| /* | 
 |  *	Generic address resolution entity | 
 |  * | 
 |  *	Authors: | 
 |  *	Pedro Roque		<roque@di.fc.ul.pt> | 
 |  *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru> | 
 |  * | 
 |  *	This program is free software; you can redistribute it and/or | 
 |  *      modify it under the terms of the GNU General Public License | 
 |  *      as published by the Free Software Foundation; either version | 
 |  *      2 of the License, or (at your option) any later version. | 
 |  * | 
 |  *	Fixes: | 
 |  *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add. | 
 |  *	Harald Welte		Add neighbour cache statistics like rtstat | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/types.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/socket.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/proc_fs.h> | 
 | #ifdef CONFIG_SYSCTL | 
 | #include <linux/sysctl.h> | 
 | #endif | 
 | #include <linux/times.h> | 
 | #include <net/net_namespace.h> | 
 | #include <net/neighbour.h> | 
 | #include <net/dst.h> | 
 | #include <net/sock.h> | 
 | #include <net/netevent.h> | 
 | #include <net/netlink.h> | 
 | #include <linux/rtnetlink.h> | 
 | #include <linux/random.h> | 
 | #include <linux/string.h> | 
 | #include <linux/log2.h> | 
 |  | 
 | #define NEIGH_DEBUG 1 | 
 |  | 
 | #define NEIGH_PRINTK(x...) printk(x) | 
 | #define NEIGH_NOPRINTK(x...) do { ; } while(0) | 
 | #define NEIGH_PRINTK1 NEIGH_NOPRINTK | 
 | #define NEIGH_PRINTK2 NEIGH_NOPRINTK | 
 |  | 
 | #if NEIGH_DEBUG >= 1 | 
 | #undef NEIGH_PRINTK1 | 
 | #define NEIGH_PRINTK1 NEIGH_PRINTK | 
 | #endif | 
 | #if NEIGH_DEBUG >= 2 | 
 | #undef NEIGH_PRINTK2 | 
 | #define NEIGH_PRINTK2 NEIGH_PRINTK | 
 | #endif | 
 |  | 
 | #define PNEIGH_HASHMASK		0xF | 
 |  | 
 | static void neigh_timer_handler(unsigned long arg); | 
 | static void __neigh_notify(struct neighbour *n, int type, int flags); | 
 | static void neigh_update_notify(struct neighbour *neigh); | 
 | static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); | 
 |  | 
 | static struct neigh_table *neigh_tables; | 
 | #ifdef CONFIG_PROC_FS | 
 | static const struct file_operations neigh_stat_seq_fops; | 
 | #endif | 
 |  | 
 | /* | 
 |    Neighbour hash table buckets are protected with rwlock tbl->lock. | 
 |  | 
 |    - All the scans/updates to hash buckets MUST be made under this lock. | 
 |    - NOTHING clever should be made under this lock: no callbacks | 
 |      to protocol backends, no attempts to send something to network. | 
 |      It will result in deadlocks, if backend/driver wants to use neighbour | 
 |      cache. | 
 |    - If the entry requires some non-trivial actions, increase | 
 |      its reference count and release table lock. | 
 |  | 
 |    Neighbour entries are protected: | 
 |    - with reference count. | 
 |    - with rwlock neigh->lock | 
 |  | 
 |    Reference count prevents destruction. | 
 |  | 
 |    neigh->lock mainly serializes ll address data and its validity state. | 
 |    However, the same lock is used to protect another entry fields: | 
 |     - timer | 
 |     - resolution queue | 
 |  | 
 |    Again, nothing clever shall be made under neigh->lock, | 
 |    the most complicated procedure, which we allow is dev->hard_header. | 
 |    It is supposed, that dev->hard_header is simplistic and does | 
 |    not make callbacks to neighbour tables. | 
 |  | 
 |    The last lock is neigh_tbl_lock. It is pure SMP lock, protecting | 
 |    list of neighbour tables. This list is used only in process context, | 
 |  */ | 
 |  | 
 | static DEFINE_RWLOCK(neigh_tbl_lock); | 
 |  | 
 | static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) | 
 | { | 
 | 	kfree_skb(skb); | 
 | 	return -ENETDOWN; | 
 | } | 
 |  | 
 | static void neigh_cleanup_and_release(struct neighbour *neigh) | 
 | { | 
 | 	if (neigh->parms->neigh_cleanup) | 
 | 		neigh->parms->neigh_cleanup(neigh); | 
 |  | 
 | 	__neigh_notify(neigh, RTM_DELNEIGH, 0); | 
 | 	neigh_release(neigh); | 
 | } | 
 |  | 
 | /* | 
 |  * It is random distribution in the interval (1/2)*base...(3/2)*base. | 
 |  * It corresponds to default IPv6 settings and is not overridable, | 
 |  * because it is really reasonable choice. | 
 |  */ | 
 |  | 
 | unsigned long neigh_rand_reach_time(unsigned long base) | 
 | { | 
 | 	return base ? (net_random() % base) + (base >> 1) : 0; | 
 | } | 
 | EXPORT_SYMBOL(neigh_rand_reach_time); | 
 |  | 
 |  | 
 | static int neigh_forced_gc(struct neigh_table *tbl) | 
 | { | 
 | 	int shrunk = 0; | 
 | 	int i; | 
 | 	struct neigh_hash_table *nht; | 
 |  | 
 | 	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); | 
 |  | 
 | 	write_lock_bh(&tbl->lock); | 
 | 	nht = rcu_dereference_protected(tbl->nht, | 
 | 					lockdep_is_held(&tbl->lock)); | 
 | 	for (i = 0; i < (1 << nht->hash_shift); i++) { | 
 | 		struct neighbour *n; | 
 | 		struct neighbour __rcu **np; | 
 |  | 
 | 		np = &nht->hash_buckets[i]; | 
 | 		while ((n = rcu_dereference_protected(*np, | 
 | 					lockdep_is_held(&tbl->lock))) != NULL) { | 
 | 			/* Neighbour record may be discarded if: | 
 | 			 * - nobody refers to it. | 
 | 			 * - it is not permanent | 
 | 			 */ | 
 | 			write_lock(&n->lock); | 
 | 			if (atomic_read(&n->refcnt) == 1 && | 
 | 			    !(n->nud_state & NUD_PERMANENT)) { | 
 | 				rcu_assign_pointer(*np, | 
 | 					rcu_dereference_protected(n->next, | 
 | 						  lockdep_is_held(&tbl->lock))); | 
 | 				n->dead = 1; | 
 | 				shrunk	= 1; | 
 | 				write_unlock(&n->lock); | 
 | 				neigh_cleanup_and_release(n); | 
 | 				continue; | 
 | 			} | 
 | 			write_unlock(&n->lock); | 
 | 			np = &n->next; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tbl->last_flush = jiffies; | 
 |  | 
 | 	write_unlock_bh(&tbl->lock); | 
 |  | 
 | 	return shrunk; | 
 | } | 
 |  | 
 | static void neigh_add_timer(struct neighbour *n, unsigned long when) | 
 | { | 
 | 	neigh_hold(n); | 
 | 	if (unlikely(mod_timer(&n->timer, when))) { | 
 | 		printk("NEIGH: BUG, double timer add, state is %x\n", | 
 | 		       n->nud_state); | 
 | 		dump_stack(); | 
 | 	} | 
 | } | 
 |  | 
 | static int neigh_del_timer(struct neighbour *n) | 
 | { | 
 | 	if ((n->nud_state & NUD_IN_TIMER) && | 
 | 	    del_timer(&n->timer)) { | 
 | 		neigh_release(n); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void pneigh_queue_purge(struct sk_buff_head *list) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	while ((skb = skb_dequeue(list)) != NULL) { | 
 | 		dev_put(skb->dev); | 
 | 		kfree_skb(skb); | 
 | 	} | 
 | } | 
 |  | 
 | static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) | 
 | { | 
 | 	int i; | 
 | 	struct neigh_hash_table *nht; | 
 |  | 
 | 	nht = rcu_dereference_protected(tbl->nht, | 
 | 					lockdep_is_held(&tbl->lock)); | 
 |  | 
 | 	for (i = 0; i < (1 << nht->hash_shift); i++) { | 
 | 		struct neighbour *n; | 
 | 		struct neighbour __rcu **np = &nht->hash_buckets[i]; | 
 |  | 
 | 		while ((n = rcu_dereference_protected(*np, | 
 | 					lockdep_is_held(&tbl->lock))) != NULL) { | 
 | 			if (dev && n->dev != dev) { | 
 | 				np = &n->next; | 
 | 				continue; | 
 | 			} | 
 | 			rcu_assign_pointer(*np, | 
 | 				   rcu_dereference_protected(n->next, | 
 | 						lockdep_is_held(&tbl->lock))); | 
 | 			write_lock(&n->lock); | 
 | 			neigh_del_timer(n); | 
 | 			n->dead = 1; | 
 |  | 
 | 			if (atomic_read(&n->refcnt) != 1) { | 
 | 				/* The most unpleasant situation. | 
 | 				   We must destroy neighbour entry, | 
 | 				   but someone still uses it. | 
 |  | 
 | 				   The destroy will be delayed until | 
 | 				   the last user releases us, but | 
 | 				   we must kill timers etc. and move | 
 | 				   it to safe state. | 
 | 				 */ | 
 | 				skb_queue_purge(&n->arp_queue); | 
 | 				n->arp_queue_len_bytes = 0; | 
 | 				n->output = neigh_blackhole; | 
 | 				if (n->nud_state & NUD_VALID) | 
 | 					n->nud_state = NUD_NOARP; | 
 | 				else | 
 | 					n->nud_state = NUD_NONE; | 
 | 				NEIGH_PRINTK2("neigh %p is stray.\n", n); | 
 | 			} | 
 | 			write_unlock(&n->lock); | 
 | 			neigh_cleanup_and_release(n); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) | 
 | { | 
 | 	write_lock_bh(&tbl->lock); | 
 | 	neigh_flush_dev(tbl, dev); | 
 | 	write_unlock_bh(&tbl->lock); | 
 | } | 
 | EXPORT_SYMBOL(neigh_changeaddr); | 
 |  | 
 | int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) | 
 | { | 
 | 	write_lock_bh(&tbl->lock); | 
 | 	neigh_flush_dev(tbl, dev); | 
 | 	pneigh_ifdown(tbl, dev); | 
 | 	write_unlock_bh(&tbl->lock); | 
 |  | 
 | 	del_timer_sync(&tbl->proxy_timer); | 
 | 	pneigh_queue_purge(&tbl->proxy_queue); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(neigh_ifdown); | 
 |  | 
 | static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev) | 
 | { | 
 | 	struct neighbour *n = NULL; | 
 | 	unsigned long now = jiffies; | 
 | 	int entries; | 
 |  | 
 | 	entries = atomic_inc_return(&tbl->entries) - 1; | 
 | 	if (entries >= tbl->gc_thresh3 || | 
 | 	    (entries >= tbl->gc_thresh2 && | 
 | 	     time_after(now, tbl->last_flush + 5 * HZ))) { | 
 | 		if (!neigh_forced_gc(tbl) && | 
 | 		    entries >= tbl->gc_thresh3) | 
 | 			goto out_entries; | 
 | 	} | 
 |  | 
 | 	if (tbl->entry_size) | 
 | 		n = kzalloc(tbl->entry_size, GFP_ATOMIC); | 
 | 	else { | 
 | 		int sz = sizeof(*n) + tbl->key_len; | 
 |  | 
 | 		sz = ALIGN(sz, NEIGH_PRIV_ALIGN); | 
 | 		sz += dev->neigh_priv_len; | 
 | 		n = kzalloc(sz, GFP_ATOMIC); | 
 | 	} | 
 | 	if (!n) | 
 | 		goto out_entries; | 
 |  | 
 | 	skb_queue_head_init(&n->arp_queue); | 
 | 	rwlock_init(&n->lock); | 
 | 	seqlock_init(&n->ha_lock); | 
 | 	n->updated	  = n->used = now; | 
 | 	n->nud_state	  = NUD_NONE; | 
 | 	n->output	  = neigh_blackhole; | 
 | 	seqlock_init(&n->hh.hh_lock); | 
 | 	n->parms	  = neigh_parms_clone(&tbl->parms); | 
 | 	setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); | 
 |  | 
 | 	NEIGH_CACHE_STAT_INC(tbl, allocs); | 
 | 	n->tbl		  = tbl; | 
 | 	atomic_set(&n->refcnt, 1); | 
 | 	n->dead		  = 1; | 
 | out: | 
 | 	return n; | 
 |  | 
 | out_entries: | 
 | 	atomic_dec(&tbl->entries); | 
 | 	goto out; | 
 | } | 
 |  | 
 | static void neigh_get_hash_rnd(u32 *x) | 
 | { | 
 | 	get_random_bytes(x, sizeof(*x)); | 
 | 	*x |= 1; | 
 | } | 
 |  | 
 | static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) | 
 | { | 
 | 	size_t size = (1 << shift) * sizeof(struct neighbour *); | 
 | 	struct neigh_hash_table *ret; | 
 | 	struct neighbour __rcu **buckets; | 
 | 	int i; | 
 |  | 
 | 	ret = kmalloc(sizeof(*ret), GFP_ATOMIC); | 
 | 	if (!ret) | 
 | 		return NULL; | 
 | 	if (size <= PAGE_SIZE) | 
 | 		buckets = kzalloc(size, GFP_ATOMIC); | 
 | 	else | 
 | 		buckets = (struct neighbour __rcu **) | 
 | 			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO, | 
 | 					   get_order(size)); | 
 | 	if (!buckets) { | 
 | 		kfree(ret); | 
 | 		return NULL; | 
 | 	} | 
 | 	ret->hash_buckets = buckets; | 
 | 	ret->hash_shift = shift; | 
 | 	for (i = 0; i < NEIGH_NUM_HASH_RND; i++) | 
 | 		neigh_get_hash_rnd(&ret->hash_rnd[i]); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void neigh_hash_free_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct neigh_hash_table *nht = container_of(head, | 
 | 						    struct neigh_hash_table, | 
 | 						    rcu); | 
 | 	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); | 
 | 	struct neighbour __rcu **buckets = nht->hash_buckets; | 
 |  | 
 | 	if (size <= PAGE_SIZE) | 
 | 		kfree(buckets); | 
 | 	else | 
 | 		free_pages((unsigned long)buckets, get_order(size)); | 
 | 	kfree(nht); | 
 | } | 
 |  | 
 | static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, | 
 | 						unsigned long new_shift) | 
 | { | 
 | 	unsigned int i, hash; | 
 | 	struct neigh_hash_table *new_nht, *old_nht; | 
 |  | 
 | 	NEIGH_CACHE_STAT_INC(tbl, hash_grows); | 
 |  | 
 | 	old_nht = rcu_dereference_protected(tbl->nht, | 
 | 					    lockdep_is_held(&tbl->lock)); | 
 | 	new_nht = neigh_hash_alloc(new_shift); | 
 | 	if (!new_nht) | 
 | 		return old_nht; | 
 |  | 
 | 	for (i = 0; i < (1 << old_nht->hash_shift); i++) { | 
 | 		struct neighbour *n, *next; | 
 |  | 
 | 		for (n = rcu_dereference_protected(old_nht->hash_buckets[i], | 
 | 						   lockdep_is_held(&tbl->lock)); | 
 | 		     n != NULL; | 
 | 		     n = next) { | 
 | 			hash = tbl->hash(n->primary_key, n->dev, | 
 | 					 new_nht->hash_rnd); | 
 |  | 
 | 			hash >>= (32 - new_nht->hash_shift); | 
 | 			next = rcu_dereference_protected(n->next, | 
 | 						lockdep_is_held(&tbl->lock)); | 
 |  | 
 | 			rcu_assign_pointer(n->next, | 
 | 					   rcu_dereference_protected( | 
 | 						new_nht->hash_buckets[hash], | 
 | 						lockdep_is_held(&tbl->lock))); | 
 | 			rcu_assign_pointer(new_nht->hash_buckets[hash], n); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_assign_pointer(tbl->nht, new_nht); | 
 | 	call_rcu(&old_nht->rcu, neigh_hash_free_rcu); | 
 | 	return new_nht; | 
 | } | 
 |  | 
 | struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, | 
 | 			       struct net_device *dev) | 
 | { | 
 | 	struct neighbour *n; | 
 | 	int key_len = tbl->key_len; | 
 | 	u32 hash_val; | 
 | 	struct neigh_hash_table *nht; | 
 |  | 
 | 	NEIGH_CACHE_STAT_INC(tbl, lookups); | 
 |  | 
 | 	rcu_read_lock_bh(); | 
 | 	nht = rcu_dereference_bh(tbl->nht); | 
 | 	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); | 
 |  | 
 | 	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); | 
 | 	     n != NULL; | 
 | 	     n = rcu_dereference_bh(n->next)) { | 
 | 		if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { | 
 | 			if (!atomic_inc_not_zero(&n->refcnt)) | 
 | 				n = NULL; | 
 | 			NEIGH_CACHE_STAT_INC(tbl, hits); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock_bh(); | 
 | 	return n; | 
 | } | 
 | EXPORT_SYMBOL(neigh_lookup); | 
 |  | 
 | struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, | 
 | 				     const void *pkey) | 
 | { | 
 | 	struct neighbour *n; | 
 | 	int key_len = tbl->key_len; | 
 | 	u32 hash_val; | 
 | 	struct neigh_hash_table *nht; | 
 |  | 
 | 	NEIGH_CACHE_STAT_INC(tbl, lookups); | 
 |  | 
 | 	rcu_read_lock_bh(); | 
 | 	nht = rcu_dereference_bh(tbl->nht); | 
 | 	hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); | 
 |  | 
 | 	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); | 
 | 	     n != NULL; | 
 | 	     n = rcu_dereference_bh(n->next)) { | 
 | 		if (!memcmp(n->primary_key, pkey, key_len) && | 
 | 		    net_eq(dev_net(n->dev), net)) { | 
 | 			if (!atomic_inc_not_zero(&n->refcnt)) | 
 | 				n = NULL; | 
 | 			NEIGH_CACHE_STAT_INC(tbl, hits); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock_bh(); | 
 | 	return n; | 
 | } | 
 | EXPORT_SYMBOL(neigh_lookup_nodev); | 
 |  | 
 | struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, | 
 | 			       struct net_device *dev) | 
 | { | 
 | 	u32 hash_val; | 
 | 	int key_len = tbl->key_len; | 
 | 	int error; | 
 | 	struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev); | 
 | 	struct neigh_hash_table *nht; | 
 |  | 
 | 	if (!n) { | 
 | 		rc = ERR_PTR(-ENOBUFS); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memcpy(n->primary_key, pkey, key_len); | 
 | 	n->dev = dev; | 
 | 	dev_hold(dev); | 
 |  | 
 | 	/* Protocol specific setup. */ | 
 | 	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) { | 
 | 		rc = ERR_PTR(error); | 
 | 		goto out_neigh_release; | 
 | 	} | 
 |  | 
 | 	if (dev->netdev_ops->ndo_neigh_construct) { | 
 | 		error = dev->netdev_ops->ndo_neigh_construct(n); | 
 | 		if (error < 0) { | 
 | 			rc = ERR_PTR(error); | 
 | 			goto out_neigh_release; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Device specific setup. */ | 
 | 	if (n->parms->neigh_setup && | 
 | 	    (error = n->parms->neigh_setup(n)) < 0) { | 
 | 		rc = ERR_PTR(error); | 
 | 		goto out_neigh_release; | 
 | 	} | 
 |  | 
 | 	n->confirmed = jiffies - (n->parms->base_reachable_time << 1); | 
 |  | 
 | 	write_lock_bh(&tbl->lock); | 
 | 	nht = rcu_dereference_protected(tbl->nht, | 
 | 					lockdep_is_held(&tbl->lock)); | 
 |  | 
 | 	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) | 
 | 		nht = neigh_hash_grow(tbl, nht->hash_shift + 1); | 
 |  | 
 | 	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); | 
 |  | 
 | 	if (n->parms->dead) { | 
 | 		rc = ERR_PTR(-EINVAL); | 
 | 		goto out_tbl_unlock; | 
 | 	} | 
 |  | 
 | 	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], | 
 | 					    lockdep_is_held(&tbl->lock)); | 
 | 	     n1 != NULL; | 
 | 	     n1 = rcu_dereference_protected(n1->next, | 
 | 			lockdep_is_held(&tbl->lock))) { | 
 | 		if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { | 
 | 			neigh_hold(n1); | 
 | 			rc = n1; | 
 | 			goto out_tbl_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	n->dead = 0; | 
 | 	neigh_hold(n); | 
 | 	rcu_assign_pointer(n->next, | 
 | 			   rcu_dereference_protected(nht->hash_buckets[hash_val], | 
 | 						     lockdep_is_held(&tbl->lock))); | 
 | 	rcu_assign_pointer(nht->hash_buckets[hash_val], n); | 
 | 	write_unlock_bh(&tbl->lock); | 
 | 	NEIGH_PRINTK2("neigh %p is created.\n", n); | 
 | 	rc = n; | 
 | out: | 
 | 	return rc; | 
 | out_tbl_unlock: | 
 | 	write_unlock_bh(&tbl->lock); | 
 | out_neigh_release: | 
 | 	neigh_release(n); | 
 | 	goto out; | 
 | } | 
 | EXPORT_SYMBOL(neigh_create); | 
 |  | 
 | static u32 pneigh_hash(const void *pkey, int key_len) | 
 | { | 
 | 	u32 hash_val = *(u32 *)(pkey + key_len - 4); | 
 | 	hash_val ^= (hash_val >> 16); | 
 | 	hash_val ^= hash_val >> 8; | 
 | 	hash_val ^= hash_val >> 4; | 
 | 	hash_val &= PNEIGH_HASHMASK; | 
 | 	return hash_val; | 
 | } | 
 |  | 
 | static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, | 
 | 					      struct net *net, | 
 | 					      const void *pkey, | 
 | 					      int key_len, | 
 | 					      struct net_device *dev) | 
 | { | 
 | 	while (n) { | 
 | 		if (!memcmp(n->key, pkey, key_len) && | 
 | 		    net_eq(pneigh_net(n), net) && | 
 | 		    (n->dev == dev || !n->dev)) | 
 | 			return n; | 
 | 		n = n->next; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, | 
 | 		struct net *net, const void *pkey, struct net_device *dev) | 
 | { | 
 | 	int key_len = tbl->key_len; | 
 | 	u32 hash_val = pneigh_hash(pkey, key_len); | 
 |  | 
 | 	return __pneigh_lookup_1(tbl->phash_buckets[hash_val], | 
 | 				 net, pkey, key_len, dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__pneigh_lookup); | 
 |  | 
 | struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, | 
 | 				    struct net *net, const void *pkey, | 
 | 				    struct net_device *dev, int creat) | 
 | { | 
 | 	struct pneigh_entry *n; | 
 | 	int key_len = tbl->key_len; | 
 | 	u32 hash_val = pneigh_hash(pkey, key_len); | 
 |  | 
 | 	read_lock_bh(&tbl->lock); | 
 | 	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], | 
 | 			      net, pkey, key_len, dev); | 
 | 	read_unlock_bh(&tbl->lock); | 
 |  | 
 | 	if (n || !creat) | 
 | 		goto out; | 
 |  | 
 | 	ASSERT_RTNL(); | 
 |  | 
 | 	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); | 
 | 	if (!n) | 
 | 		goto out; | 
 |  | 
 | 	write_pnet(&n->net, hold_net(net)); | 
 | 	memcpy(n->key, pkey, key_len); | 
 | 	n->dev = dev; | 
 | 	if (dev) | 
 | 		dev_hold(dev); | 
 |  | 
 | 	if (tbl->pconstructor && tbl->pconstructor(n)) { | 
 | 		if (dev) | 
 | 			dev_put(dev); | 
 | 		release_net(net); | 
 | 		kfree(n); | 
 | 		n = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	write_lock_bh(&tbl->lock); | 
 | 	n->next = tbl->phash_buckets[hash_val]; | 
 | 	tbl->phash_buckets[hash_val] = n; | 
 | 	write_unlock_bh(&tbl->lock); | 
 | out: | 
 | 	return n; | 
 | } | 
 | EXPORT_SYMBOL(pneigh_lookup); | 
 |  | 
 |  | 
 | int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, | 
 | 		  struct net_device *dev) | 
 | { | 
 | 	struct pneigh_entry *n, **np; | 
 | 	int key_len = tbl->key_len; | 
 | 	u32 hash_val = pneigh_hash(pkey, key_len); | 
 |  | 
 | 	write_lock_bh(&tbl->lock); | 
 | 	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; | 
 | 	     np = &n->next) { | 
 | 		if (!memcmp(n->key, pkey, key_len) && n->dev == dev && | 
 | 		    net_eq(pneigh_net(n), net)) { | 
 | 			*np = n->next; | 
 | 			write_unlock_bh(&tbl->lock); | 
 | 			if (tbl->pdestructor) | 
 | 				tbl->pdestructor(n); | 
 | 			if (n->dev) | 
 | 				dev_put(n->dev); | 
 | 			release_net(pneigh_net(n)); | 
 | 			kfree(n); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	write_unlock_bh(&tbl->lock); | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) | 
 | { | 
 | 	struct pneigh_entry *n, **np; | 
 | 	u32 h; | 
 |  | 
 | 	for (h = 0; h <= PNEIGH_HASHMASK; h++) { | 
 | 		np = &tbl->phash_buckets[h]; | 
 | 		while ((n = *np) != NULL) { | 
 | 			if (!dev || n->dev == dev) { | 
 | 				*np = n->next; | 
 | 				if (tbl->pdestructor) | 
 | 					tbl->pdestructor(n); | 
 | 				if (n->dev) | 
 | 					dev_put(n->dev); | 
 | 				release_net(pneigh_net(n)); | 
 | 				kfree(n); | 
 | 				continue; | 
 | 			} | 
 | 			np = &n->next; | 
 | 		} | 
 | 	} | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | static void neigh_parms_destroy(struct neigh_parms *parms); | 
 |  | 
 | static inline void neigh_parms_put(struct neigh_parms *parms) | 
 | { | 
 | 	if (atomic_dec_and_test(&parms->refcnt)) | 
 | 		neigh_parms_destroy(parms); | 
 | } | 
 |  | 
 | /* | 
 |  *	neighbour must already be out of the table; | 
 |  * | 
 |  */ | 
 | void neigh_destroy(struct neighbour *neigh) | 
 | { | 
 | 	struct net_device *dev = neigh->dev; | 
 |  | 
 | 	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); | 
 |  | 
 | 	if (!neigh->dead) { | 
 | 		pr_warn("Destroying alive neighbour %p\n", neigh); | 
 | 		dump_stack(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (neigh_del_timer(neigh)) | 
 | 		pr_warn("Impossible event\n"); | 
 |  | 
 | 	skb_queue_purge(&neigh->arp_queue); | 
 | 	neigh->arp_queue_len_bytes = 0; | 
 |  | 
 | 	if (dev->netdev_ops->ndo_neigh_destroy) | 
 | 		dev->netdev_ops->ndo_neigh_destroy(neigh); | 
 |  | 
 | 	dev_put(dev); | 
 | 	neigh_parms_put(neigh->parms); | 
 |  | 
 | 	NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); | 
 |  | 
 | 	atomic_dec(&neigh->tbl->entries); | 
 | 	kfree_rcu(neigh, rcu); | 
 | } | 
 | EXPORT_SYMBOL(neigh_destroy); | 
 |  | 
 | /* Neighbour state is suspicious; | 
 |    disable fast path. | 
 |  | 
 |    Called with write_locked neigh. | 
 |  */ | 
 | static void neigh_suspect(struct neighbour *neigh) | 
 | { | 
 | 	NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); | 
 |  | 
 | 	neigh->output = neigh->ops->output; | 
 | } | 
 |  | 
 | /* Neighbour state is OK; | 
 |    enable fast path. | 
 |  | 
 |    Called with write_locked neigh. | 
 |  */ | 
 | static void neigh_connect(struct neighbour *neigh) | 
 | { | 
 | 	NEIGH_PRINTK2("neigh %p is connected.\n", neigh); | 
 |  | 
 | 	neigh->output = neigh->ops->connected_output; | 
 | } | 
 |  | 
 | static void neigh_periodic_work(struct work_struct *work) | 
 | { | 
 | 	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); | 
 | 	struct neighbour *n; | 
 | 	struct neighbour __rcu **np; | 
 | 	unsigned int i; | 
 | 	struct neigh_hash_table *nht; | 
 |  | 
 | 	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); | 
 |  | 
 | 	write_lock_bh(&tbl->lock); | 
 | 	nht = rcu_dereference_protected(tbl->nht, | 
 | 					lockdep_is_held(&tbl->lock)); | 
 |  | 
 | 	/* | 
 | 	 *	periodically recompute ReachableTime from random function | 
 | 	 */ | 
 |  | 
 | 	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { | 
 | 		struct neigh_parms *p; | 
 | 		tbl->last_rand = jiffies; | 
 | 		for (p = &tbl->parms; p; p = p->next) | 
 | 			p->reachable_time = | 
 | 				neigh_rand_reach_time(p->base_reachable_time); | 
 | 	} | 
 |  | 
 | 	for (i = 0 ; i < (1 << nht->hash_shift); i++) { | 
 | 		np = &nht->hash_buckets[i]; | 
 |  | 
 | 		while ((n = rcu_dereference_protected(*np, | 
 | 				lockdep_is_held(&tbl->lock))) != NULL) { | 
 | 			unsigned int state; | 
 |  | 
 | 			write_lock(&n->lock); | 
 |  | 
 | 			state = n->nud_state; | 
 | 			if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { | 
 | 				write_unlock(&n->lock); | 
 | 				goto next_elt; | 
 | 			} | 
 |  | 
 | 			if (time_before(n->used, n->confirmed)) | 
 | 				n->used = n->confirmed; | 
 |  | 
 | 			if (atomic_read(&n->refcnt) == 1 && | 
 | 			    (state == NUD_FAILED || | 
 | 			     time_after(jiffies, n->used + n->parms->gc_staletime))) { | 
 | 				*np = n->next; | 
 | 				n->dead = 1; | 
 | 				write_unlock(&n->lock); | 
 | 				neigh_cleanup_and_release(n); | 
 | 				continue; | 
 | 			} | 
 | 			write_unlock(&n->lock); | 
 |  | 
 | next_elt: | 
 | 			np = &n->next; | 
 | 		} | 
 | 		/* | 
 | 		 * It's fine to release lock here, even if hash table | 
 | 		 * grows while we are preempted. | 
 | 		 */ | 
 | 		write_unlock_bh(&tbl->lock); | 
 | 		cond_resched(); | 
 | 		write_lock_bh(&tbl->lock); | 
 | 		nht = rcu_dereference_protected(tbl->nht, | 
 | 						lockdep_is_held(&tbl->lock)); | 
 | 	} | 
 | 	/* Cycle through all hash buckets every base_reachable_time/2 ticks. | 
 | 	 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 | 
 | 	 * base_reachable_time. | 
 | 	 */ | 
 | 	schedule_delayed_work(&tbl->gc_work, | 
 | 			      tbl->parms.base_reachable_time >> 1); | 
 | 	write_unlock_bh(&tbl->lock); | 
 | } | 
 |  | 
 | static __inline__ int neigh_max_probes(struct neighbour *n) | 
 | { | 
 | 	struct neigh_parms *p = n->parms; | 
 | 	return (n->nud_state & NUD_PROBE) ? | 
 | 		p->ucast_probes : | 
 | 		p->ucast_probes + p->app_probes + p->mcast_probes; | 
 | } | 
 |  | 
 | static void neigh_invalidate(struct neighbour *neigh) | 
 | 	__releases(neigh->lock) | 
 | 	__acquires(neigh->lock) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); | 
 | 	NEIGH_PRINTK2("neigh %p is failed.\n", neigh); | 
 | 	neigh->updated = jiffies; | 
 |  | 
 | 	/* It is very thin place. report_unreachable is very complicated | 
 | 	   routine. Particularly, it can hit the same neighbour entry! | 
 |  | 
 | 	   So that, we try to be accurate and avoid dead loop. --ANK | 
 | 	 */ | 
 | 	while (neigh->nud_state == NUD_FAILED && | 
 | 	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { | 
 | 		write_unlock(&neigh->lock); | 
 | 		neigh->ops->error_report(neigh, skb); | 
 | 		write_lock(&neigh->lock); | 
 | 	} | 
 | 	skb_queue_purge(&neigh->arp_queue); | 
 | 	neigh->arp_queue_len_bytes = 0; | 
 | } | 
 |  | 
 | static void neigh_probe(struct neighbour *neigh) | 
 | 	__releases(neigh->lock) | 
 | { | 
 | 	struct sk_buff *skb = skb_peek(&neigh->arp_queue); | 
 | 	/* keep skb alive even if arp_queue overflows */ | 
 | 	if (skb) | 
 | 		skb = skb_copy(skb, GFP_ATOMIC); | 
 | 	write_unlock(&neigh->lock); | 
 | 	neigh->ops->solicit(neigh, skb); | 
 | 	atomic_inc(&neigh->probes); | 
 | 	kfree_skb(skb); | 
 | } | 
 |  | 
 | /* Called when a timer expires for a neighbour entry. */ | 
 |  | 
 | static void neigh_timer_handler(unsigned long arg) | 
 | { | 
 | 	unsigned long now, next; | 
 | 	struct neighbour *neigh = (struct neighbour *)arg; | 
 | 	unsigned int state; | 
 | 	int notify = 0; | 
 |  | 
 | 	write_lock(&neigh->lock); | 
 |  | 
 | 	state = neigh->nud_state; | 
 | 	now = jiffies; | 
 | 	next = now + HZ; | 
 |  | 
 | 	if (!(state & NUD_IN_TIMER)) | 
 | 		goto out; | 
 |  | 
 | 	if (state & NUD_REACHABLE) { | 
 | 		if (time_before_eq(now, | 
 | 				   neigh->confirmed + neigh->parms->reachable_time)) { | 
 | 			NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); | 
 | 			next = neigh->confirmed + neigh->parms->reachable_time; | 
 | 		} else if (time_before_eq(now, | 
 | 					  neigh->used + neigh->parms->delay_probe_time)) { | 
 | 			NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); | 
 | 			neigh->nud_state = NUD_DELAY; | 
 | 			neigh->updated = jiffies; | 
 | 			neigh_suspect(neigh); | 
 | 			next = now + neigh->parms->delay_probe_time; | 
 | 		} else { | 
 | 			NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); | 
 | 			neigh->nud_state = NUD_STALE; | 
 | 			neigh->updated = jiffies; | 
 | 			neigh_suspect(neigh); | 
 | 			notify = 1; | 
 | 		} | 
 | 	} else if (state & NUD_DELAY) { | 
 | 		if (time_before_eq(now, | 
 | 				   neigh->confirmed + neigh->parms->delay_probe_time)) { | 
 | 			NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); | 
 | 			neigh->nud_state = NUD_REACHABLE; | 
 | 			neigh->updated = jiffies; | 
 | 			neigh_connect(neigh); | 
 | 			notify = 1; | 
 | 			next = neigh->confirmed + neigh->parms->reachable_time; | 
 | 		} else { | 
 | 			NEIGH_PRINTK2("neigh %p is probed.\n", neigh); | 
 | 			neigh->nud_state = NUD_PROBE; | 
 | 			neigh->updated = jiffies; | 
 | 			atomic_set(&neigh->probes, 0); | 
 | 			next = now + neigh->parms->retrans_time; | 
 | 		} | 
 | 	} else { | 
 | 		/* NUD_PROBE|NUD_INCOMPLETE */ | 
 | 		next = now + neigh->parms->retrans_time; | 
 | 	} | 
 |  | 
 | 	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && | 
 | 	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { | 
 | 		neigh->nud_state = NUD_FAILED; | 
 | 		notify = 1; | 
 | 		neigh_invalidate(neigh); | 
 | 	} | 
 |  | 
 | 	if (neigh->nud_state & NUD_IN_TIMER) { | 
 | 		if (time_before(next, jiffies + HZ/2)) | 
 | 			next = jiffies + HZ/2; | 
 | 		if (!mod_timer(&neigh->timer, next)) | 
 | 			neigh_hold(neigh); | 
 | 	} | 
 | 	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { | 
 | 		neigh_probe(neigh); | 
 | 	} else { | 
 | out: | 
 | 		write_unlock(&neigh->lock); | 
 | 	} | 
 |  | 
 | 	if (notify) | 
 | 		neigh_update_notify(neigh); | 
 |  | 
 | 	neigh_release(neigh); | 
 | } | 
 |  | 
 | int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) | 
 | { | 
 | 	int rc; | 
 | 	bool immediate_probe = false; | 
 |  | 
 | 	write_lock_bh(&neigh->lock); | 
 |  | 
 | 	rc = 0; | 
 | 	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) | 
 | 		goto out_unlock_bh; | 
 |  | 
 | 	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { | 
 | 		if (neigh->parms->mcast_probes + neigh->parms->app_probes) { | 
 | 			unsigned long next, now = jiffies; | 
 |  | 
 | 			atomic_set(&neigh->probes, neigh->parms->ucast_probes); | 
 | 			neigh->nud_state     = NUD_INCOMPLETE; | 
 | 			neigh->updated = now; | 
 | 			next = now + max(neigh->parms->retrans_time, HZ/2); | 
 | 			neigh_add_timer(neigh, next); | 
 | 			immediate_probe = true; | 
 | 		} else { | 
 | 			neigh->nud_state = NUD_FAILED; | 
 | 			neigh->updated = jiffies; | 
 | 			write_unlock_bh(&neigh->lock); | 
 |  | 
 | 			kfree_skb(skb); | 
 | 			return 1; | 
 | 		} | 
 | 	} else if (neigh->nud_state & NUD_STALE) { | 
 | 		NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); | 
 | 		neigh->nud_state = NUD_DELAY; | 
 | 		neigh->updated = jiffies; | 
 | 		neigh_add_timer(neigh, | 
 | 				jiffies + neigh->parms->delay_probe_time); | 
 | 	} | 
 |  | 
 | 	if (neigh->nud_state == NUD_INCOMPLETE) { | 
 | 		if (skb) { | 
 | 			while (neigh->arp_queue_len_bytes + skb->truesize > | 
 | 			       neigh->parms->queue_len_bytes) { | 
 | 				struct sk_buff *buff; | 
 |  | 
 | 				buff = __skb_dequeue(&neigh->arp_queue); | 
 | 				if (!buff) | 
 | 					break; | 
 | 				neigh->arp_queue_len_bytes -= buff->truesize; | 
 | 				kfree_skb(buff); | 
 | 				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); | 
 | 			} | 
 | 			skb_dst_force(skb); | 
 | 			__skb_queue_tail(&neigh->arp_queue, skb); | 
 | 			neigh->arp_queue_len_bytes += skb->truesize; | 
 | 		} | 
 | 		rc = 1; | 
 | 	} | 
 | out_unlock_bh: | 
 | 	if (immediate_probe) | 
 | 		neigh_probe(neigh); | 
 | 	else | 
 | 		write_unlock(&neigh->lock); | 
 | 	local_bh_enable(); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL(__neigh_event_send); | 
 |  | 
 | static void neigh_update_hhs(struct neighbour *neigh) | 
 | { | 
 | 	struct hh_cache *hh; | 
 | 	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) | 
 | 		= NULL; | 
 |  | 
 | 	if (neigh->dev->header_ops) | 
 | 		update = neigh->dev->header_ops->cache_update; | 
 |  | 
 | 	if (update) { | 
 | 		hh = &neigh->hh; | 
 | 		if (hh->hh_len) { | 
 | 			write_seqlock_bh(&hh->hh_lock); | 
 | 			update(hh, neigh->dev, neigh->ha); | 
 | 			write_sequnlock_bh(&hh->hh_lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* Generic update routine. | 
 |    -- lladdr is new lladdr or NULL, if it is not supplied. | 
 |    -- new    is new state. | 
 |    -- flags | 
 | 	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, | 
 | 				if it is different. | 
 | 	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" | 
 | 				lladdr instead of overriding it | 
 | 				if it is different. | 
 | 				It also allows to retain current state | 
 | 				if lladdr is unchanged. | 
 | 	NEIGH_UPDATE_F_ADMIN	means that the change is administrative. | 
 |  | 
 | 	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing | 
 | 				NTF_ROUTER flag. | 
 | 	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as | 
 | 				a router. | 
 |  | 
 |    Caller MUST hold reference count on the entry. | 
 |  */ | 
 |  | 
 | int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, | 
 | 		 u32 flags) | 
 | { | 
 | 	u8 old; | 
 | 	int err; | 
 | 	int notify = 0; | 
 | 	struct net_device *dev; | 
 | 	int update_isrouter = 0; | 
 |  | 
 | 	write_lock_bh(&neigh->lock); | 
 |  | 
 | 	dev    = neigh->dev; | 
 | 	old    = neigh->nud_state; | 
 | 	err    = -EPERM; | 
 |  | 
 | 	if (!(flags & NEIGH_UPDATE_F_ADMIN) && | 
 | 	    (old & (NUD_NOARP | NUD_PERMANENT))) | 
 | 		goto out; | 
 |  | 
 | 	if (!(new & NUD_VALID)) { | 
 | 		neigh_del_timer(neigh); | 
 | 		if (old & NUD_CONNECTED) | 
 | 			neigh_suspect(neigh); | 
 | 		neigh->nud_state = new; | 
 | 		err = 0; | 
 | 		notify = old & NUD_VALID; | 
 | 		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && | 
 | 		    (new & NUD_FAILED)) { | 
 | 			neigh_invalidate(neigh); | 
 | 			notify = 1; | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Compare new lladdr with cached one */ | 
 | 	if (!dev->addr_len) { | 
 | 		/* First case: device needs no address. */ | 
 | 		lladdr = neigh->ha; | 
 | 	} else if (lladdr) { | 
 | 		/* The second case: if something is already cached | 
 | 		   and a new address is proposed: | 
 | 		   - compare new & old | 
 | 		   - if they are different, check override flag | 
 | 		 */ | 
 | 		if ((old & NUD_VALID) && | 
 | 		    !memcmp(lladdr, neigh->ha, dev->addr_len)) | 
 | 			lladdr = neigh->ha; | 
 | 	} else { | 
 | 		/* No address is supplied; if we know something, | 
 | 		   use it, otherwise discard the request. | 
 | 		 */ | 
 | 		err = -EINVAL; | 
 | 		if (!(old & NUD_VALID)) | 
 | 			goto out; | 
 | 		lladdr = neigh->ha; | 
 | 	} | 
 |  | 
 | 	if (new & NUD_CONNECTED) | 
 | 		neigh->confirmed = jiffies; | 
 | 	neigh->updated = jiffies; | 
 |  | 
 | 	/* If entry was valid and address is not changed, | 
 | 	   do not change entry state, if new one is STALE. | 
 | 	 */ | 
 | 	err = 0; | 
 | 	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; | 
 | 	if (old & NUD_VALID) { | 
 | 		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { | 
 | 			update_isrouter = 0; | 
 | 			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && | 
 | 			    (old & NUD_CONNECTED)) { | 
 | 				lladdr = neigh->ha; | 
 | 				new = NUD_STALE; | 
 | 			} else | 
 | 				goto out; | 
 | 		} else { | 
 | 			if (lladdr == neigh->ha && new == NUD_STALE && | 
 | 			    ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || | 
 | 			     (old & NUD_CONNECTED)) | 
 | 			    ) | 
 | 				new = old; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (new != old) { | 
 | 		neigh_del_timer(neigh); | 
 | 		if (new & NUD_IN_TIMER) | 
 | 			neigh_add_timer(neigh, (jiffies + | 
 | 						((new & NUD_REACHABLE) ? | 
 | 						 neigh->parms->reachable_time : | 
 | 						 0))); | 
 | 		neigh->nud_state = new; | 
 | 	} | 
 |  | 
 | 	if (lladdr != neigh->ha) { | 
 | 		write_seqlock(&neigh->ha_lock); | 
 | 		memcpy(&neigh->ha, lladdr, dev->addr_len); | 
 | 		write_sequnlock(&neigh->ha_lock); | 
 | 		neigh_update_hhs(neigh); | 
 | 		if (!(new & NUD_CONNECTED)) | 
 | 			neigh->confirmed = jiffies - | 
 | 				      (neigh->parms->base_reachable_time << 1); | 
 | 		notify = 1; | 
 | 	} | 
 | 	if (new == old) | 
 | 		goto out; | 
 | 	if (new & NUD_CONNECTED) | 
 | 		neigh_connect(neigh); | 
 | 	else | 
 | 		neigh_suspect(neigh); | 
 | 	if (!(old & NUD_VALID)) { | 
 | 		struct sk_buff *skb; | 
 |  | 
 | 		/* Again: avoid dead loop if something went wrong */ | 
 |  | 
 | 		while (neigh->nud_state & NUD_VALID && | 
 | 		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { | 
 | 			struct dst_entry *dst = skb_dst(skb); | 
 | 			struct neighbour *n2, *n1 = neigh; | 
 | 			write_unlock_bh(&neigh->lock); | 
 |  | 
 | 			rcu_read_lock(); | 
 | 			/* On shaper/eql skb->dst->neighbour != neigh :( */ | 
 | 			if (dst && (n2 = dst_get_neighbour_noref(dst)) != NULL) | 
 | 				n1 = n2; | 
 | 			n1->output(n1, skb); | 
 | 			rcu_read_unlock(); | 
 |  | 
 | 			write_lock_bh(&neigh->lock); | 
 | 		} | 
 | 		skb_queue_purge(&neigh->arp_queue); | 
 | 		neigh->arp_queue_len_bytes = 0; | 
 | 	} | 
 | out: | 
 | 	if (update_isrouter) { | 
 | 		neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? | 
 | 			(neigh->flags | NTF_ROUTER) : | 
 | 			(neigh->flags & ~NTF_ROUTER); | 
 | 	} | 
 | 	write_unlock_bh(&neigh->lock); | 
 |  | 
 | 	if (notify) | 
 | 		neigh_update_notify(neigh); | 
 |  | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(neigh_update); | 
 |  | 
 | struct neighbour *neigh_event_ns(struct neigh_table *tbl, | 
 | 				 u8 *lladdr, void *saddr, | 
 | 				 struct net_device *dev) | 
 | { | 
 | 	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, | 
 | 						 lladdr || !dev->addr_len); | 
 | 	if (neigh) | 
 | 		neigh_update(neigh, lladdr, NUD_STALE, | 
 | 			     NEIGH_UPDATE_F_OVERRIDE); | 
 | 	return neigh; | 
 | } | 
 | EXPORT_SYMBOL(neigh_event_ns); | 
 |  | 
 | /* called with read_lock_bh(&n->lock); */ | 
 | static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst) | 
 | { | 
 | 	struct net_device *dev = dst->dev; | 
 | 	__be16 prot = dst->ops->protocol; | 
 | 	struct hh_cache	*hh = &n->hh; | 
 |  | 
 | 	write_lock_bh(&n->lock); | 
 |  | 
 | 	/* Only one thread can come in here and initialize the | 
 | 	 * hh_cache entry. | 
 | 	 */ | 
 | 	if (!hh->hh_len) | 
 | 		dev->header_ops->cache(n, hh, prot); | 
 |  | 
 | 	write_unlock_bh(&n->lock); | 
 | } | 
 |  | 
 | /* This function can be used in contexts, where only old dev_queue_xmit | 
 |  * worked, f.e. if you want to override normal output path (eql, shaper), | 
 |  * but resolution is not made yet. | 
 |  */ | 
 |  | 
 | int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb) | 
 | { | 
 | 	struct net_device *dev = skb->dev; | 
 |  | 
 | 	__skb_pull(skb, skb_network_offset(skb)); | 
 |  | 
 | 	if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, | 
 | 			    skb->len) < 0 && | 
 | 	    dev->header_ops->rebuild(skb)) | 
 | 		return 0; | 
 |  | 
 | 	return dev_queue_xmit(skb); | 
 | } | 
 | EXPORT_SYMBOL(neigh_compat_output); | 
 |  | 
 | /* Slow and careful. */ | 
 |  | 
 | int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) | 
 | { | 
 | 	struct dst_entry *dst = skb_dst(skb); | 
 | 	int rc = 0; | 
 |  | 
 | 	if (!dst) | 
 | 		goto discard; | 
 |  | 
 | 	__skb_pull(skb, skb_network_offset(skb)); | 
 |  | 
 | 	if (!neigh_event_send(neigh, skb)) { | 
 | 		int err; | 
 | 		struct net_device *dev = neigh->dev; | 
 | 		unsigned int seq; | 
 |  | 
 | 		if (dev->header_ops->cache && !neigh->hh.hh_len) | 
 | 			neigh_hh_init(neigh, dst); | 
 |  | 
 | 		do { | 
 | 			seq = read_seqbegin(&neigh->ha_lock); | 
 | 			err = dev_hard_header(skb, dev, ntohs(skb->protocol), | 
 | 					      neigh->ha, NULL, skb->len); | 
 | 		} while (read_seqretry(&neigh->ha_lock, seq)); | 
 |  | 
 | 		if (err >= 0) | 
 | 			rc = dev_queue_xmit(skb); | 
 | 		else | 
 | 			goto out_kfree_skb; | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | discard: | 
 | 	NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", | 
 | 		      dst, neigh); | 
 | out_kfree_skb: | 
 | 	rc = -EINVAL; | 
 | 	kfree_skb(skb); | 
 | 	goto out; | 
 | } | 
 | EXPORT_SYMBOL(neigh_resolve_output); | 
 |  | 
 | /* As fast as possible without hh cache */ | 
 |  | 
 | int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) | 
 | { | 
 | 	struct net_device *dev = neigh->dev; | 
 | 	unsigned int seq; | 
 | 	int err; | 
 |  | 
 | 	__skb_pull(skb, skb_network_offset(skb)); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqbegin(&neigh->ha_lock); | 
 | 		err = dev_hard_header(skb, dev, ntohs(skb->protocol), | 
 | 				      neigh->ha, NULL, skb->len); | 
 | 	} while (read_seqretry(&neigh->ha_lock, seq)); | 
 |  | 
 | 	if (err >= 0) | 
 | 		err = dev_queue_xmit(skb); | 
 | 	else { | 
 | 		err = -EINVAL; | 
 | 		kfree_skb(skb); | 
 | 	} | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(neigh_connected_output); | 
 |  | 
 | int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) | 
 | { | 
 | 	return dev_queue_xmit(skb); | 
 | } | 
 | EXPORT_SYMBOL(neigh_direct_output); | 
 |  | 
 | static void neigh_proxy_process(unsigned long arg) | 
 | { | 
 | 	struct neigh_table *tbl = (struct neigh_table *)arg; | 
 | 	long sched_next = 0; | 
 | 	unsigned long now = jiffies; | 
 | 	struct sk_buff *skb, *n; | 
 |  | 
 | 	spin_lock(&tbl->proxy_queue.lock); | 
 |  | 
 | 	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { | 
 | 		long tdif = NEIGH_CB(skb)->sched_next - now; | 
 |  | 
 | 		if (tdif <= 0) { | 
 | 			struct net_device *dev = skb->dev; | 
 |  | 
 | 			__skb_unlink(skb, &tbl->proxy_queue); | 
 | 			if (tbl->proxy_redo && netif_running(dev)) { | 
 | 				rcu_read_lock(); | 
 | 				tbl->proxy_redo(skb); | 
 | 				rcu_read_unlock(); | 
 | 			} else { | 
 | 				kfree_skb(skb); | 
 | 			} | 
 |  | 
 | 			dev_put(dev); | 
 | 		} else if (!sched_next || tdif < sched_next) | 
 | 			sched_next = tdif; | 
 | 	} | 
 | 	del_timer(&tbl->proxy_timer); | 
 | 	if (sched_next) | 
 | 		mod_timer(&tbl->proxy_timer, jiffies + sched_next); | 
 | 	spin_unlock(&tbl->proxy_queue.lock); | 
 | } | 
 |  | 
 | void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, | 
 | 		    struct sk_buff *skb) | 
 | { | 
 | 	unsigned long now = jiffies; | 
 | 	unsigned long sched_next = now + (net_random() % p->proxy_delay); | 
 |  | 
 | 	if (tbl->proxy_queue.qlen > p->proxy_qlen) { | 
 | 		kfree_skb(skb); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	NEIGH_CB(skb)->sched_next = sched_next; | 
 | 	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; | 
 |  | 
 | 	spin_lock(&tbl->proxy_queue.lock); | 
 | 	if (del_timer(&tbl->proxy_timer)) { | 
 | 		if (time_before(tbl->proxy_timer.expires, sched_next)) | 
 | 			sched_next = tbl->proxy_timer.expires; | 
 | 	} | 
 | 	skb_dst_drop(skb); | 
 | 	dev_hold(skb->dev); | 
 | 	__skb_queue_tail(&tbl->proxy_queue, skb); | 
 | 	mod_timer(&tbl->proxy_timer, sched_next); | 
 | 	spin_unlock(&tbl->proxy_queue.lock); | 
 | } | 
 | EXPORT_SYMBOL(pneigh_enqueue); | 
 |  | 
 | static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, | 
 | 						      struct net *net, int ifindex) | 
 | { | 
 | 	struct neigh_parms *p; | 
 |  | 
 | 	for (p = &tbl->parms; p; p = p->next) { | 
 | 		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || | 
 | 		    (!p->dev && !ifindex)) | 
 | 			return p; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct neigh_parms *neigh_parms_alloc(struct net_device *dev, | 
 | 				      struct neigh_table *tbl) | 
 | { | 
 | 	struct neigh_parms *p, *ref; | 
 | 	struct net *net = dev_net(dev); | 
 | 	const struct net_device_ops *ops = dev->netdev_ops; | 
 |  | 
 | 	ref = lookup_neigh_parms(tbl, net, 0); | 
 | 	if (!ref) | 
 | 		return NULL; | 
 |  | 
 | 	p = kmemdup(ref, sizeof(*p), GFP_KERNEL); | 
 | 	if (p) { | 
 | 		p->tbl		  = tbl; | 
 | 		atomic_set(&p->refcnt, 1); | 
 | 		p->reachable_time = | 
 | 				neigh_rand_reach_time(p->base_reachable_time); | 
 |  | 
 | 		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { | 
 | 			kfree(p); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		dev_hold(dev); | 
 | 		p->dev = dev; | 
 | 		write_pnet(&p->net, hold_net(net)); | 
 | 		p->sysctl_table = NULL; | 
 | 		write_lock_bh(&tbl->lock); | 
 | 		p->next		= tbl->parms.next; | 
 | 		tbl->parms.next = p; | 
 | 		write_unlock_bh(&tbl->lock); | 
 | 	} | 
 | 	return p; | 
 | } | 
 | EXPORT_SYMBOL(neigh_parms_alloc); | 
 |  | 
 | static void neigh_rcu_free_parms(struct rcu_head *head) | 
 | { | 
 | 	struct neigh_parms *parms = | 
 | 		container_of(head, struct neigh_parms, rcu_head); | 
 |  | 
 | 	neigh_parms_put(parms); | 
 | } | 
 |  | 
 | void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) | 
 | { | 
 | 	struct neigh_parms **p; | 
 |  | 
 | 	if (!parms || parms == &tbl->parms) | 
 | 		return; | 
 | 	write_lock_bh(&tbl->lock); | 
 | 	for (p = &tbl->parms.next; *p; p = &(*p)->next) { | 
 | 		if (*p == parms) { | 
 | 			*p = parms->next; | 
 | 			parms->dead = 1; | 
 | 			write_unlock_bh(&tbl->lock); | 
 | 			if (parms->dev) | 
 | 				dev_put(parms->dev); | 
 | 			call_rcu(&parms->rcu_head, neigh_rcu_free_parms); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	write_unlock_bh(&tbl->lock); | 
 | 	NEIGH_PRINTK1("neigh_parms_release: not found\n"); | 
 | } | 
 | EXPORT_SYMBOL(neigh_parms_release); | 
 |  | 
 | static void neigh_parms_destroy(struct neigh_parms *parms) | 
 | { | 
 | 	release_net(neigh_parms_net(parms)); | 
 | 	kfree(parms); | 
 | } | 
 |  | 
 | static struct lock_class_key neigh_table_proxy_queue_class; | 
 |  | 
 | static void neigh_table_init_no_netlink(struct neigh_table *tbl) | 
 | { | 
 | 	unsigned long now = jiffies; | 
 | 	unsigned long phsize; | 
 |  | 
 | 	write_pnet(&tbl->parms.net, &init_net); | 
 | 	atomic_set(&tbl->parms.refcnt, 1); | 
 | 	tbl->parms.reachable_time = | 
 | 			  neigh_rand_reach_time(tbl->parms.base_reachable_time); | 
 |  | 
 | 	tbl->stats = alloc_percpu(struct neigh_statistics); | 
 | 	if (!tbl->stats) | 
 | 		panic("cannot create neighbour cache statistics"); | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | 	if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat, | 
 | 			      &neigh_stat_seq_fops, tbl)) | 
 | 		panic("cannot create neighbour proc dir entry"); | 
 | #endif | 
 |  | 
 | 	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); | 
 |  | 
 | 	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); | 
 | 	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); | 
 |  | 
 | 	if (!tbl->nht || !tbl->phash_buckets) | 
 | 		panic("cannot allocate neighbour cache hashes"); | 
 |  | 
 | 	rwlock_init(&tbl->lock); | 
 | 	INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work); | 
 | 	schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time); | 
 | 	setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); | 
 | 	skb_queue_head_init_class(&tbl->proxy_queue, | 
 | 			&neigh_table_proxy_queue_class); | 
 |  | 
 | 	tbl->last_flush = now; | 
 | 	tbl->last_rand	= now + tbl->parms.reachable_time * 20; | 
 | } | 
 |  | 
 | void neigh_table_init(struct neigh_table *tbl) | 
 | { | 
 | 	struct neigh_table *tmp; | 
 |  | 
 | 	neigh_table_init_no_netlink(tbl); | 
 | 	write_lock(&neigh_tbl_lock); | 
 | 	for (tmp = neigh_tables; tmp; tmp = tmp->next) { | 
 | 		if (tmp->family == tbl->family) | 
 | 			break; | 
 | 	} | 
 | 	tbl->next	= neigh_tables; | 
 | 	neigh_tables	= tbl; | 
 | 	write_unlock(&neigh_tbl_lock); | 
 |  | 
 | 	if (unlikely(tmp)) { | 
 | 		pr_err("Registering multiple tables for family %d\n", | 
 | 		       tbl->family); | 
 | 		dump_stack(); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(neigh_table_init); | 
 |  | 
 | int neigh_table_clear(struct neigh_table *tbl) | 
 | { | 
 | 	struct neigh_table **tp; | 
 |  | 
 | 	/* It is not clean... Fix it to unload IPv6 module safely */ | 
 | 	cancel_delayed_work_sync(&tbl->gc_work); | 
 | 	del_timer_sync(&tbl->proxy_timer); | 
 | 	pneigh_queue_purge(&tbl->proxy_queue); | 
 | 	neigh_ifdown(tbl, NULL); | 
 | 	if (atomic_read(&tbl->entries)) | 
 | 		pr_crit("neighbour leakage\n"); | 
 | 	write_lock(&neigh_tbl_lock); | 
 | 	for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { | 
 | 		if (*tp == tbl) { | 
 | 			*tp = tbl->next; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	write_unlock(&neigh_tbl_lock); | 
 |  | 
 | 	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, | 
 | 		 neigh_hash_free_rcu); | 
 | 	tbl->nht = NULL; | 
 |  | 
 | 	kfree(tbl->phash_buckets); | 
 | 	tbl->phash_buckets = NULL; | 
 |  | 
 | 	remove_proc_entry(tbl->id, init_net.proc_net_stat); | 
 |  | 
 | 	free_percpu(tbl->stats); | 
 | 	tbl->stats = NULL; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(neigh_table_clear); | 
 |  | 
 | static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) | 
 | { | 
 | 	struct net *net = sock_net(skb->sk); | 
 | 	struct ndmsg *ndm; | 
 | 	struct nlattr *dst_attr; | 
 | 	struct neigh_table *tbl; | 
 | 	struct net_device *dev = NULL; | 
 | 	int err = -EINVAL; | 
 |  | 
 | 	ASSERT_RTNL(); | 
 | 	if (nlmsg_len(nlh) < sizeof(*ndm)) | 
 | 		goto out; | 
 |  | 
 | 	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); | 
 | 	if (dst_attr == NULL) | 
 | 		goto out; | 
 |  | 
 | 	ndm = nlmsg_data(nlh); | 
 | 	if (ndm->ndm_ifindex) { | 
 | 		dev = __dev_get_by_index(net, ndm->ndm_ifindex); | 
 | 		if (dev == NULL) { | 
 | 			err = -ENODEV; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	read_lock(&neigh_tbl_lock); | 
 | 	for (tbl = neigh_tables; tbl; tbl = tbl->next) { | 
 | 		struct neighbour *neigh; | 
 |  | 
 | 		if (tbl->family != ndm->ndm_family) | 
 | 			continue; | 
 | 		read_unlock(&neigh_tbl_lock); | 
 |  | 
 | 		if (nla_len(dst_attr) < tbl->key_len) | 
 | 			goto out; | 
 |  | 
 | 		if (ndm->ndm_flags & NTF_PROXY) { | 
 | 			err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (dev == NULL) | 
 | 			goto out; | 
 |  | 
 | 		neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); | 
 | 		if (neigh == NULL) { | 
 | 			err = -ENOENT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		err = neigh_update(neigh, NULL, NUD_FAILED, | 
 | 				   NEIGH_UPDATE_F_OVERRIDE | | 
 | 				   NEIGH_UPDATE_F_ADMIN); | 
 | 		neigh_release(neigh); | 
 | 		goto out; | 
 | 	} | 
 | 	read_unlock(&neigh_tbl_lock); | 
 | 	err = -EAFNOSUPPORT; | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) | 
 | { | 
 | 	struct net *net = sock_net(skb->sk); | 
 | 	struct ndmsg *ndm; | 
 | 	struct nlattr *tb[NDA_MAX+1]; | 
 | 	struct neigh_table *tbl; | 
 | 	struct net_device *dev = NULL; | 
 | 	int err; | 
 |  | 
 | 	ASSERT_RTNL(); | 
 | 	err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (tb[NDA_DST] == NULL) | 
 | 		goto out; | 
 |  | 
 | 	ndm = nlmsg_data(nlh); | 
 | 	if (ndm->ndm_ifindex) { | 
 | 		dev = __dev_get_by_index(net, ndm->ndm_ifindex); | 
 | 		if (dev == NULL) { | 
 | 			err = -ENODEV; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	read_lock(&neigh_tbl_lock); | 
 | 	for (tbl = neigh_tables; tbl; tbl = tbl->next) { | 
 | 		int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; | 
 | 		struct neighbour *neigh; | 
 | 		void *dst, *lladdr; | 
 |  | 
 | 		if (tbl->family != ndm->ndm_family) | 
 | 			continue; | 
 | 		read_unlock(&neigh_tbl_lock); | 
 |  | 
 | 		if (nla_len(tb[NDA_DST]) < tbl->key_len) | 
 | 			goto out; | 
 | 		dst = nla_data(tb[NDA_DST]); | 
 | 		lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; | 
 |  | 
 | 		if (ndm->ndm_flags & NTF_PROXY) { | 
 | 			struct pneigh_entry *pn; | 
 |  | 
 | 			err = -ENOBUFS; | 
 | 			pn = pneigh_lookup(tbl, net, dst, dev, 1); | 
 | 			if (pn) { | 
 | 				pn->flags = ndm->ndm_flags; | 
 | 				err = 0; | 
 | 			} | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (dev == NULL) | 
 | 			goto out; | 
 |  | 
 | 		neigh = neigh_lookup(tbl, dst, dev); | 
 | 		if (neigh == NULL) { | 
 | 			if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { | 
 | 				err = -ENOENT; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			neigh = __neigh_lookup_errno(tbl, dst, dev); | 
 | 			if (IS_ERR(neigh)) { | 
 | 				err = PTR_ERR(neigh); | 
 | 				goto out; | 
 | 			} | 
 | 		} else { | 
 | 			if (nlh->nlmsg_flags & NLM_F_EXCL) { | 
 | 				err = -EEXIST; | 
 | 				neigh_release(neigh); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) | 
 | 				flags &= ~NEIGH_UPDATE_F_OVERRIDE; | 
 | 		} | 
 |  | 
 | 		if (ndm->ndm_flags & NTF_USE) { | 
 | 			neigh_event_send(neigh, NULL); | 
 | 			err = 0; | 
 | 		} else | 
 | 			err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); | 
 | 		neigh_release(neigh); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	read_unlock(&neigh_tbl_lock); | 
 | 	err = -EAFNOSUPPORT; | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) | 
 | { | 
 | 	struct nlattr *nest; | 
 |  | 
 | 	nest = nla_nest_start(skb, NDTA_PARMS); | 
 | 	if (nest == NULL) | 
 | 		return -ENOBUFS; | 
 |  | 
 | 	if ((parms->dev && | 
 | 	     nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || | 
 | 	    nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) || | 
 | 	    nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes) || | 
 | 	    /* approximative value for deprecated QUEUE_LEN (in packets) */ | 
 | 	    nla_put_u32(skb, NDTPA_QUEUE_LEN, | 
 | 			DIV_ROUND_UP(parms->queue_len_bytes, | 
 | 				     SKB_TRUESIZE(ETH_FRAME_LEN))) || | 
 | 	    nla_put_u32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen) || | 
 | 	    nla_put_u32(skb, NDTPA_APP_PROBES, parms->app_probes) || | 
 | 	    nla_put_u32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes) || | 
 | 	    nla_put_u32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes) || | 
 | 	    nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) || | 
 | 	    nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, | 
 | 			  parms->base_reachable_time) || | 
 | 	    nla_put_msecs(skb, NDTPA_GC_STALETIME, parms->gc_staletime) || | 
 | 	    nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, | 
 | 			  parms->delay_probe_time) || | 
 | 	    nla_put_msecs(skb, NDTPA_RETRANS_TIME, parms->retrans_time) || | 
 | 	    nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay) || | 
 | 	    nla_put_msecs(skb, NDTPA_PROXY_DELAY, parms->proxy_delay) || | 
 | 	    nla_put_msecs(skb, NDTPA_LOCKTIME, parms->locktime)) | 
 | 		goto nla_put_failure; | 
 | 	return nla_nest_end(skb, nest); | 
 |  | 
 | nla_put_failure: | 
 | 	nla_nest_cancel(skb, nest); | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, | 
 | 			      u32 pid, u32 seq, int type, int flags) | 
 | { | 
 | 	struct nlmsghdr *nlh; | 
 | 	struct ndtmsg *ndtmsg; | 
 |  | 
 | 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); | 
 | 	if (nlh == NULL) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	ndtmsg = nlmsg_data(nlh); | 
 |  | 
 | 	read_lock_bh(&tbl->lock); | 
 | 	ndtmsg->ndtm_family = tbl->family; | 
 | 	ndtmsg->ndtm_pad1   = 0; | 
 | 	ndtmsg->ndtm_pad2   = 0; | 
 |  | 
 | 	if (nla_put_string(skb, NDTA_NAME, tbl->id) || | 
 | 	    nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) || | 
 | 	    nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || | 
 | 	    nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || | 
 | 	    nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) | 
 | 		goto nla_put_failure; | 
 | 	{ | 
 | 		unsigned long now = jiffies; | 
 | 		unsigned int flush_delta = now - tbl->last_flush; | 
 | 		unsigned int rand_delta = now - tbl->last_rand; | 
 | 		struct neigh_hash_table *nht; | 
 | 		struct ndt_config ndc = { | 
 | 			.ndtc_key_len		= tbl->key_len, | 
 | 			.ndtc_entry_size	= tbl->entry_size, | 
 | 			.ndtc_entries		= atomic_read(&tbl->entries), | 
 | 			.ndtc_last_flush	= jiffies_to_msecs(flush_delta), | 
 | 			.ndtc_last_rand		= jiffies_to_msecs(rand_delta), | 
 | 			.ndtc_proxy_qlen	= tbl->proxy_queue.qlen, | 
 | 		}; | 
 |  | 
 | 		rcu_read_lock_bh(); | 
 | 		nht = rcu_dereference_bh(tbl->nht); | 
 | 		ndc.ndtc_hash_rnd = nht->hash_rnd[0]; | 
 | 		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); | 
 | 		rcu_read_unlock_bh(); | 
 |  | 
 | 		if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) | 
 | 			goto nla_put_failure; | 
 | 	} | 
 |  | 
 | 	{ | 
 | 		int cpu; | 
 | 		struct ndt_stats ndst; | 
 |  | 
 | 		memset(&ndst, 0, sizeof(ndst)); | 
 |  | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			struct neigh_statistics	*st; | 
 |  | 
 | 			st = per_cpu_ptr(tbl->stats, cpu); | 
 | 			ndst.ndts_allocs		+= st->allocs; | 
 | 			ndst.ndts_destroys		+= st->destroys; | 
 | 			ndst.ndts_hash_grows		+= st->hash_grows; | 
 | 			ndst.ndts_res_failed		+= st->res_failed; | 
 | 			ndst.ndts_lookups		+= st->lookups; | 
 | 			ndst.ndts_hits			+= st->hits; | 
 | 			ndst.ndts_rcv_probes_mcast	+= st->rcv_probes_mcast; | 
 | 			ndst.ndts_rcv_probes_ucast	+= st->rcv_probes_ucast; | 
 | 			ndst.ndts_periodic_gc_runs	+= st->periodic_gc_runs; | 
 | 			ndst.ndts_forced_gc_runs	+= st->forced_gc_runs; | 
 | 		} | 
 |  | 
 | 		if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst)) | 
 | 			goto nla_put_failure; | 
 | 	} | 
 |  | 
 | 	BUG_ON(tbl->parms.dev); | 
 | 	if (neightbl_fill_parms(skb, &tbl->parms) < 0) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	read_unlock_bh(&tbl->lock); | 
 | 	return nlmsg_end(skb, nlh); | 
 |  | 
 | nla_put_failure: | 
 | 	read_unlock_bh(&tbl->lock); | 
 | 	nlmsg_cancel(skb, nlh); | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | static int neightbl_fill_param_info(struct sk_buff *skb, | 
 | 				    struct neigh_table *tbl, | 
 | 				    struct neigh_parms *parms, | 
 | 				    u32 pid, u32 seq, int type, | 
 | 				    unsigned int flags) | 
 | { | 
 | 	struct ndtmsg *ndtmsg; | 
 | 	struct nlmsghdr *nlh; | 
 |  | 
 | 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); | 
 | 	if (nlh == NULL) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	ndtmsg = nlmsg_data(nlh); | 
 |  | 
 | 	read_lock_bh(&tbl->lock); | 
 | 	ndtmsg->ndtm_family = tbl->family; | 
 | 	ndtmsg->ndtm_pad1   = 0; | 
 | 	ndtmsg->ndtm_pad2   = 0; | 
 |  | 
 | 	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || | 
 | 	    neightbl_fill_parms(skb, parms) < 0) | 
 | 		goto errout; | 
 |  | 
 | 	read_unlock_bh(&tbl->lock); | 
 | 	return nlmsg_end(skb, nlh); | 
 | errout: | 
 | 	read_unlock_bh(&tbl->lock); | 
 | 	nlmsg_cancel(skb, nlh); | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { | 
 | 	[NDTA_NAME]		= { .type = NLA_STRING }, | 
 | 	[NDTA_THRESH1]		= { .type = NLA_U32 }, | 
 | 	[NDTA_THRESH2]		= { .type = NLA_U32 }, | 
 | 	[NDTA_THRESH3]		= { .type = NLA_U32 }, | 
 | 	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 }, | 
 | 	[NDTA_PARMS]		= { .type = NLA_NESTED }, | 
 | }; | 
 |  | 
 | static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { | 
 | 	[NDTPA_IFINDEX]			= { .type = NLA_U32 }, | 
 | 	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 }, | 
 | 	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 }, | 
 | 	[NDTPA_APP_PROBES]		= { .type = NLA_U32 }, | 
 | 	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 }, | 
 | 	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 }, | 
 | 	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 }, | 
 | 	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 }, | 
 | 	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 }, | 
 | 	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 }, | 
 | 	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 }, | 
 | 	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 }, | 
 | 	[NDTPA_LOCKTIME]		= { .type = NLA_U64 }, | 
 | }; | 
 |  | 
 | static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) | 
 | { | 
 | 	struct net *net = sock_net(skb->sk); | 
 | 	struct neigh_table *tbl; | 
 | 	struct ndtmsg *ndtmsg; | 
 | 	struct nlattr *tb[NDTA_MAX+1]; | 
 | 	int err; | 
 |  | 
 | 	err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, | 
 | 			  nl_neightbl_policy); | 
 | 	if (err < 0) | 
 | 		goto errout; | 
 |  | 
 | 	if (tb[NDTA_NAME] == NULL) { | 
 | 		err = -EINVAL; | 
 | 		goto errout; | 
 | 	} | 
 |  | 
 | 	ndtmsg = nlmsg_data(nlh); | 
 | 	read_lock(&neigh_tbl_lock); | 
 | 	for (tbl = neigh_tables; tbl; tbl = tbl->next) { | 
 | 		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) | 
 | 			continue; | 
 |  | 
 | 		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (tbl == NULL) { | 
 | 		err = -ENOENT; | 
 | 		goto errout_locked; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We acquire tbl->lock to be nice to the periodic timers and | 
 | 	 * make sure they always see a consistent set of values. | 
 | 	 */ | 
 | 	write_lock_bh(&tbl->lock); | 
 |  | 
 | 	if (tb[NDTA_PARMS]) { | 
 | 		struct nlattr *tbp[NDTPA_MAX+1]; | 
 | 		struct neigh_parms *p; | 
 | 		int i, ifindex = 0; | 
 |  | 
 | 		err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], | 
 | 				       nl_ntbl_parm_policy); | 
 | 		if (err < 0) | 
 | 			goto errout_tbl_lock; | 
 |  | 
 | 		if (tbp[NDTPA_IFINDEX]) | 
 | 			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); | 
 |  | 
 | 		p = lookup_neigh_parms(tbl, net, ifindex); | 
 | 		if (p == NULL) { | 
 | 			err = -ENOENT; | 
 | 			goto errout_tbl_lock; | 
 | 		} | 
 |  | 
 | 		for (i = 1; i <= NDTPA_MAX; i++) { | 
 | 			if (tbp[i] == NULL) | 
 | 				continue; | 
 |  | 
 | 			switch (i) { | 
 | 			case NDTPA_QUEUE_LEN: | 
 | 				p->queue_len_bytes = nla_get_u32(tbp[i]) * | 
 | 						     SKB_TRUESIZE(ETH_FRAME_LEN); | 
 | 				break; | 
 | 			case NDTPA_QUEUE_LENBYTES: | 
 | 				p->queue_len_bytes = nla_get_u32(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_PROXY_QLEN: | 
 | 				p->proxy_qlen = nla_get_u32(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_APP_PROBES: | 
 | 				p->app_probes = nla_get_u32(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_UCAST_PROBES: | 
 | 				p->ucast_probes = nla_get_u32(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_MCAST_PROBES: | 
 | 				p->mcast_probes = nla_get_u32(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_BASE_REACHABLE_TIME: | 
 | 				p->base_reachable_time = nla_get_msecs(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_GC_STALETIME: | 
 | 				p->gc_staletime = nla_get_msecs(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_DELAY_PROBE_TIME: | 
 | 				p->delay_probe_time = nla_get_msecs(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_RETRANS_TIME: | 
 | 				p->retrans_time = nla_get_msecs(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_ANYCAST_DELAY: | 
 | 				p->anycast_delay = nla_get_msecs(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_PROXY_DELAY: | 
 | 				p->proxy_delay = nla_get_msecs(tbp[i]); | 
 | 				break; | 
 | 			case NDTPA_LOCKTIME: | 
 | 				p->locktime = nla_get_msecs(tbp[i]); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (tb[NDTA_THRESH1]) | 
 | 		tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); | 
 |  | 
 | 	if (tb[NDTA_THRESH2]) | 
 | 		tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); | 
 |  | 
 | 	if (tb[NDTA_THRESH3]) | 
 | 		tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); | 
 |  | 
 | 	if (tb[NDTA_GC_INTERVAL]) | 
 | 		tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); | 
 |  | 
 | 	err = 0; | 
 |  | 
 | errout_tbl_lock: | 
 | 	write_unlock_bh(&tbl->lock); | 
 | errout_locked: | 
 | 	read_unlock(&neigh_tbl_lock); | 
 | errout: | 
 | 	return err; | 
 | } | 
 |  | 
 | static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) | 
 | { | 
 | 	struct net *net = sock_net(skb->sk); | 
 | 	int family, tidx, nidx = 0; | 
 | 	int tbl_skip = cb->args[0]; | 
 | 	int neigh_skip = cb->args[1]; | 
 | 	struct neigh_table *tbl; | 
 |  | 
 | 	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; | 
 |  | 
 | 	read_lock(&neigh_tbl_lock); | 
 | 	for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { | 
 | 		struct neigh_parms *p; | 
 |  | 
 | 		if (tidx < tbl_skip || (family && tbl->family != family)) | 
 | 			continue; | 
 |  | 
 | 		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, | 
 | 				       cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, | 
 | 				       NLM_F_MULTI) <= 0) | 
 | 			break; | 
 |  | 
 | 		for (nidx = 0, p = tbl->parms.next; p; p = p->next) { | 
 | 			if (!net_eq(neigh_parms_net(p), net)) | 
 | 				continue; | 
 |  | 
 | 			if (nidx < neigh_skip) | 
 | 				goto next; | 
 |  | 
 | 			if (neightbl_fill_param_info(skb, tbl, p, | 
 | 						     NETLINK_CB(cb->skb).pid, | 
 | 						     cb->nlh->nlmsg_seq, | 
 | 						     RTM_NEWNEIGHTBL, | 
 | 						     NLM_F_MULTI) <= 0) | 
 | 				goto out; | 
 | 		next: | 
 | 			nidx++; | 
 | 		} | 
 |  | 
 | 		neigh_skip = 0; | 
 | 	} | 
 | out: | 
 | 	read_unlock(&neigh_tbl_lock); | 
 | 	cb->args[0] = tidx; | 
 | 	cb->args[1] = nidx; | 
 |  | 
 | 	return skb->len; | 
 | } | 
 |  | 
 | static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, | 
 | 			   u32 pid, u32 seq, int type, unsigned int flags) | 
 | { | 
 | 	unsigned long now = jiffies; | 
 | 	struct nda_cacheinfo ci; | 
 | 	struct nlmsghdr *nlh; | 
 | 	struct ndmsg *ndm; | 
 |  | 
 | 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); | 
 | 	if (nlh == NULL) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	ndm = nlmsg_data(nlh); | 
 | 	ndm->ndm_family	 = neigh->ops->family; | 
 | 	ndm->ndm_pad1    = 0; | 
 | 	ndm->ndm_pad2    = 0; | 
 | 	ndm->ndm_flags	 = neigh->flags; | 
 | 	ndm->ndm_type	 = neigh->type; | 
 | 	ndm->ndm_ifindex = neigh->dev->ifindex; | 
 |  | 
 | 	if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	read_lock_bh(&neigh->lock); | 
 | 	ndm->ndm_state	 = neigh->nud_state; | 
 | 	if (neigh->nud_state & NUD_VALID) { | 
 | 		char haddr[MAX_ADDR_LEN]; | 
 |  | 
 | 		neigh_ha_snapshot(haddr, neigh, neigh->dev); | 
 | 		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { | 
 | 			read_unlock_bh(&neigh->lock); | 
 | 			goto nla_put_failure; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used); | 
 | 	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); | 
 | 	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated); | 
 | 	ci.ndm_refcnt	 = atomic_read(&neigh->refcnt) - 1; | 
 | 	read_unlock_bh(&neigh->lock); | 
 |  | 
 | 	if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || | 
 | 	    nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	return nlmsg_end(skb, nlh); | 
 |  | 
 | nla_put_failure: | 
 | 	nlmsg_cancel(skb, nlh); | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, | 
 | 			    u32 pid, u32 seq, int type, unsigned int flags, | 
 | 			    struct neigh_table *tbl) | 
 | { | 
 | 	struct nlmsghdr *nlh; | 
 | 	struct ndmsg *ndm; | 
 |  | 
 | 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); | 
 | 	if (nlh == NULL) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	ndm = nlmsg_data(nlh); | 
 | 	ndm->ndm_family	 = tbl->family; | 
 | 	ndm->ndm_pad1    = 0; | 
 | 	ndm->ndm_pad2    = 0; | 
 | 	ndm->ndm_flags	 = pn->flags | NTF_PROXY; | 
 | 	ndm->ndm_type	 = NDA_DST; | 
 | 	ndm->ndm_ifindex = pn->dev->ifindex; | 
 | 	ndm->ndm_state	 = NUD_NONE; | 
 |  | 
 | 	if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	return nlmsg_end(skb, nlh); | 
 |  | 
 | nla_put_failure: | 
 | 	nlmsg_cancel(skb, nlh); | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | static void neigh_update_notify(struct neighbour *neigh) | 
 | { | 
 | 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); | 
 | 	__neigh_notify(neigh, RTM_NEWNEIGH, 0); | 
 | } | 
 |  | 
 | static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, | 
 | 			    struct netlink_callback *cb) | 
 | { | 
 | 	struct net *net = sock_net(skb->sk); | 
 | 	struct neighbour *n; | 
 | 	int rc, h, s_h = cb->args[1]; | 
 | 	int idx, s_idx = idx = cb->args[2]; | 
 | 	struct neigh_hash_table *nht; | 
 |  | 
 | 	rcu_read_lock_bh(); | 
 | 	nht = rcu_dereference_bh(tbl->nht); | 
 |  | 
 | 	for (h = s_h; h < (1 << nht->hash_shift); h++) { | 
 | 		if (h > s_h) | 
 | 			s_idx = 0; | 
 | 		for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; | 
 | 		     n != NULL; | 
 | 		     n = rcu_dereference_bh(n->next)) { | 
 | 			if (!net_eq(dev_net(n->dev), net)) | 
 | 				continue; | 
 | 			if (idx < s_idx) | 
 | 				goto next; | 
 | 			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, | 
 | 					    cb->nlh->nlmsg_seq, | 
 | 					    RTM_NEWNEIGH, | 
 | 					    NLM_F_MULTI) <= 0) { | 
 | 				rc = -1; | 
 | 				goto out; | 
 | 			} | 
 | next: | 
 | 			idx++; | 
 | 		} | 
 | 	} | 
 | 	rc = skb->len; | 
 | out: | 
 | 	rcu_read_unlock_bh(); | 
 | 	cb->args[1] = h; | 
 | 	cb->args[2] = idx; | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, | 
 | 			     struct netlink_callback *cb) | 
 | { | 
 | 	struct pneigh_entry *n; | 
 | 	struct net *net = sock_net(skb->sk); | 
 | 	int rc, h, s_h = cb->args[3]; | 
 | 	int idx, s_idx = idx = cb->args[4]; | 
 |  | 
 | 	read_lock_bh(&tbl->lock); | 
 |  | 
 | 	for (h = s_h; h <= PNEIGH_HASHMASK; h++) { | 
 | 		if (h > s_h) | 
 | 			s_idx = 0; | 
 | 		for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { | 
 | 			if (dev_net(n->dev) != net) | 
 | 				continue; | 
 | 			if (idx < s_idx) | 
 | 				goto next; | 
 | 			if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, | 
 | 					    cb->nlh->nlmsg_seq, | 
 | 					    RTM_NEWNEIGH, | 
 | 					    NLM_F_MULTI, tbl) <= 0) { | 
 | 				read_unlock_bh(&tbl->lock); | 
 | 				rc = -1; | 
 | 				goto out; | 
 | 			} | 
 | 		next: | 
 | 			idx++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	read_unlock_bh(&tbl->lock); | 
 | 	rc = skb->len; | 
 | out: | 
 | 	cb->args[3] = h; | 
 | 	cb->args[4] = idx; | 
 | 	return rc; | 
 |  | 
 | } | 
 |  | 
 | static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) | 
 | { | 
 | 	struct neigh_table *tbl; | 
 | 	int t, family, s_t; | 
 | 	int proxy = 0; | 
 | 	int err; | 
 |  | 
 | 	read_lock(&neigh_tbl_lock); | 
 | 	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; | 
 |  | 
 | 	/* check for full ndmsg structure presence, family member is | 
 | 	 * the same for both structures | 
 | 	 */ | 
 | 	if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) && | 
 | 	    ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY) | 
 | 		proxy = 1; | 
 |  | 
 | 	s_t = cb->args[0]; | 
 |  | 
 | 	for (tbl = neigh_tables, t = 0; tbl; | 
 | 	     tbl = tbl->next, t++) { | 
 | 		if (t < s_t || (family && tbl->family != family)) | 
 | 			continue; | 
 | 		if (t > s_t) | 
 | 			memset(&cb->args[1], 0, sizeof(cb->args) - | 
 | 						sizeof(cb->args[0])); | 
 | 		if (proxy) | 
 | 			err = pneigh_dump_table(tbl, skb, cb); | 
 | 		else | 
 | 			err = neigh_dump_table(tbl, skb, cb); | 
 | 		if (err < 0) | 
 | 			break; | 
 | 	} | 
 | 	read_unlock(&neigh_tbl_lock); | 
 |  | 
 | 	cb->args[0] = t; | 
 | 	return skb->len; | 
 | } | 
 |  | 
 | void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) | 
 | { | 
 | 	int chain; | 
 | 	struct neigh_hash_table *nht; | 
 |  | 
 | 	rcu_read_lock_bh(); | 
 | 	nht = rcu_dereference_bh(tbl->nht); | 
 |  | 
 | 	read_lock(&tbl->lock); /* avoid resizes */ | 
 | 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) { | 
 | 		struct neighbour *n; | 
 |  | 
 | 		for (n = rcu_dereference_bh(nht->hash_buckets[chain]); | 
 | 		     n != NULL; | 
 | 		     n = rcu_dereference_bh(n->next)) | 
 | 			cb(n, cookie); | 
 | 	} | 
 | 	read_unlock(&tbl->lock); | 
 | 	rcu_read_unlock_bh(); | 
 | } | 
 | EXPORT_SYMBOL(neigh_for_each); | 
 |  | 
 | /* The tbl->lock must be held as a writer and BH disabled. */ | 
 | void __neigh_for_each_release(struct neigh_table *tbl, | 
 | 			      int (*cb)(struct neighbour *)) | 
 | { | 
 | 	int chain; | 
 | 	struct neigh_hash_table *nht; | 
 |  | 
 | 	nht = rcu_dereference_protected(tbl->nht, | 
 | 					lockdep_is_held(&tbl->lock)); | 
 | 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) { | 
 | 		struct neighbour *n; | 
 | 		struct neighbour __rcu **np; | 
 |  | 
 | 		np = &nht->hash_buckets[chain]; | 
 | 		while ((n = rcu_dereference_protected(*np, | 
 | 					lockdep_is_held(&tbl->lock))) != NULL) { | 
 | 			int release; | 
 |  | 
 | 			write_lock(&n->lock); | 
 | 			release = cb(n); | 
 | 			if (release) { | 
 | 				rcu_assign_pointer(*np, | 
 | 					rcu_dereference_protected(n->next, | 
 | 						lockdep_is_held(&tbl->lock))); | 
 | 				n->dead = 1; | 
 | 			} else | 
 | 				np = &n->next; | 
 | 			write_unlock(&n->lock); | 
 | 			if (release) | 
 | 				neigh_cleanup_and_release(n); | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(__neigh_for_each_release); | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 |  | 
 | static struct neighbour *neigh_get_first(struct seq_file *seq) | 
 | { | 
 | 	struct neigh_seq_state *state = seq->private; | 
 | 	struct net *net = seq_file_net(seq); | 
 | 	struct neigh_hash_table *nht = state->nht; | 
 | 	struct neighbour *n = NULL; | 
 | 	int bucket = state->bucket; | 
 |  | 
 | 	state->flags &= ~NEIGH_SEQ_IS_PNEIGH; | 
 | 	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { | 
 | 		n = rcu_dereference_bh(nht->hash_buckets[bucket]); | 
 |  | 
 | 		while (n) { | 
 | 			if (!net_eq(dev_net(n->dev), net)) | 
 | 				goto next; | 
 | 			if (state->neigh_sub_iter) { | 
 | 				loff_t fakep = 0; | 
 | 				void *v; | 
 |  | 
 | 				v = state->neigh_sub_iter(state, n, &fakep); | 
 | 				if (!v) | 
 | 					goto next; | 
 | 			} | 
 | 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) | 
 | 				break; | 
 | 			if (n->nud_state & ~NUD_NOARP) | 
 | 				break; | 
 | next: | 
 | 			n = rcu_dereference_bh(n->next); | 
 | 		} | 
 |  | 
 | 		if (n) | 
 | 			break; | 
 | 	} | 
 | 	state->bucket = bucket; | 
 |  | 
 | 	return n; | 
 | } | 
 |  | 
 | static struct neighbour *neigh_get_next(struct seq_file *seq, | 
 | 					struct neighbour *n, | 
 | 					loff_t *pos) | 
 | { | 
 | 	struct neigh_seq_state *state = seq->private; | 
 | 	struct net *net = seq_file_net(seq); | 
 | 	struct neigh_hash_table *nht = state->nht; | 
 |  | 
 | 	if (state->neigh_sub_iter) { | 
 | 		void *v = state->neigh_sub_iter(state, n, pos); | 
 | 		if (v) | 
 | 			return n; | 
 | 	} | 
 | 	n = rcu_dereference_bh(n->next); | 
 |  | 
 | 	while (1) { | 
 | 		while (n) { | 
 | 			if (!net_eq(dev_net(n->dev), net)) | 
 | 				goto next; | 
 | 			if (state->neigh_sub_iter) { | 
 | 				void *v = state->neigh_sub_iter(state, n, pos); | 
 | 				if (v) | 
 | 					return n; | 
 | 				goto next; | 
 | 			} | 
 | 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) | 
 | 				break; | 
 |  | 
 | 			if (n->nud_state & ~NUD_NOARP) | 
 | 				break; | 
 | next: | 
 | 			n = rcu_dereference_bh(n->next); | 
 | 		} | 
 |  | 
 | 		if (n) | 
 | 			break; | 
 |  | 
 | 		if (++state->bucket >= (1 << nht->hash_shift)) | 
 | 			break; | 
 |  | 
 | 		n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); | 
 | 	} | 
 |  | 
 | 	if (n && pos) | 
 | 		--(*pos); | 
 | 	return n; | 
 | } | 
 |  | 
 | static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) | 
 | { | 
 | 	struct neighbour *n = neigh_get_first(seq); | 
 |  | 
 | 	if (n) { | 
 | 		--(*pos); | 
 | 		while (*pos) { | 
 | 			n = neigh_get_next(seq, n, pos); | 
 | 			if (!n) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	return *pos ? NULL : n; | 
 | } | 
 |  | 
 | static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) | 
 | { | 
 | 	struct neigh_seq_state *state = seq->private; | 
 | 	struct net *net = seq_file_net(seq); | 
 | 	struct neigh_table *tbl = state->tbl; | 
 | 	struct pneigh_entry *pn = NULL; | 
 | 	int bucket = state->bucket; | 
 |  | 
 | 	state->flags |= NEIGH_SEQ_IS_PNEIGH; | 
 | 	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { | 
 | 		pn = tbl->phash_buckets[bucket]; | 
 | 		while (pn && !net_eq(pneigh_net(pn), net)) | 
 | 			pn = pn->next; | 
 | 		if (pn) | 
 | 			break; | 
 | 	} | 
 | 	state->bucket = bucket; | 
 |  | 
 | 	return pn; | 
 | } | 
 |  | 
 | static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, | 
 | 					    struct pneigh_entry *pn, | 
 | 					    loff_t *pos) | 
 | { | 
 | 	struct neigh_seq_state *state = seq->private; | 
 | 	struct net *net = seq_file_net(seq); | 
 | 	struct neigh_table *tbl = state->tbl; | 
 |  | 
 | 	do { | 
 | 		pn = pn->next; | 
 | 	} while (pn && !net_eq(pneigh_net(pn), net)); | 
 |  | 
 | 	while (!pn) { | 
 | 		if (++state->bucket > PNEIGH_HASHMASK) | 
 | 			break; | 
 | 		pn = tbl->phash_buckets[state->bucket]; | 
 | 		while (pn && !net_eq(pneigh_net(pn), net)) | 
 | 			pn = pn->next; | 
 | 		if (pn) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (pn && pos) | 
 | 		--(*pos); | 
 |  | 
 | 	return pn; | 
 | } | 
 |  | 
 | static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) | 
 | { | 
 | 	struct pneigh_entry *pn = pneigh_get_first(seq); | 
 |  | 
 | 	if (pn) { | 
 | 		--(*pos); | 
 | 		while (*pos) { | 
 | 			pn = pneigh_get_next(seq, pn, pos); | 
 | 			if (!pn) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	return *pos ? NULL : pn; | 
 | } | 
 |  | 
 | static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) | 
 | { | 
 | 	struct neigh_seq_state *state = seq->private; | 
 | 	void *rc; | 
 | 	loff_t idxpos = *pos; | 
 |  | 
 | 	rc = neigh_get_idx(seq, &idxpos); | 
 | 	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) | 
 | 		rc = pneigh_get_idx(seq, &idxpos); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) | 
 | 	__acquires(rcu_bh) | 
 | { | 
 | 	struct neigh_seq_state *state = seq->private; | 
 |  | 
 | 	state->tbl = tbl; | 
 | 	state->bucket = 0; | 
 | 	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); | 
 |  | 
 | 	rcu_read_lock_bh(); | 
 | 	state->nht = rcu_dereference_bh(tbl->nht); | 
 |  | 
 | 	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; | 
 | } | 
 | EXPORT_SYMBOL(neigh_seq_start); | 
 |  | 
 | void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
 | { | 
 | 	struct neigh_seq_state *state; | 
 | 	void *rc; | 
 |  | 
 | 	if (v == SEQ_START_TOKEN) { | 
 | 		rc = neigh_get_first(seq); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	state = seq->private; | 
 | 	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { | 
 | 		rc = neigh_get_next(seq, v, NULL); | 
 | 		if (rc) | 
 | 			goto out; | 
 | 		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) | 
 | 			rc = pneigh_get_first(seq); | 
 | 	} else { | 
 | 		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); | 
 | 		rc = pneigh_get_next(seq, v, NULL); | 
 | 	} | 
 | out: | 
 | 	++(*pos); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL(neigh_seq_next); | 
 |  | 
 | void neigh_seq_stop(struct seq_file *seq, void *v) | 
 | 	__releases(rcu_bh) | 
 | { | 
 | 	rcu_read_unlock_bh(); | 
 | } | 
 | EXPORT_SYMBOL(neigh_seq_stop); | 
 |  | 
 | /* statistics via seq_file */ | 
 |  | 
 | static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) | 
 | { | 
 | 	struct neigh_table *tbl = seq->private; | 
 | 	int cpu; | 
 |  | 
 | 	if (*pos == 0) | 
 | 		return SEQ_START_TOKEN; | 
 |  | 
 | 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { | 
 | 		if (!cpu_possible(cpu)) | 
 | 			continue; | 
 | 		*pos = cpu+1; | 
 | 		return per_cpu_ptr(tbl->stats, cpu); | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
 | { | 
 | 	struct neigh_table *tbl = seq->private; | 
 | 	int cpu; | 
 |  | 
 | 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { | 
 | 		if (!cpu_possible(cpu)) | 
 | 			continue; | 
 | 		*pos = cpu+1; | 
 | 		return per_cpu_ptr(tbl->stats, cpu); | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void neigh_stat_seq_stop(struct seq_file *seq, void *v) | 
 | { | 
 |  | 
 | } | 
 |  | 
 | static int neigh_stat_seq_show(struct seq_file *seq, void *v) | 
 | { | 
 | 	struct neigh_table *tbl = seq->private; | 
 | 	struct neigh_statistics *st = v; | 
 |  | 
 | 	if (v == SEQ_START_TOKEN) { | 
 | 		seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs unresolved_discards\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  " | 
 | 			"%08lx %08lx  %08lx %08lx %08lx\n", | 
 | 		   atomic_read(&tbl->entries), | 
 |  | 
 | 		   st->allocs, | 
 | 		   st->destroys, | 
 | 		   st->hash_grows, | 
 |  | 
 | 		   st->lookups, | 
 | 		   st->hits, | 
 |  | 
 | 		   st->res_failed, | 
 |  | 
 | 		   st->rcv_probes_mcast, | 
 | 		   st->rcv_probes_ucast, | 
 |  | 
 | 		   st->periodic_gc_runs, | 
 | 		   st->forced_gc_runs, | 
 | 		   st->unres_discards | 
 | 		   ); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations neigh_stat_seq_ops = { | 
 | 	.start	= neigh_stat_seq_start, | 
 | 	.next	= neigh_stat_seq_next, | 
 | 	.stop	= neigh_stat_seq_stop, | 
 | 	.show	= neigh_stat_seq_show, | 
 | }; | 
 |  | 
 | static int neigh_stat_seq_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	int ret = seq_open(file, &neigh_stat_seq_ops); | 
 |  | 
 | 	if (!ret) { | 
 | 		struct seq_file *sf = file->private_data; | 
 | 		sf->private = PDE(inode)->data; | 
 | 	} | 
 | 	return ret; | 
 | }; | 
 |  | 
 | static const struct file_operations neigh_stat_seq_fops = { | 
 | 	.owner	 = THIS_MODULE, | 
 | 	.open 	 = neigh_stat_seq_open, | 
 | 	.read	 = seq_read, | 
 | 	.llseek	 = seq_lseek, | 
 | 	.release = seq_release, | 
 | }; | 
 |  | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | static inline size_t neigh_nlmsg_size(void) | 
 | { | 
 | 	return NLMSG_ALIGN(sizeof(struct ndmsg)) | 
 | 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ | 
 | 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ | 
 | 	       + nla_total_size(sizeof(struct nda_cacheinfo)) | 
 | 	       + nla_total_size(4); /* NDA_PROBES */ | 
 | } | 
 |  | 
 | static void __neigh_notify(struct neighbour *n, int type, int flags) | 
 | { | 
 | 	struct net *net = dev_net(n->dev); | 
 | 	struct sk_buff *skb; | 
 | 	int err = -ENOBUFS; | 
 |  | 
 | 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); | 
 | 	if (skb == NULL) | 
 | 		goto errout; | 
 |  | 
 | 	err = neigh_fill_info(skb, n, 0, 0, type, flags); | 
 | 	if (err < 0) { | 
 | 		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ | 
 | 		WARN_ON(err == -EMSGSIZE); | 
 | 		kfree_skb(skb); | 
 | 		goto errout; | 
 | 	} | 
 | 	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); | 
 | 	return; | 
 | errout: | 
 | 	if (err < 0) | 
 | 		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARPD | 
 | void neigh_app_ns(struct neighbour *n) | 
 | { | 
 | 	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); | 
 | } | 
 | EXPORT_SYMBOL(neigh_app_ns); | 
 | #endif /* CONFIG_ARPD */ | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 |  | 
 | static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer, | 
 | 			   size_t *lenp, loff_t *ppos) | 
 | { | 
 | 	int size, ret; | 
 | 	ctl_table tmp = *ctl; | 
 |  | 
 | 	tmp.data = &size; | 
 | 	size = DIV_ROUND_UP(*(int *)ctl->data, SKB_TRUESIZE(ETH_FRAME_LEN)); | 
 | 	ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); | 
 | 	if (write && !ret) | 
 | 		*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); | 
 | 	return ret; | 
 | } | 
 |  | 
 | enum { | 
 | 	NEIGH_VAR_MCAST_PROBE, | 
 | 	NEIGH_VAR_UCAST_PROBE, | 
 | 	NEIGH_VAR_APP_PROBE, | 
 | 	NEIGH_VAR_RETRANS_TIME, | 
 | 	NEIGH_VAR_BASE_REACHABLE_TIME, | 
 | 	NEIGH_VAR_DELAY_PROBE_TIME, | 
 | 	NEIGH_VAR_GC_STALETIME, | 
 | 	NEIGH_VAR_QUEUE_LEN, | 
 | 	NEIGH_VAR_QUEUE_LEN_BYTES, | 
 | 	NEIGH_VAR_PROXY_QLEN, | 
 | 	NEIGH_VAR_ANYCAST_DELAY, | 
 | 	NEIGH_VAR_PROXY_DELAY, | 
 | 	NEIGH_VAR_LOCKTIME, | 
 | 	NEIGH_VAR_RETRANS_TIME_MS, | 
 | 	NEIGH_VAR_BASE_REACHABLE_TIME_MS, | 
 | 	NEIGH_VAR_GC_INTERVAL, | 
 | 	NEIGH_VAR_GC_THRESH1, | 
 | 	NEIGH_VAR_GC_THRESH2, | 
 | 	NEIGH_VAR_GC_THRESH3, | 
 | 	NEIGH_VAR_MAX | 
 | }; | 
 |  | 
 | static struct neigh_sysctl_table { | 
 | 	struct ctl_table_header *sysctl_header; | 
 | 	struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; | 
 | } neigh_sysctl_template __read_mostly = { | 
 | 	.neigh_vars = { | 
 | 		[NEIGH_VAR_MCAST_PROBE] = { | 
 | 			.procname	= "mcast_solicit", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec, | 
 | 		}, | 
 | 		[NEIGH_VAR_UCAST_PROBE] = { | 
 | 			.procname	= "ucast_solicit", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec, | 
 | 		}, | 
 | 		[NEIGH_VAR_APP_PROBE] = { | 
 | 			.procname	= "app_solicit", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec, | 
 | 		}, | 
 | 		[NEIGH_VAR_RETRANS_TIME] = { | 
 | 			.procname	= "retrans_time", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_userhz_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_BASE_REACHABLE_TIME] = { | 
 | 			.procname	= "base_reachable_time", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_DELAY_PROBE_TIME] = { | 
 | 			.procname	= "delay_first_probe_time", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_GC_STALETIME] = { | 
 | 			.procname	= "gc_stale_time", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_QUEUE_LEN] = { | 
 | 			.procname	= "unres_qlen", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_unres_qlen, | 
 | 		}, | 
 | 		[NEIGH_VAR_QUEUE_LEN_BYTES] = { | 
 | 			.procname	= "unres_qlen_bytes", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec, | 
 | 		}, | 
 | 		[NEIGH_VAR_PROXY_QLEN] = { | 
 | 			.procname	= "proxy_qlen", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec, | 
 | 		}, | 
 | 		[NEIGH_VAR_ANYCAST_DELAY] = { | 
 | 			.procname	= "anycast_delay", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_userhz_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_PROXY_DELAY] = { | 
 | 			.procname	= "proxy_delay", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_userhz_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_LOCKTIME] = { | 
 | 			.procname	= "locktime", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_userhz_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_RETRANS_TIME_MS] = { | 
 | 			.procname	= "retrans_time_ms", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_ms_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_BASE_REACHABLE_TIME_MS] = { | 
 | 			.procname	= "base_reachable_time_ms", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_ms_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_GC_INTERVAL] = { | 
 | 			.procname	= "gc_interval", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec_jiffies, | 
 | 		}, | 
 | 		[NEIGH_VAR_GC_THRESH1] = { | 
 | 			.procname	= "gc_thresh1", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec, | 
 | 		}, | 
 | 		[NEIGH_VAR_GC_THRESH2] = { | 
 | 			.procname	= "gc_thresh2", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec, | 
 | 		}, | 
 | 		[NEIGH_VAR_GC_THRESH3] = { | 
 | 			.procname	= "gc_thresh3", | 
 | 			.maxlen		= sizeof(int), | 
 | 			.mode		= 0644, | 
 | 			.proc_handler	= proc_dointvec, | 
 | 		}, | 
 | 		{}, | 
 | 	}, | 
 | }; | 
 |  | 
 | int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, | 
 | 			  char *p_name, proc_handler *handler) | 
 | { | 
 | 	struct neigh_sysctl_table *t; | 
 | 	const char *dev_name_source = NULL; | 
 | 	char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; | 
 |  | 
 | 	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); | 
 | 	if (!t) | 
 | 		goto err; | 
 |  | 
 | 	t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data  = &p->mcast_probes; | 
 | 	t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data  = &p->ucast_probes; | 
 | 	t->neigh_vars[NEIGH_VAR_APP_PROBE].data  = &p->app_probes; | 
 | 	t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data  = &p->retrans_time; | 
 | 	t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data  = &p->base_reachable_time; | 
 | 	t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data  = &p->delay_probe_time; | 
 | 	t->neigh_vars[NEIGH_VAR_GC_STALETIME].data  = &p->gc_staletime; | 
 | 	t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data  = &p->queue_len_bytes; | 
 | 	t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data  = &p->queue_len_bytes; | 
 | 	t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data  = &p->proxy_qlen; | 
 | 	t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data  = &p->anycast_delay; | 
 | 	t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay; | 
 | 	t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime; | 
 | 	t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data  = &p->retrans_time; | 
 | 	t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data  = &p->base_reachable_time; | 
 |  | 
 | 	if (dev) { | 
 | 		dev_name_source = dev->name; | 
 | 		/* Terminate the table early */ | 
 | 		memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, | 
 | 		       sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); | 
 | 	} else { | 
 | 		dev_name_source = "default"; | 
 | 		t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1); | 
 | 		t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1; | 
 | 		t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2; | 
 | 		t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3; | 
 | 	} | 
 |  | 
 |  | 
 | 	if (handler) { | 
 | 		/* RetransTime */ | 
 | 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; | 
 | 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev; | 
 | 		/* ReachableTime */ | 
 | 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; | 
 | 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev; | 
 | 		/* RetransTime (in milliseconds)*/ | 
 | 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; | 
 | 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev; | 
 | 		/* ReachableTime (in milliseconds) */ | 
 | 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; | 
 | 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev; | 
 | 	} | 
 |  | 
 | 	snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", | 
 | 		p_name, dev_name_source); | 
 | 	t->sysctl_header = | 
 | 		register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); | 
 | 	if (!t->sysctl_header) | 
 | 		goto free; | 
 |  | 
 | 	p->sysctl_table = t; | 
 | 	return 0; | 
 |  | 
 | free: | 
 | 	kfree(t); | 
 | err: | 
 | 	return -ENOBUFS; | 
 | } | 
 | EXPORT_SYMBOL(neigh_sysctl_register); | 
 |  | 
 | void neigh_sysctl_unregister(struct neigh_parms *p) | 
 | { | 
 | 	if (p->sysctl_table) { | 
 | 		struct neigh_sysctl_table *t = p->sysctl_table; | 
 | 		p->sysctl_table = NULL; | 
 | 		unregister_net_sysctl_table(t->sysctl_header); | 
 | 		kfree(t); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(neigh_sysctl_unregister); | 
 |  | 
 | #endif	/* CONFIG_SYSCTL */ | 
 |  | 
 | static int __init neigh_init(void) | 
 | { | 
 | 	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL); | 
 | 	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL); | 
 | 	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL); | 
 |  | 
 | 	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, | 
 | 		      NULL); | 
 | 	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | subsys_initcall(neigh_init); | 
 |  |