | 
|  |  | 
|  | /* Advance as needed. */ | 
|  | while (f_used >= f_size) { | 
|  | f_id++; | 
|  | f_size = sh->frags[f_id].size; | 
|  | f_used = 0; | 
|  | } | 
|  |  | 
|  | /* Use bytes from the current fragment. */ | 
|  | n = p_len - p_used; | 
|  | if (n > f_size - f_used) | 
|  | n = f_size - f_used; | 
|  | f_used += n; | 
|  | p_used += n; | 
|  | } | 
|  |  | 
|  | /* The last segment may be less than gso_size. */ | 
|  | data_len -= p_len; | 
|  | if (data_len < p_len) | 
|  | p_len = data_len; | 
|  | } | 
|  |  | 
|  | return num_edescs; | 
|  | } | 
|  |  | 
|  | /* Prepare modified copies of the skbuff headers. | 
|  | * FIXME: add support for IPv6. | 
|  | */ | 
|  | static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers, | 
|  | s64 slot) | 
|  | { | 
|  | struct skb_shared_info *sh = skb_shinfo(skb); | 
|  | struct iphdr *ih; | 
|  | struct tcphdr *th; | 
|  | unsigned int data_len = skb->data_len; | 
|  | unsigned char *data = skb->data; | 
|  | unsigned int ih_off, th_off, sh_len, p_len; | 
|  | unsigned int isum_seed, tsum_seed, id, seq; | 
|  | long f_id = -1;    /* id of the current fragment */ | 
|  | long f_size = -1;  /* size of the current fragment */ | 
|  | long f_used = -1;  /* bytes used from the current fragment */ | 
|  | long n;            /* size of the current piece of payload */ | 
|  | int segment; | 
|  |  | 
|  | /* Locate original headers and compute various lengths. */ | 
|  | ih = ip_hdr(skb); | 
|  | th = tcp_hdr(skb); | 
|  | ih_off = skb_network_offset(skb); | 
|  | th_off = skb_transport_offset(skb); | 
|  | sh_len = th_off + tcp_hdrlen(skb); | 
|  | p_len = sh->gso_size; | 
|  |  | 
|  | /* Set up seed values for IP and TCP csum and initialize id and seq. */ | 
|  | isum_seed = ((0xFFFF - ih->check) + | 
|  | (0xFFFF - ih->tot_len) + | 
|  | (0xFFFF - ih->id)); | 
|  | tsum_seed = th->check + (0xFFFF ^ htons(skb->len)); | 
|  | id = ntohs(ih->id); | 
|  | seq = ntohl(th->seq); | 
|  |  | 
|  | /* Prepare all the headers. */ | 
|  | for (segment = 0; segment < sh->gso_segs; segment++) { | 
|  | unsigned char *buf; | 
|  | unsigned int p_used = 0; | 
|  |  | 
|  | /* Copy to the header memory for this segment. */ | 
|  | buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES + | 
|  | NET_IP_ALIGN; | 
|  | memcpy(buf, data, sh_len); | 
|  |  | 
|  | /* Update copied ip header. */ | 
|  | ih = (struct iphdr *)(buf + ih_off); | 
|  | ih->tot_len = htons(sh_len + p_len - ih_off); | 
|  | ih->id = htons(id); | 
|  | ih->check = csum_long(isum_seed + ih->tot_len + | 
|  | ih->id) ^ 0xffff; | 
|  |  | 
|  | /* Update copied tcp header. */ | 
|  | th = (struct tcphdr *)(buf + th_off); | 
|  | th->seq = htonl(seq); | 
|  | th->check = csum_long(tsum_seed + htons(sh_len + p_len)); | 
|  | if (segment != sh->gso_segs - 1) { | 
|  | th->fin = 0; | 
|  | th->psh = 0; | 
|  | } | 
|  |  | 
|  | /* Skip past the header. */ | 
|  | slot++; | 
|  |  | 
|  | /* Skip past the payload. */ | 
|  | while (p_used < p_len) { | 
|  |  | 
|  | /* Advance as needed. */ | 
|  | while (f_used >= f_size) { | 
|  | f_id++; | 
|  | f_size = sh->frags[f_id].size; | 
|  | f_used = 0; | 
|  | } | 
|  |  | 
|  | /* Use bytes from the current fragment. */ | 
|  | n = p_len - p_used; | 
|  | if (n > f_size - f_used) | 
|  | n = f_size - f_used; | 
|  | f_used += n; | 
|  | p_used += n; | 
|  |  | 
|  | slot++; | 
|  | } | 
|  |  | 
|  | id++; | 
|  | seq += p_len; | 
|  |  | 
|  | /* The last segment may be less than gso_size. */ | 
|  | data_len -= p_len; | 
|  | if (data_len < p_len) | 
|  | p_len = data_len; | 
|  | } | 
|  |  | 
|  | /* Flush the headers so they are ready for hardware DMA. */ | 
|  | wmb(); | 
|  | } | 
|  |  | 
|  | /* Pass all the data to mpipe for egress. */ | 
|  | static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue, | 
|  | struct sk_buff *skb, unsigned char *headers, s64 slot) | 
|  | { | 
|  | struct tile_net_priv *priv = netdev_priv(dev); | 
|  | struct skb_shared_info *sh = skb_shinfo(skb); | 
|  | unsigned int data_len = skb->data_len; | 
|  | unsigned int p_len = sh->gso_size; | 
|  | gxio_mpipe_edesc_t edesc_head = { { 0 } }; | 
|  | gxio_mpipe_edesc_t edesc_body = { { 0 } }; | 
|  | long f_id = -1;    /* id of the current fragment */ | 
|  | long f_size = -1;  /* size of the current fragment */ | 
|  | long f_used = -1;  /* bytes used from the current fragment */ | 
|  | long n;            /* size of the current piece of payload */ | 
|  | unsigned long tx_packets = 0, tx_bytes = 0; | 
|  | unsigned int csum_start, sh_len; | 
|  | int segment; | 
|  |  | 
|  | /* Prepare to egress the headers: set up header edesc. */ | 
|  | csum_start = skb_checksum_start_offset(skb); | 
|  | sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
|  | edesc_head.csum = 1; | 
|  | edesc_head.csum_start = csum_start; | 
|  | edesc_head.csum_dest = csum_start + skb->csum_offset; | 
|  | edesc_head.xfer_size = sh_len; | 
|  |  | 
|  | /* This is only used to specify the TLB. */ | 
|  | edesc_head.stack_idx = large_buffer_stack; | 
|  | edesc_body.stack_idx = large_buffer_stack; | 
|  |  | 
|  | /* Egress all the edescs. */ | 
|  | for (segment = 0; segment < sh->gso_segs; segment++) { | 
|  | void *va; | 
|  | unsigned char *buf; | 
|  | unsigned int p_used = 0; | 
|  |  | 
|  | /* Egress the header. */ | 
|  | buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES + | 
|  | NET_IP_ALIGN; | 
|  | edesc_head.va = va_to_tile_io_addr(buf); | 
|  | gxio_mpipe_equeue_put_at(equeue, edesc_head, slot); | 
|  | slot++; | 
|  |  | 
|  | /* Egress the payload. */ | 
|  | while (p_used < p_len) { | 
|  |  | 
|  | /* Advance as needed. */ | 
|  | while (f_used >= f_size) { | 
|  | f_id++; | 
|  | f_size = sh->frags[f_id].size; | 
|  | f_used = 0; | 
|  | } | 
|  |  | 
|  | va = tile_net_frag_buf(&sh->frags[f_id]) + f_used; | 
|  |  | 
|  | /* Use bytes from the current fragment. */ | 
|  | n = p_len - p_used; | 
|  | if (n > f_size - f_used) | 
|  | n = f_size - f_used; | 
|  | f_used += n; | 
|  | p_used += n; | 
|  |  | 
|  | /* Egress a piece of the payload. */ | 
|  | edesc_body.va = va_to_tile_io_addr(va); | 
|  | edesc_body.xfer_size = n; | 
|  | edesc_body.bound = !(p_used < p_len); | 
|  | gxio_mpipe_equeue_put_at(equeue, edesc_body, slot); | 
|  | slot++; | 
|  | } | 
|  |  | 
|  | tx_packets++; | 
|  | tx_bytes += sh_len + p_len; | 
|  |  | 
|  | /* The last segment may be less than gso_size. */ | 
|  | data_len -= p_len; | 
|  | if (data_len < p_len) | 
|  | p_len = data_len; | 
|  | } | 
|  |  | 
|  | /* Update stats. */ | 
|  | tile_net_stats_add(tx_packets, &priv->stats.tx_packets); | 
|  | tile_net_stats_add(tx_bytes, &priv->stats.tx_bytes); | 
|  | } | 
|  |  | 
|  | /* Do "TSO" handling for egress. | 
|  | * | 
|  | * Normally drivers set NETIF_F_TSO only to support hardware TSO; | 
|  | * otherwise the stack uses scatter-gather to implement GSO in software. | 
|  | * On our testing, enabling GSO support (via NETIF_F_SG) drops network | 
|  | * performance down to around 7.5 Gbps on the 10G interfaces, although | 
|  | * also dropping cpu utilization way down, to under 8%.  But | 
|  | * implementing "TSO" in the driver brings performance back up to line | 
|  | * rate, while dropping cpu usage even further, to less than 4%.  In | 
|  | * practice, profiling of GSO shows that skb_segment() is what causes | 
|  | * the performance overheads; we benefit in the driver from using | 
|  | * preallocated memory to duplicate the TCP/IP headers. | 
|  | */ | 
|  | static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | struct tile_net_priv *priv = netdev_priv(dev); | 
|  | int channel = priv->echannel; | 
|  | struct tile_net_egress *egress = &egress_for_echannel[channel]; | 
|  | struct tile_net_comps *comps = info->comps_for_echannel[channel]; | 
|  | gxio_mpipe_equeue_t *equeue = egress->equeue; | 
|  | unsigned long irqflags; | 
|  | int num_edescs; | 
|  | s64 slot; | 
|  |  | 
|  | /* Determine how many mpipe edesc's are needed. */ | 
|  | num_edescs = tso_count_edescs(skb); | 
|  |  | 
|  | local_irq_save(irqflags); | 
|  |  | 
|  | /* Try to acquire a completion entry and an egress slot. */ | 
|  | slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs); | 
|  | if (slot < 0) { | 
|  | local_irq_restore(irqflags); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | /* Set up copies of header data properly. */ | 
|  | tso_headers_prepare(skb, egress->headers, slot); | 
|  |  | 
|  | /* Actually pass the data to the network hardware. */ | 
|  | tso_egress(dev, equeue, skb, egress->headers, slot); | 
|  |  | 
|  | /* Add a completion record. */ | 
|  | add_comp(equeue, comps, slot + num_edescs - 1, skb); | 
|  |  | 
|  | local_irq_restore(irqflags); | 
|  |  | 
|  | /* Make sure the egress timer is scheduled. */ | 
|  | tile_net_schedule_egress_timer(); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /* Analyze the body and frags for a transmit request. */ | 
|  | static unsigned int tile_net_tx_frags(struct frag *frags, | 
|  | struct sk_buff *skb, | 
|  | void *b_data, unsigned int b_len) | 
|  | { | 
|  | unsigned int i, n = 0; | 
|  |  | 
|  | struct skb_shared_info *sh = skb_shinfo(skb); | 
|  |  | 
|  | if (b_len != 0) { | 
|  | frags[n].buf = b_data; | 
|  | frags[n++].length = b_len; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < sh->nr_frags; i++) { | 
|  | skb_frag_t *f = &sh->frags[i]; | 
|  | frags[n].buf = tile_net_frag_buf(f); | 
|  | frags[n++].length = skb_frag_size(f); | 
|  | } | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* Help the kernel transmit a packet. */ | 
|  | static int tile_net_tx(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | struct tile_net_priv *priv = netdev_priv(dev); | 
|  | struct tile_net_egress *egress = &egress_for_echannel[priv->echannel]; | 
|  | gxio_mpipe_equeue_t *equeue = egress->equeue; | 
|  | struct tile_net_comps *comps = | 
|  | info->comps_for_echannel[priv->echannel]; | 
|  | unsigned int len = skb->len; | 
|  | unsigned char *data = skb->data; | 
|  | unsigned int num_edescs; | 
|  | struct frag frags[MAX_FRAGS]; | 
|  | gxio_mpipe_edesc_t edescs[MAX_FRAGS]; | 
|  | unsigned long irqflags; | 
|  | gxio_mpipe_edesc_t edesc = { { 0 } }; | 
|  | unsigned int i; | 
|  | s64 slot; | 
|  |  | 
|  | if (skb_is_gso(skb)) | 
|  | return tile_net_tx_tso(skb, dev); | 
|  |  | 
|  | num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb)); | 
|  |  | 
|  | /* This is only used to specify the TLB. */ | 
|  | edesc.stack_idx = large_buffer_stack; | 
|  |  | 
|  | /* Prepare the edescs. */ | 
|  | for (i = 0; i < num_edescs; i++) { | 
|  | edesc.xfer_size = frags[i].length; | 
|  | edesc.va = va_to_tile_io_addr(frags[i].buf); | 
|  | edescs[i] = edesc; | 
|  | } | 
|  |  | 
|  | /* Mark the final edesc. */ | 
|  | edescs[num_edescs - 1].bound = 1; | 
|  |  | 
|  | /* Add checksum info to the initial edesc, if needed. */ | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | unsigned int csum_start = skb_checksum_start_offset(skb); | 
|  | edescs[0].csum = 1; | 
|  | edescs[0].csum_start = csum_start; | 
|  | edescs[0].csum_dest = csum_start + skb->csum_offset; | 
|  | } | 
|  |  | 
|  | local_irq_save(irqflags); | 
|  |  | 
|  | /* Try to acquire a completion entry and an egress slot. */ | 
|  | slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs); | 
|  | if (slot < 0) { | 
|  | local_irq_restore(irqflags); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_edescs; i++) | 
|  | gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++); | 
|  |  | 
|  | /* Add a completion record. */ | 
|  | add_comp(equeue, comps, slot - 1, skb); | 
|  |  | 
|  | /* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */ | 
|  | tile_net_stats_add(1, &priv->stats.tx_packets); | 
|  | tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN), | 
|  | &priv->stats.tx_bytes); | 
|  |  | 
|  | local_irq_restore(irqflags); | 
|  |  | 
|  | /* Make sure the egress timer is scheduled. */ | 
|  | tile_net_schedule_egress_timer(); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /* Return subqueue id on this core (one per core). */ | 
|  | static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb) | 
|  | { | 
|  | return smp_processor_id(); | 
|  | } | 
|  |  | 
|  | /* Deal with a transmit timeout. */ | 
|  | static void tile_net_tx_timeout(struct net_device *dev) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | netif_wake_subqueue(dev, cpu); | 
|  | } | 
|  |  | 
|  | /* Ioctl commands. */ | 
|  | static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /* Get system network statistics for device. */ | 
|  | static struct net_device_stats *tile_net_get_stats(struct net_device *dev) | 
|  | { | 
|  | struct tile_net_priv *priv = netdev_priv(dev); | 
|  | return &priv->stats; | 
|  | } | 
|  |  | 
|  | /* Change the MTU. */ | 
|  | static int tile_net_change_mtu(struct net_device *dev, int new_mtu) | 
|  | { | 
|  | if ((new_mtu < 68) || (new_mtu > 1500)) | 
|  | return -EINVAL; | 
|  | dev->mtu = new_mtu; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Change the Ethernet address of the NIC. | 
|  | * | 
|  | * The hypervisor driver does not support changing MAC address.  However, | 
|  | * the hardware does not do anything with the MAC address, so the address | 
|  | * which gets used on outgoing packets, and which is accepted on incoming | 
|  | * packets, is completely up to us. | 
|  | * | 
|  | * Returns 0 on success, negative on failure. | 
|  | */ | 
|  | static int tile_net_set_mac_address(struct net_device *dev, void *p) | 
|  | { | 
|  | struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EINVAL; | 
|  | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* Polling 'interrupt' - used by things like netconsole to send skbs | 
|  | * without having to re-enable interrupts. It's not called while | 
|  | * the interrupt routine is executing. | 
|  | */ | 
|  | static void tile_net_netpoll(struct net_device *dev) | 
|  | { | 
|  | disable_percpu_irq(ingress_irq); | 
|  | tile_net_handle_ingress_irq(ingress_irq, NULL); | 
|  | enable_percpu_irq(ingress_irq, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct net_device_ops tile_net_ops = { | 
|  | .ndo_open = tile_net_open, | 
|  | .ndo_stop = tile_net_stop, | 
|  | .ndo_start_xmit = tile_net_tx, | 
|  | .ndo_select_queue = tile_net_select_queue, | 
|  | .ndo_do_ioctl = tile_net_ioctl, | 
|  | .ndo_get_stats = tile_net_get_stats, | 
|  | .ndo_change_mtu = tile_net_change_mtu, | 
|  | .ndo_tx_timeout = tile_net_tx_timeout, | 
|  | .ndo_set_mac_address = tile_net_set_mac_address, | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller = tile_net_netpoll, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* The setup function. | 
|  | * | 
|  | * This uses ether_setup() to assign various fields in dev, including | 
|  | * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields. | 
|  | */ | 
|  | static void tile_net_setup(struct net_device *dev) | 
|  | { | 
|  | ether_setup(dev); | 
|  | dev->netdev_ops = &tile_net_ops; | 
|  | dev->watchdog_timeo = TILE_NET_TIMEOUT; | 
|  | dev->features |= NETIF_F_LLTX; | 
|  | dev->features |= NETIF_F_HW_CSUM; | 
|  | dev->features |= NETIF_F_SG; | 
|  | dev->features |= NETIF_F_TSO; | 
|  | dev->mtu = 1500; | 
|  | } | 
|  |  | 
|  | /* Allocate the device structure, register the device, and obtain the | 
|  | * MAC address from the hypervisor. | 
|  | */ | 
|  | static void tile_net_dev_init(const char *name, const uint8_t *mac) | 
|  | { | 
|  | int ret; | 
|  | int i; | 
|  | int nz_addr = 0; | 
|  | struct net_device *dev; | 
|  | struct tile_net_priv *priv; | 
|  |  | 
|  | /* HACK: Ignore "loop" links. */ | 
|  | if (strncmp(name, "loop", 4) == 0) | 
|  | return; | 
|  |  | 
|  | /* Allocate the device structure.  Normally, "name" is a | 
|  | * template, instantiated by register_netdev(), but not for us. | 
|  | */ | 
|  | dev = alloc_netdev_mqs(sizeof(*priv), name, tile_net_setup, | 
|  | NR_CPUS, 1); | 
|  | if (!dev) { | 
|  | pr_err("alloc_netdev_mqs(%s) failed\n", name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Initialize "priv". */ | 
|  | priv = netdev_priv(dev); | 
|  | memset(priv, 0, sizeof(*priv)); | 
|  | priv->dev = dev; | 
|  | priv->channel = -1; | 
|  | priv->loopify_channel = -1; | 
|  | priv->echannel = -1; | 
|  |  | 
|  | /* Get the MAC address and set it in the device struct; this must | 
|  | * be done before the device is opened.  If the MAC is all zeroes, | 
|  | * we use a random address, since we're probably on the simulator. | 
|  | */ | 
|  | for (i = 0; i < 6; i++) | 
|  | nz_addr |= mac[i]; | 
|  |  | 
|  | if (nz_addr) { | 
|  | memcpy(dev->dev_addr, mac, 6); | 
|  | dev->addr_len = 6; | 
|  | } else { | 
|  | random_ether_addr(dev->dev_addr); | 
|  | } | 
|  |  | 
|  | /* Register the network device. */ | 
|  | ret = register_netdev(dev); | 
|  | if (ret) { | 
|  | netdev_err(dev, "register_netdev failed %d\n", ret); | 
|  | free_netdev(dev); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Per-cpu module initialization. */ | 
|  | static void tile_net_init_module_percpu(void *unused) | 
|  | { | 
|  | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | 
|  | int my_cpu = smp_processor_id(); | 
|  |  | 
|  | info->has_iqueue = false; | 
|  |  | 
|  | info->my_cpu = my_cpu; | 
|  |  | 
|  | /* Initialize the egress timer. */ | 
|  | hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | info->egress_timer.function = tile_net_handle_egress_timer; | 
|  | } | 
|  |  | 
|  | /* Module initialization. */ | 
|  | static int __init tile_net_init_module(void) | 
|  | { | 
|  | int i; | 
|  | char name[GXIO_MPIPE_LINK_NAME_LEN]; | 
|  | uint8_t mac[6]; | 
|  |  | 
|  | pr_info("Tilera Network Driver\n"); | 
|  |  | 
|  | mutex_init(&tile_net_devs_for_channel_mutex); | 
|  |  | 
|  | /* Initialize each CPU. */ | 
|  | on_each_cpu(tile_net_init_module_percpu, NULL, 1); | 
|  |  | 
|  | /* Find out what devices we have, and initialize them. */ | 
|  | for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++) | 
|  | tile_net_dev_init(name, mac); | 
|  |  | 
|  | if (!network_cpus_init()) | 
|  | network_cpus_map = *cpu_online_mask; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(tile_net_init_module); |