|  | #include "amd64_edac.h" | 
|  | #include <asm/amd_nb.h> | 
|  |  | 
|  | static struct edac_pci_ctl_info *amd64_ctl_pci; | 
|  |  | 
|  | static int report_gart_errors; | 
|  | module_param(report_gart_errors, int, 0644); | 
|  |  | 
|  | /* | 
|  | * Set by command line parameter. If BIOS has enabled the ECC, this override is | 
|  | * cleared to prevent re-enabling the hardware by this driver. | 
|  | */ | 
|  | static int ecc_enable_override; | 
|  | module_param(ecc_enable_override, int, 0644); | 
|  |  | 
|  | static struct msr __percpu *msrs; | 
|  |  | 
|  | /* Lookup table for all possible MC control instances */ | 
|  | struct amd64_pvt; | 
|  | static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES]; | 
|  | static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES]; | 
|  |  | 
|  | /* | 
|  | * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and | 
|  | * later. | 
|  | */ | 
|  | static int ddr2_dbam_revCG[] = { | 
|  | [0]		= 32, | 
|  | [1]		= 64, | 
|  | [2]		= 128, | 
|  | [3]		= 256, | 
|  | [4]		= 512, | 
|  | [5]		= 1024, | 
|  | [6]		= 2048, | 
|  | }; | 
|  |  | 
|  | static int ddr2_dbam_revD[] = { | 
|  | [0]		= 32, | 
|  | [1]		= 64, | 
|  | [2 ... 3]	= 128, | 
|  | [4]		= 256, | 
|  | [5]		= 512, | 
|  | [6]		= 256, | 
|  | [7]		= 512, | 
|  | [8 ... 9]	= 1024, | 
|  | [10]		= 2048, | 
|  | }; | 
|  |  | 
|  | static int ddr2_dbam[] = { [0]		= 128, | 
|  | [1]		= 256, | 
|  | [2 ... 4]	= 512, | 
|  | [5 ... 6]	= 1024, | 
|  | [7 ... 8]	= 2048, | 
|  | [9 ... 10]	= 4096, | 
|  | [11]		= 8192, | 
|  | }; | 
|  |  | 
|  | static int ddr3_dbam[] = { [0]		= -1, | 
|  | [1]		= 256, | 
|  | [2]		= 512, | 
|  | [3 ... 4]	= -1, | 
|  | [5 ... 6]	= 1024, | 
|  | [7 ... 8]	= 2048, | 
|  | [9 ... 10]	= 4096, | 
|  | [11]	= 8192, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing | 
|  | * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- | 
|  | * or higher value'. | 
|  | * | 
|  | *FIXME: Produce a better mapping/linearisation. | 
|  | */ | 
|  |  | 
|  | struct scrubrate scrubrates[] = { | 
|  | { 0x01, 1600000000UL}, | 
|  | { 0x02, 800000000UL}, | 
|  | { 0x03, 400000000UL}, | 
|  | { 0x04, 200000000UL}, | 
|  | { 0x05, 100000000UL}, | 
|  | { 0x06, 50000000UL}, | 
|  | { 0x07, 25000000UL}, | 
|  | { 0x08, 12284069UL}, | 
|  | { 0x09, 6274509UL}, | 
|  | { 0x0A, 3121951UL}, | 
|  | { 0x0B, 1560975UL}, | 
|  | { 0x0C, 781440UL}, | 
|  | { 0x0D, 390720UL}, | 
|  | { 0x0E, 195300UL}, | 
|  | { 0x0F, 97650UL}, | 
|  | { 0x10, 48854UL}, | 
|  | { 0x11, 24427UL}, | 
|  | { 0x12, 12213UL}, | 
|  | { 0x13, 6101UL}, | 
|  | { 0x14, 3051UL}, | 
|  | { 0x15, 1523UL}, | 
|  | { 0x16, 761UL}, | 
|  | { 0x00, 0UL},        /* scrubbing off */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Memory scrubber control interface. For K8, memory scrubbing is handled by | 
|  | * hardware and can involve L2 cache, dcache as well as the main memory. With | 
|  | * F10, this is extended to L3 cache scrubbing on CPU models sporting that | 
|  | * functionality. | 
|  | * | 
|  | * This causes the "units" for the scrubbing speed to vary from 64 byte blocks | 
|  | * (dram) over to cache lines. This is nasty, so we will use bandwidth in | 
|  | * bytes/sec for the setting. | 
|  | * | 
|  | * Currently, we only do dram scrubbing. If the scrubbing is done in software on | 
|  | * other archs, we might not have access to the caches directly. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * scan the scrub rate mapping table for a close or matching bandwidth value to | 
|  | * issue. If requested is too big, then use last maximum value found. | 
|  | */ | 
|  | static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, | 
|  | u32 min_scrubrate) | 
|  | { | 
|  | u32 scrubval; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * map the configured rate (new_bw) to a value specific to the AMD64 | 
|  | * memory controller and apply to register. Search for the first | 
|  | * bandwidth entry that is greater or equal than the setting requested | 
|  | * and program that. If at last entry, turn off DRAM scrubbing. | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { | 
|  | /* | 
|  | * skip scrub rates which aren't recommended | 
|  | * (see F10 BKDG, F3x58) | 
|  | */ | 
|  | if (scrubrates[i].scrubval < min_scrubrate) | 
|  | continue; | 
|  |  | 
|  | if (scrubrates[i].bandwidth <= new_bw) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * if no suitable bandwidth found, turn off DRAM scrubbing | 
|  | * entirely by falling back to the last element in the | 
|  | * scrubrates array. | 
|  | */ | 
|  | } | 
|  |  | 
|  | scrubval = scrubrates[i].scrubval; | 
|  | if (scrubval) | 
|  | edac_printk(KERN_DEBUG, EDAC_MC, | 
|  | "Setting scrub rate bandwidth: %u\n", | 
|  | scrubrates[i].bandwidth); | 
|  | else | 
|  | edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n"); | 
|  |  | 
|  | pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bandwidth) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u32 min_scrubrate = 0x0; | 
|  |  | 
|  | switch (boot_cpu_data.x86) { | 
|  | case 0xf: | 
|  | min_scrubrate = K8_MIN_SCRUB_RATE_BITS; | 
|  | break; | 
|  | case 0x10: | 
|  | min_scrubrate = F10_MIN_SCRUB_RATE_BITS; | 
|  | break; | 
|  | case 0x11: | 
|  | min_scrubrate = F11_MIN_SCRUB_RATE_BITS; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | amd64_printk(KERN_ERR, "Unsupported family!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, bandwidth, | 
|  | min_scrubrate); | 
|  | } | 
|  |  | 
|  | static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u32 scrubval = 0; | 
|  | int status = -1, i; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval); | 
|  |  | 
|  | scrubval = scrubval & 0x001F; | 
|  |  | 
|  | edac_printk(KERN_DEBUG, EDAC_MC, | 
|  | "pci-read, sdram scrub control value: %d \n", scrubval); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { | 
|  | if (scrubrates[i].scrubval == scrubval) { | 
|  | *bw = scrubrates[i].bandwidth; | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Map from a CSROW entry to the mask entry that operates on it */ | 
|  | static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow) | 
|  | { | 
|  | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) | 
|  | return csrow; | 
|  | else | 
|  | return csrow >> 1; | 
|  | } | 
|  |  | 
|  | /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */ | 
|  | static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow) | 
|  | { | 
|  | if (dct == 0) | 
|  | return pvt->dcsb0[csrow]; | 
|  | else | 
|  | return pvt->dcsb1[csrow]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the 'mask' address the i'th CS entry. This function is needed because | 
|  | * there number of DCSM registers on Rev E and prior vs Rev F and later is | 
|  | * different. | 
|  | */ | 
|  | static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow) | 
|  | { | 
|  | if (dct == 0) | 
|  | return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)]; | 
|  | else | 
|  | return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)]; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * In *base and *limit, pass back the full 40-bit base and limit physical | 
|  | * addresses for the node given by node_id.  This information is obtained from | 
|  | * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The | 
|  | * base and limit addresses are of type SysAddr, as defined at the start of | 
|  | * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses | 
|  | * in the address range they represent. | 
|  | */ | 
|  | static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id, | 
|  | u64 *base, u64 *limit) | 
|  | { | 
|  | *base = pvt->dram_base[node_id]; | 
|  | *limit = pvt->dram_limit[node_id]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 1 if the SysAddr given by sys_addr matches the base/limit associated | 
|  | * with node_id | 
|  | */ | 
|  | static int amd64_base_limit_match(struct amd64_pvt *pvt, | 
|  | u64 sys_addr, int node_id) | 
|  | { | 
|  | u64 base, limit, addr; | 
|  |  | 
|  | amd64_get_base_and_limit(pvt, node_id, &base, &limit); | 
|  |  | 
|  | /* The K8 treats this as a 40-bit value.  However, bits 63-40 will be | 
|  | * all ones if the most significant implemented address bit is 1. | 
|  | * Here we discard bits 63-40.  See section 3.4.2 of AMD publication | 
|  | * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 | 
|  | * Application Programming. | 
|  | */ | 
|  | addr = sys_addr & 0x000000ffffffffffull; | 
|  |  | 
|  | return (addr >= base) && (addr <= limit); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to map a SysAddr to a node. On success, return a pointer to the | 
|  | * mem_ctl_info structure for the node that the SysAddr maps to. | 
|  | * | 
|  | * On failure, return NULL. | 
|  | */ | 
|  | static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, | 
|  | u64 sys_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt; | 
|  | int node_id; | 
|  | u32 intlv_en, bits; | 
|  |  | 
|  | /* | 
|  | * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section | 
|  | * 3.4.4.2) registers to map the SysAddr to a node ID. | 
|  | */ | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* | 
|  | * The value of this field should be the same for all DRAM Base | 
|  | * registers.  Therefore we arbitrarily choose to read it from the | 
|  | * register for node 0. | 
|  | */ | 
|  | intlv_en = pvt->dram_IntlvEn[0]; | 
|  |  | 
|  | if (intlv_en == 0) { | 
|  | for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) { | 
|  | if (amd64_base_limit_match(pvt, sys_addr, node_id)) | 
|  | goto found; | 
|  | } | 
|  | goto err_no_match; | 
|  | } | 
|  |  | 
|  | if (unlikely((intlv_en != 0x01) && | 
|  | (intlv_en != 0x03) && | 
|  | (intlv_en != 0x07))) { | 
|  | amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from " | 
|  | "IntlvEn field of DRAM Base Register for node 0: " | 
|  | "this probably indicates a BIOS bug.\n", intlv_en); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bits = (((u32) sys_addr) >> 12) & intlv_en; | 
|  |  | 
|  | for (node_id = 0; ; ) { | 
|  | if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits) | 
|  | break;	/* intlv_sel field matches */ | 
|  |  | 
|  | if (++node_id >= DRAM_REG_COUNT) | 
|  | goto err_no_match; | 
|  | } | 
|  |  | 
|  | /* sanity test for sys_addr */ | 
|  | if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { | 
|  | amd64_printk(KERN_WARNING, | 
|  | "%s(): sys_addr 0x%llx falls outside base/limit " | 
|  | "address range for node %d with node interleaving " | 
|  | "enabled.\n", | 
|  | __func__, sys_addr, node_id); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | found: | 
|  | return edac_mc_find(node_id); | 
|  |  | 
|  | err_no_match: | 
|  | debugf2("sys_addr 0x%lx doesn't match any node\n", | 
|  | (unsigned long)sys_addr); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extract the DRAM CS base address from selected csrow register. | 
|  | */ | 
|  | static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow) | 
|  | { | 
|  | return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) << | 
|  | pvt->dcs_shift; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way. | 
|  | */ | 
|  | static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow) | 
|  | { | 
|  | u64 dcsm_bits, other_bits; | 
|  | u64 mask; | 
|  |  | 
|  | /* Extract bits from DRAM CS Mask. */ | 
|  | dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask; | 
|  |  | 
|  | other_bits = pvt->dcsm_mask; | 
|  | other_bits = ~(other_bits << pvt->dcs_shift); | 
|  |  | 
|  | /* | 
|  | * The extracted bits from DCSM belong in the spaces represented by | 
|  | * the cleared bits in other_bits. | 
|  | */ | 
|  | mask = (dcsm_bits << pvt->dcs_shift) | other_bits; | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @input_addr is an InputAddr associated with the node given by mci. Return the | 
|  | * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). | 
|  | */ | 
|  | static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt; | 
|  | int csrow; | 
|  | u64 base, mask; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* | 
|  | * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS | 
|  | * base/mask register pair, test the condition shown near the start of | 
|  | * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E). | 
|  | */ | 
|  | for (csrow = 0; csrow < pvt->cs_count; csrow++) { | 
|  |  | 
|  | /* This DRAM chip select is disabled on this node */ | 
|  | if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0) | 
|  | continue; | 
|  |  | 
|  | base = base_from_dct_base(pvt, csrow); | 
|  | mask = ~mask_from_dct_mask(pvt, csrow); | 
|  |  | 
|  | if ((input_addr & mask) == (base & mask)) { | 
|  | debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", | 
|  | (unsigned long)input_addr, csrow, | 
|  | pvt->mc_node_id); | 
|  |  | 
|  | return csrow; | 
|  | } | 
|  | } | 
|  |  | 
|  | debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", | 
|  | (unsigned long)input_addr, pvt->mc_node_id); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the base value defined by the DRAM Base register for the node | 
|  | * represented by mci.  This function returns the full 40-bit value despite the | 
|  | * fact that the register only stores bits 39-24 of the value. See section | 
|  | * 3.4.4.1 (BKDG #26094, K8, revA-E) | 
|  | */ | 
|  | static inline u64 get_dram_base(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  |  | 
|  | return pvt->dram_base[pvt->mc_node_id]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) | 
|  | * for the node represented by mci. Info is passed back in *hole_base, | 
|  | * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if | 
|  | * info is invalid. Info may be invalid for either of the following reasons: | 
|  | * | 
|  | * - The revision of the node is not E or greater.  In this case, the DRAM Hole | 
|  | *   Address Register does not exist. | 
|  | * | 
|  | * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, | 
|  | *   indicating that its contents are not valid. | 
|  | * | 
|  | * The values passed back in *hole_base, *hole_offset, and *hole_size are | 
|  | * complete 32-bit values despite the fact that the bitfields in the DHAR | 
|  | * only represent bits 31-24 of the base and offset values. | 
|  | */ | 
|  | int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, | 
|  | u64 *hole_offset, u64 *hole_size) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u64 base; | 
|  |  | 
|  | /* only revE and later have the DRAM Hole Address Register */ | 
|  | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { | 
|  | debugf1("  revision %d for node %d does not support DHAR\n", | 
|  | pvt->ext_model, pvt->mc_node_id); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* only valid for Fam10h */ | 
|  | if (boot_cpu_data.x86 == 0x10 && | 
|  | (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) { | 
|  | debugf1("  Dram Memory Hoisting is DISABLED on this system\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if ((pvt->dhar & DHAR_VALID) == 0) { | 
|  | debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n", | 
|  | pvt->mc_node_id); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* This node has Memory Hoisting */ | 
|  |  | 
|  | /* +------------------+--------------------+--------------------+----- | 
|  | * | memory           | DRAM hole          | relocated          | | 
|  | * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     | | 
|  | * |                  |                    | DRAM hole          | | 
|  | * |                  |                    | [0x100000000,      | | 
|  | * |                  |                    |  (0x100000000+     | | 
|  | * |                  |                    |   (0xffffffff-x))] | | 
|  | * +------------------+--------------------+--------------------+----- | 
|  | * | 
|  | * Above is a diagram of physical memory showing the DRAM hole and the | 
|  | * relocated addresses from the DRAM hole.  As shown, the DRAM hole | 
|  | * starts at address x (the base address) and extends through address | 
|  | * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the | 
|  | * addresses in the hole so that they start at 0x100000000. | 
|  | */ | 
|  |  | 
|  | base = dhar_base(pvt->dhar); | 
|  |  | 
|  | *hole_base = base; | 
|  | *hole_size = (0x1ull << 32) - base; | 
|  |  | 
|  | if (boot_cpu_data.x86 > 0xf) | 
|  | *hole_offset = f10_dhar_offset(pvt->dhar); | 
|  | else | 
|  | *hole_offset = k8_dhar_offset(pvt->dhar); | 
|  |  | 
|  | debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", | 
|  | pvt->mc_node_id, (unsigned long)*hole_base, | 
|  | (unsigned long)*hole_offset, (unsigned long)*hole_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); | 
|  |  | 
|  | /* | 
|  | * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is | 
|  | * assumed that sys_addr maps to the node given by mci. | 
|  | * | 
|  | * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section | 
|  | * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a | 
|  | * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, | 
|  | * then it is also involved in translating a SysAddr to a DramAddr. Sections | 
|  | * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. | 
|  | * These parts of the documentation are unclear. I interpret them as follows: | 
|  | * | 
|  | * When node n receives a SysAddr, it processes the SysAddr as follows: | 
|  | * | 
|  | * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM | 
|  | *    Limit registers for node n. If the SysAddr is not within the range | 
|  | *    specified by the base and limit values, then node n ignores the Sysaddr | 
|  | *    (since it does not map to node n). Otherwise continue to step 2 below. | 
|  | * | 
|  | * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is | 
|  | *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within | 
|  | *    the range of relocated addresses (starting at 0x100000000) from the DRAM | 
|  | *    hole. If not, skip to step 3 below. Else get the value of the | 
|  | *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the | 
|  | *    offset defined by this value from the SysAddr. | 
|  | * | 
|  | * 3. Obtain the base address for node n from the DRAMBase field of the DRAM | 
|  | *    Base register for node n. To obtain the DramAddr, subtract the base | 
|  | *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70). | 
|  | */ | 
|  | static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) | 
|  | { | 
|  | u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; | 
|  | int ret = 0; | 
|  |  | 
|  | dram_base = get_dram_base(mci); | 
|  |  | 
|  | ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, | 
|  | &hole_size); | 
|  | if (!ret) { | 
|  | if ((sys_addr >= (1ull << 32)) && | 
|  | (sys_addr < ((1ull << 32) + hole_size))) { | 
|  | /* use DHAR to translate SysAddr to DramAddr */ | 
|  | dram_addr = sys_addr - hole_offset; | 
|  |  | 
|  | debugf2("using DHAR to translate SysAddr 0x%lx to " | 
|  | "DramAddr 0x%lx\n", | 
|  | (unsigned long)sys_addr, | 
|  | (unsigned long)dram_addr); | 
|  |  | 
|  | return dram_addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Translate the SysAddr to a DramAddr as shown near the start of | 
|  | * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8 | 
|  | * only deals with 40-bit values.  Therefore we discard bits 63-40 of | 
|  | * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we | 
|  | * discard are all 1s.  Otherwise the bits we discard are all 0s.  See | 
|  | * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture | 
|  | * Programmer's Manual Volume 1 Application Programming. | 
|  | */ | 
|  | dram_addr = (sys_addr & 0xffffffffffull) - dram_base; | 
|  |  | 
|  | debugf2("using DRAM Base register to translate SysAddr 0x%lx to " | 
|  | "DramAddr 0x%lx\n", (unsigned long)sys_addr, | 
|  | (unsigned long)dram_addr); | 
|  | return dram_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @intlv_en is the value of the IntlvEn field from a DRAM Base register | 
|  | * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used | 
|  | * for node interleaving. | 
|  | */ | 
|  | static int num_node_interleave_bits(unsigned intlv_en) | 
|  | { | 
|  | static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; | 
|  | int n; | 
|  |  | 
|  | BUG_ON(intlv_en > 7); | 
|  | n = intlv_shift_table[intlv_en]; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* Translate the DramAddr given by @dram_addr to an InputAddr. */ | 
|  | static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt; | 
|  | int intlv_shift; | 
|  | u64 input_addr; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* | 
|  | * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) | 
|  | * concerning translating a DramAddr to an InputAddr. | 
|  | */ | 
|  | intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); | 
|  | input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) + | 
|  | (dram_addr & 0xfff); | 
|  |  | 
|  | debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", | 
|  | intlv_shift, (unsigned long)dram_addr, | 
|  | (unsigned long)input_addr); | 
|  |  | 
|  | return input_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is | 
|  | * assumed that @sys_addr maps to the node given by mci. | 
|  | */ | 
|  | static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) | 
|  | { | 
|  | u64 input_addr; | 
|  |  | 
|  | input_addr = | 
|  | dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); | 
|  |  | 
|  | debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", | 
|  | (unsigned long)sys_addr, (unsigned long)input_addr); | 
|  |  | 
|  | return input_addr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * @input_addr is an InputAddr associated with the node represented by mci. | 
|  | * Translate @input_addr to a DramAddr and return the result. | 
|  | */ | 
|  | static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt; | 
|  | int node_id, intlv_shift; | 
|  | u64 bits, dram_addr; | 
|  | u32 intlv_sel; | 
|  |  | 
|  | /* | 
|  | * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) | 
|  | * shows how to translate a DramAddr to an InputAddr. Here we reverse | 
|  | * this procedure. When translating from a DramAddr to an InputAddr, the | 
|  | * bits used for node interleaving are discarded.  Here we recover these | 
|  | * bits from the IntlvSel field of the DRAM Limit register (section | 
|  | * 3.4.4.2) for the node that input_addr is associated with. | 
|  | */ | 
|  | pvt = mci->pvt_info; | 
|  | node_id = pvt->mc_node_id; | 
|  | BUG_ON((node_id < 0) || (node_id > 7)); | 
|  |  | 
|  | intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); | 
|  |  | 
|  | if (intlv_shift == 0) { | 
|  | debugf1("    InputAddr 0x%lx translates to DramAddr of " | 
|  | "same value\n",	(unsigned long)input_addr); | 
|  |  | 
|  | return input_addr; | 
|  | } | 
|  |  | 
|  | bits = ((input_addr & 0xffffff000ull) << intlv_shift) + | 
|  | (input_addr & 0xfff); | 
|  |  | 
|  | intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1); | 
|  | dram_addr = bits + (intlv_sel << 12); | 
|  |  | 
|  | debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " | 
|  | "(%d node interleave bits)\n", (unsigned long)input_addr, | 
|  | (unsigned long)dram_addr, intlv_shift); | 
|  |  | 
|  | return dram_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @dram_addr is a DramAddr that maps to the node represented by mci. Convert | 
|  | * @dram_addr to a SysAddr. | 
|  | */ | 
|  | static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u64 hole_base, hole_offset, hole_size, base, limit, sys_addr; | 
|  | int ret = 0; | 
|  |  | 
|  | ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, | 
|  | &hole_size); | 
|  | if (!ret) { | 
|  | if ((dram_addr >= hole_base) && | 
|  | (dram_addr < (hole_base + hole_size))) { | 
|  | sys_addr = dram_addr + hole_offset; | 
|  |  | 
|  | debugf1("using DHAR to translate DramAddr 0x%lx to " | 
|  | "SysAddr 0x%lx\n", (unsigned long)dram_addr, | 
|  | (unsigned long)sys_addr); | 
|  |  | 
|  | return sys_addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit); | 
|  | sys_addr = dram_addr + base; | 
|  |  | 
|  | /* | 
|  | * The sys_addr we have computed up to this point is a 40-bit value | 
|  | * because the k8 deals with 40-bit values.  However, the value we are | 
|  | * supposed to return is a full 64-bit physical address.  The AMD | 
|  | * x86-64 architecture specifies that the most significant implemented | 
|  | * address bit through bit 63 of a physical address must be either all | 
|  | * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a | 
|  | * 64-bit value below.  See section 3.4.2 of AMD publication 24592: | 
|  | * AMD x86-64 Architecture Programmer's Manual Volume 1 Application | 
|  | * Programming. | 
|  | */ | 
|  | sys_addr |= ~((sys_addr & (1ull << 39)) - 1); | 
|  |  | 
|  | debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", | 
|  | pvt->mc_node_id, (unsigned long)dram_addr, | 
|  | (unsigned long)sys_addr); | 
|  |  | 
|  | return sys_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @input_addr is an InputAddr associated with the node given by mci. Translate | 
|  | * @input_addr to a SysAddr. | 
|  | */ | 
|  | static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, | 
|  | u64 input_addr) | 
|  | { | 
|  | return dram_addr_to_sys_addr(mci, | 
|  | input_addr_to_dram_addr(mci, input_addr)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the minimum and maximum InputAddr values that map to the given @csrow. | 
|  | * Pass back these values in *input_addr_min and *input_addr_max. | 
|  | */ | 
|  | static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, | 
|  | u64 *input_addr_min, u64 *input_addr_max) | 
|  | { | 
|  | struct amd64_pvt *pvt; | 
|  | u64 base, mask; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  | BUG_ON((csrow < 0) || (csrow >= pvt->cs_count)); | 
|  |  | 
|  | base = base_from_dct_base(pvt, csrow); | 
|  | mask = mask_from_dct_mask(pvt, csrow); | 
|  |  | 
|  | *input_addr_min = base & ~mask; | 
|  | *input_addr_max = base | mask | pvt->dcs_mask_notused; | 
|  | } | 
|  |  | 
|  | /* Map the Error address to a PAGE and PAGE OFFSET. */ | 
|  | static inline void error_address_to_page_and_offset(u64 error_address, | 
|  | u32 *page, u32 *offset) | 
|  | { | 
|  | *page = (u32) (error_address >> PAGE_SHIFT); | 
|  | *offset = ((u32) error_address) & ~PAGE_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address | 
|  | * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers | 
|  | * of a node that detected an ECC memory error.  mci represents the node that | 
|  | * the error address maps to (possibly different from the node that detected | 
|  | * the error).  Return the number of the csrow that sys_addr maps to, or -1 on | 
|  | * error. | 
|  | */ | 
|  | static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) | 
|  | { | 
|  | int csrow; | 
|  |  | 
|  | csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); | 
|  |  | 
|  | if (csrow == -1) | 
|  | amd64_mc_printk(mci, KERN_ERR, | 
|  | "Failed to translate InputAddr to csrow for " | 
|  | "address 0x%lx\n", (unsigned long)sys_addr); | 
|  | return csrow; | 
|  | } | 
|  |  | 
|  | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); | 
|  |  | 
|  | static u16 extract_syndrome(struct err_regs *err) | 
|  | { | 
|  | return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00); | 
|  | } | 
|  |  | 
|  | static void amd64_cpu_display_info(struct amd64_pvt *pvt) | 
|  | { | 
|  | if (boot_cpu_data.x86 == 0x11) | 
|  | edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n"); | 
|  | else if (boot_cpu_data.x86 == 0x10) | 
|  | edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n"); | 
|  | else if (boot_cpu_data.x86 == 0xf) | 
|  | edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n", | 
|  | (pvt->ext_model >= K8_REV_F) ? | 
|  | "Rev F or later" : "Rev E or earlier"); | 
|  | else | 
|  | /* we'll hardly ever ever get here */ | 
|  | edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs | 
|  | * are ECC capable. | 
|  | */ | 
|  | static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt) | 
|  | { | 
|  | int bit; | 
|  | enum dev_type edac_cap = EDAC_FLAG_NONE; | 
|  |  | 
|  | bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) | 
|  | ? 19 | 
|  | : 17; | 
|  |  | 
|  | if (pvt->dclr0 & BIT(bit)) | 
|  | edac_cap = EDAC_FLAG_SECDED; | 
|  |  | 
|  | return edac_cap; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt); | 
|  |  | 
|  | static void amd64_dump_dramcfg_low(u32 dclr, int chan) | 
|  | { | 
|  | debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); | 
|  |  | 
|  | debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n", | 
|  | (dclr & BIT(16)) ?  "un" : "", | 
|  | (dclr & BIT(19)) ? "yes" : "no"); | 
|  |  | 
|  | debugf1("  PAR/ERR parity: %s\n", | 
|  | (dclr & BIT(8)) ?  "enabled" : "disabled"); | 
|  |  | 
|  | debugf1("  DCT 128bit mode width: %s\n", | 
|  | (dclr & BIT(11)) ?  "128b" : "64b"); | 
|  |  | 
|  | debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", | 
|  | (dclr & BIT(12)) ?  "yes" : "no", | 
|  | (dclr & BIT(13)) ?  "yes" : "no", | 
|  | (dclr & BIT(14)) ?  "yes" : "no", | 
|  | (dclr & BIT(15)) ?  "yes" : "no"); | 
|  | } | 
|  |  | 
|  | /* Display and decode various NB registers for debug purposes. */ | 
|  | static void amd64_dump_misc_regs(struct amd64_pvt *pvt) | 
|  | { | 
|  | int ganged; | 
|  |  | 
|  | debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); | 
|  |  | 
|  | debugf1("  NB two channel DRAM capable: %s\n", | 
|  | (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no"); | 
|  |  | 
|  | debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n", | 
|  | (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no", | 
|  | (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no"); | 
|  |  | 
|  | amd64_dump_dramcfg_low(pvt->dclr0, 0); | 
|  |  | 
|  | debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); | 
|  |  | 
|  | debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, " | 
|  | "offset: 0x%08x\n", | 
|  | pvt->dhar, | 
|  | dhar_base(pvt->dhar), | 
|  | (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar) | 
|  | : f10_dhar_offset(pvt->dhar)); | 
|  |  | 
|  | debugf1("  DramHoleValid: %s\n", | 
|  | (pvt->dhar & DHAR_VALID) ? "yes" : "no"); | 
|  |  | 
|  | /* everything below this point is Fam10h and above */ | 
|  | if (boot_cpu_data.x86 == 0xf) { | 
|  | amd64_debug_display_dimm_sizes(0, pvt); | 
|  | return; | 
|  | } | 
|  |  | 
|  | amd64_printk(KERN_INFO, "using %s syndromes.\n", | 
|  | ((pvt->syn_type == 8) ? "x8" : "x4")); | 
|  |  | 
|  | /* Only if NOT ganged does dclr1 have valid info */ | 
|  | if (!dct_ganging_enabled(pvt)) | 
|  | amd64_dump_dramcfg_low(pvt->dclr1, 1); | 
|  |  | 
|  | /* | 
|  | * Determine if ganged and then dump memory sizes for first controller, | 
|  | * and if NOT ganged dump info for 2nd controller. | 
|  | */ | 
|  | ganged = dct_ganging_enabled(pvt); | 
|  |  | 
|  | amd64_debug_display_dimm_sizes(0, pvt); | 
|  |  | 
|  | if (!ganged) | 
|  | amd64_debug_display_dimm_sizes(1, pvt); | 
|  | } | 
|  |  | 
|  | /* Read in both of DBAM registers */ | 
|  | static void amd64_read_dbam_reg(struct amd64_pvt *pvt) | 
|  | { | 
|  | amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0); | 
|  |  | 
|  | if (boot_cpu_data.x86 >= 0x10) | 
|  | amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE: CPU Revision Dependent code: Rev E and Rev F | 
|  | * | 
|  | * Set the DCSB and DCSM mask values depending on the CPU revision value. Also | 
|  | * set the shift factor for the DCSB and DCSM values. | 
|  | * | 
|  | * ->dcs_mask_notused, RevE: | 
|  | * | 
|  | * To find the max InputAddr for the csrow, start with the base address and set | 
|  | * all bits that are "don't care" bits in the test at the start of section | 
|  | * 3.5.4 (p. 84). | 
|  | * | 
|  | * The "don't care" bits are all set bits in the mask and all bits in the gaps | 
|  | * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS | 
|  | * represents bits [24:20] and [12:0], which are all bits in the above-mentioned | 
|  | * gaps. | 
|  | * | 
|  | * ->dcs_mask_notused, RevF and later: | 
|  | * | 
|  | * To find the max InputAddr for the csrow, start with the base address and set | 
|  | * all bits that are "don't care" bits in the test at the start of NPT section | 
|  | * 4.5.4 (p. 87). | 
|  | * | 
|  | * The "don't care" bits are all set bits in the mask and all bits in the gaps | 
|  | * between bit ranges [36:27] and [21:13]. | 
|  | * | 
|  | * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0], | 
|  | * which are all bits in the above-mentioned gaps. | 
|  | */ | 
|  | static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt) | 
|  | { | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { | 
|  | pvt->dcsb_base		= REV_E_DCSB_BASE_BITS; | 
|  | pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS; | 
|  | pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS; | 
|  | pvt->dcs_shift		= REV_E_DCS_SHIFT; | 
|  | pvt->cs_count		= 8; | 
|  | pvt->num_dcsm		= 8; | 
|  | } else { | 
|  | pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS; | 
|  | pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS; | 
|  | pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS; | 
|  | pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT; | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0x11) { | 
|  | pvt->cs_count = 4; | 
|  | pvt->num_dcsm = 2; | 
|  | } else { | 
|  | pvt->cs_count = 8; | 
|  | pvt->num_dcsm = 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers | 
|  | */ | 
|  | static void amd64_read_dct_base_mask(struct amd64_pvt *pvt) | 
|  | { | 
|  | int cs, reg; | 
|  |  | 
|  | amd64_set_dct_base_and_mask(pvt); | 
|  |  | 
|  | for (cs = 0; cs < pvt->cs_count; cs++) { | 
|  | reg = K8_DCSB0 + (cs * 4); | 
|  | if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs])) | 
|  | debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n", | 
|  | cs, pvt->dcsb0[cs], reg); | 
|  |  | 
|  | /* If DCT are NOT ganged, then read in DCT1's base */ | 
|  | if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { | 
|  | reg = F10_DCSB1 + (cs * 4); | 
|  | if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, | 
|  | &pvt->dcsb1[cs])) | 
|  | debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n", | 
|  | cs, pvt->dcsb1[cs], reg); | 
|  | } else { | 
|  | pvt->dcsb1[cs] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (cs = 0; cs < pvt->num_dcsm; cs++) { | 
|  | reg = K8_DCSM0 + (cs * 4); | 
|  | if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs])) | 
|  | debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n", | 
|  | cs, pvt->dcsm0[cs], reg); | 
|  |  | 
|  | /* If DCT are NOT ganged, then read in DCT1's mask */ | 
|  | if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { | 
|  | reg = F10_DCSM1 + (cs * 4); | 
|  | if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, | 
|  | &pvt->dcsm1[cs])) | 
|  | debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n", | 
|  | cs, pvt->dcsm1[cs], reg); | 
|  | } else { | 
|  | pvt->dcsm1[cs] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt) | 
|  | { | 
|  | enum mem_type type; | 
|  |  | 
|  | if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) { | 
|  | if (pvt->dchr0 & DDR3_MODE) | 
|  | type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3; | 
|  | else | 
|  | type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; | 
|  | } else { | 
|  | type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; | 
|  | } | 
|  |  | 
|  | debugf1("  Memory type is: %s\n", edac_mem_types[type]); | 
|  |  | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the DRAM Configuration Low register. It differs between CG, D & E revs | 
|  | * and the later RevF memory controllers (DDR vs DDR2) | 
|  | * | 
|  | * Return: | 
|  | *      number of memory channels in operation | 
|  | * Pass back: | 
|  | *      contents of the DCL0_LOW register | 
|  | */ | 
|  | static int k8_early_channel_count(struct amd64_pvt *pvt) | 
|  | { | 
|  | int flag, err = 0; | 
|  |  | 
|  | err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) { | 
|  | /* RevF (NPT) and later */ | 
|  | flag = pvt->dclr0 & F10_WIDTH_128; | 
|  | } else { | 
|  | /* RevE and earlier */ | 
|  | flag = pvt->dclr0 & REVE_WIDTH_128; | 
|  | } | 
|  |  | 
|  | /* not used */ | 
|  | pvt->dclr1 = 0; | 
|  |  | 
|  | return (flag) ? 2 : 1; | 
|  | } | 
|  |  | 
|  | /* extract the ERROR ADDRESS for the K8 CPUs */ | 
|  | static u64 k8_get_error_address(struct mem_ctl_info *mci, | 
|  | struct err_regs *info) | 
|  | { | 
|  | return (((u64) (info->nbeah & 0xff)) << 32) + | 
|  | (info->nbeal & ~0x03); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the Base and Limit registers for K8 based Memory controllers; extract | 
|  | * fields from the 'raw' reg into separate data fields | 
|  | * | 
|  | * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN | 
|  | */ | 
|  | static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram) | 
|  | { | 
|  | u32 low; | 
|  | u32 off = dram << 3;	/* 8 bytes between DRAM entries */ | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low); | 
|  |  | 
|  | /* Extract parts into separate data entries */ | 
|  | pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8; | 
|  | pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7; | 
|  | pvt->dram_rw_en[dram] = (low & 0x3); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low); | 
|  |  | 
|  | /* | 
|  | * Extract parts into separate data entries. Limit is the HIGHEST memory | 
|  | * location of the region, so lower 24 bits need to be all ones | 
|  | */ | 
|  | pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF; | 
|  | pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7; | 
|  | pvt->dram_DstNode[dram] = (low & 0x7); | 
|  | } | 
|  |  | 
|  | static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, | 
|  | struct err_regs *err_info, u64 sys_addr) | 
|  | { | 
|  | struct mem_ctl_info *src_mci; | 
|  | int channel, csrow; | 
|  | u32 page, offset; | 
|  | u16 syndrome; | 
|  |  | 
|  | syndrome = extract_syndrome(err_info); | 
|  |  | 
|  | /* CHIPKILL enabled */ | 
|  | if (err_info->nbcfg & K8_NBCFG_CHIPKILL) { | 
|  | channel = get_channel_from_ecc_syndrome(mci, syndrome); | 
|  | if (channel < 0) { | 
|  | /* | 
|  | * Syndrome didn't map, so we don't know which of the | 
|  | * 2 DIMMs is in error. So we need to ID 'both' of them | 
|  | * as suspect. | 
|  | */ | 
|  | amd64_mc_printk(mci, KERN_WARNING, | 
|  | "unknown syndrome 0x%04x - possible " | 
|  | "error reporting race\n", syndrome); | 
|  | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * non-chipkill ecc mode | 
|  | * | 
|  | * The k8 documentation is unclear about how to determine the | 
|  | * channel number when using non-chipkill memory.  This method | 
|  | * was obtained from email communication with someone at AMD. | 
|  | * (Wish the email was placed in this comment - norsk) | 
|  | */ | 
|  | channel = ((sys_addr & BIT(3)) != 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find out which node the error address belongs to. This may be | 
|  | * different from the node that detected the error. | 
|  | */ | 
|  | src_mci = find_mc_by_sys_addr(mci, sys_addr); | 
|  | if (!src_mci) { | 
|  | amd64_mc_printk(mci, KERN_ERR, | 
|  | "failed to map error address 0x%lx to a node\n", | 
|  | (unsigned long)sys_addr); | 
|  | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Now map the sys_addr to a CSROW */ | 
|  | csrow = sys_addr_to_csrow(src_mci, sys_addr); | 
|  | if (csrow < 0) { | 
|  | edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); | 
|  | } else { | 
|  | error_address_to_page_and_offset(sys_addr, &page, &offset); | 
|  |  | 
|  | edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, | 
|  | channel, EDAC_MOD_STR); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) | 
|  | { | 
|  | int *dbam_map; | 
|  |  | 
|  | if (pvt->ext_model >= K8_REV_F) | 
|  | dbam_map = ddr2_dbam; | 
|  | else if (pvt->ext_model >= K8_REV_D) | 
|  | dbam_map = ddr2_dbam_revD; | 
|  | else | 
|  | dbam_map = ddr2_dbam_revCG; | 
|  |  | 
|  | return dbam_map[cs_mode]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the number of DCT channels in use. | 
|  | * | 
|  | * Return: | 
|  | *	number of Memory Channels in operation | 
|  | * Pass back: | 
|  | *	contents of the DCL0_LOW register | 
|  | */ | 
|  | static int f10_early_channel_count(struct amd64_pvt *pvt) | 
|  | { | 
|  | int dbams[] = { DBAM0, DBAM1 }; | 
|  | int i, j, channels = 0; | 
|  | u32 dbam; | 
|  |  | 
|  | /* If we are in 128 bit mode, then we are using 2 channels */ | 
|  | if (pvt->dclr0 & F10_WIDTH_128) { | 
|  | channels = 2; | 
|  | return channels; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to check if in unganged mode: In such, there are 2 channels, | 
|  | * but they are not in 128 bit mode and thus the above 'dclr0' status | 
|  | * bit will be OFF. | 
|  | * | 
|  | * Need to check DCT0[0] and DCT1[0] to see if only one of them has | 
|  | * their CSEnable bit on. If so, then SINGLE DIMM case. | 
|  | */ | 
|  | debugf0("Data width is not 128 bits - need more decoding\n"); | 
|  |  | 
|  | /* | 
|  | * Check DRAM Bank Address Mapping values for each DIMM to see if there | 
|  | * is more than just one DIMM present in unganged mode. Need to check | 
|  | * both controllers since DIMMs can be placed in either one. | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(dbams); i++) { | 
|  | if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam)) | 
|  | goto err_reg; | 
|  |  | 
|  | for (j = 0; j < 4; j++) { | 
|  | if (DBAM_DIMM(j, dbam) > 0) { | 
|  | channels++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (channels > 2) | 
|  | channels = 2; | 
|  |  | 
|  | debugf0("MCT channel count: %d\n", channels); | 
|  |  | 
|  | return channels; | 
|  |  | 
|  | err_reg: | 
|  | return -1; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) | 
|  | { | 
|  | int *dbam_map; | 
|  |  | 
|  | if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) | 
|  | dbam_map = ddr3_dbam; | 
|  | else | 
|  | dbam_map = ddr2_dbam; | 
|  |  | 
|  | return dbam_map[cs_mode]; | 
|  | } | 
|  |  | 
|  | /* Enable extended configuration access via 0xCF8 feature */ | 
|  | static void amd64_setup(struct amd64_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); | 
|  |  | 
|  | pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG); | 
|  | reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; | 
|  | pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); | 
|  | } | 
|  |  | 
|  | /* Restore the extended configuration access via 0xCF8 feature */ | 
|  | static void amd64_teardown(struct amd64_pvt *pvt) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); | 
|  |  | 
|  | reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG; | 
|  | if (pvt->flags.cf8_extcfg) | 
|  | reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; | 
|  | pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); | 
|  | } | 
|  |  | 
|  | static u64 f10_get_error_address(struct mem_ctl_info *mci, | 
|  | struct err_regs *info) | 
|  | { | 
|  | return (((u64) (info->nbeah & 0xffff)) << 32) + | 
|  | (info->nbeal & ~0x01); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the Base and Limit registers for F10 based Memory controllers. Extract | 
|  | * fields from the 'raw' reg into separate data fields. | 
|  | * | 
|  | * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN. | 
|  | */ | 
|  | static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram) | 
|  | { | 
|  | u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit; | 
|  |  | 
|  | low_offset = K8_DRAM_BASE_LOW + (dram << 3); | 
|  | high_offset = F10_DRAM_BASE_HIGH + (dram << 3); | 
|  |  | 
|  | /* read the 'raw' DRAM BASE Address register */ | 
|  | amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base); | 
|  |  | 
|  | /* Read from the ECS data register */ | 
|  | amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base); | 
|  |  | 
|  | /* Extract parts into separate data entries */ | 
|  | pvt->dram_rw_en[dram] = (low_base & 0x3); | 
|  |  | 
|  | if (pvt->dram_rw_en[dram] == 0) | 
|  | return; | 
|  |  | 
|  | pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7; | 
|  |  | 
|  | pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) | | 
|  | (((u64)low_base  & 0xFFFF0000) << 8); | 
|  |  | 
|  | low_offset = K8_DRAM_LIMIT_LOW + (dram << 3); | 
|  | high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3); | 
|  |  | 
|  | /* read the 'raw' LIMIT registers */ | 
|  | amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit); | 
|  |  | 
|  | /* Read from the ECS data register for the HIGH portion */ | 
|  | amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit); | 
|  |  | 
|  | pvt->dram_DstNode[dram] = (low_limit & 0x7); | 
|  | pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7; | 
|  |  | 
|  | /* | 
|  | * Extract address values and form a LIMIT address. Limit is the HIGHEST | 
|  | * memory location of the region, so low 24 bits need to be all ones. | 
|  | */ | 
|  | pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) | | 
|  | (((u64) low_limit & 0xFFFF0000) << 8) | | 
|  | 0x00FFFFFF; | 
|  | } | 
|  |  | 
|  | static void f10_read_dram_ctl_register(struct amd64_pvt *pvt) | 
|  | { | 
|  |  | 
|  | if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW, | 
|  | &pvt->dram_ctl_select_low)) { | 
|  | debugf0("F2x110 (DCTL Sel. Low): 0x%08x, " | 
|  | "High range addresses at: 0x%x\n", | 
|  | pvt->dram_ctl_select_low, | 
|  | dct_sel_baseaddr(pvt)); | 
|  |  | 
|  | debugf0("  DCT mode: %s, All DCTs on: %s\n", | 
|  | (dct_ganging_enabled(pvt) ? "ganged" : "unganged"), | 
|  | (dct_dram_enabled(pvt) ? "yes"   : "no")); | 
|  |  | 
|  | if (!dct_ganging_enabled(pvt)) | 
|  | debugf0("  Address range split per DCT: %s\n", | 
|  | (dct_high_range_enabled(pvt) ? "yes" : "no")); | 
|  |  | 
|  | debugf0("  DCT data interleave for ECC: %s, " | 
|  | "DRAM cleared since last warm reset: %s\n", | 
|  | (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), | 
|  | (dct_memory_cleared(pvt) ? "yes" : "no")); | 
|  |  | 
|  | debugf0("  DCT channel interleave: %s, " | 
|  | "DCT interleave bits selector: 0x%x\n", | 
|  | (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), | 
|  | dct_sel_interleave_addr(pvt)); | 
|  | } | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH, | 
|  | &pvt->dram_ctl_select_high); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory | 
|  | * Interleaving Modes. | 
|  | */ | 
|  | static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, | 
|  | int hi_range_sel, u32 intlv_en) | 
|  | { | 
|  | u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1; | 
|  |  | 
|  | if (dct_ganging_enabled(pvt)) | 
|  | cs = 0; | 
|  | else if (hi_range_sel) | 
|  | cs = dct_sel_high; | 
|  | else if (dct_interleave_enabled(pvt)) { | 
|  | /* | 
|  | * see F2x110[DctSelIntLvAddr] - channel interleave mode | 
|  | */ | 
|  | if (dct_sel_interleave_addr(pvt) == 0) | 
|  | cs = sys_addr >> 6 & 1; | 
|  | else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) { | 
|  | temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; | 
|  |  | 
|  | if (dct_sel_interleave_addr(pvt) & 1) | 
|  | cs = (sys_addr >> 9 & 1) ^ temp; | 
|  | else | 
|  | cs = (sys_addr >> 6 & 1) ^ temp; | 
|  | } else if (intlv_en & 4) | 
|  | cs = sys_addr >> 15 & 1; | 
|  | else if (intlv_en & 2) | 
|  | cs = sys_addr >> 14 & 1; | 
|  | else if (intlv_en & 1) | 
|  | cs = sys_addr >> 13 & 1; | 
|  | else | 
|  | cs = sys_addr >> 12 & 1; | 
|  | } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt)) | 
|  | cs = ~dct_sel_high & 1; | 
|  | else | 
|  | cs = 0; | 
|  |  | 
|  | return cs; | 
|  | } | 
|  |  | 
|  | static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en) | 
|  | { | 
|  | if (intlv_en == 1) | 
|  | return 1; | 
|  | else if (intlv_en == 3) | 
|  | return 2; | 
|  | else if (intlv_en == 7) | 
|  | return 3; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */ | 
|  | static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel, | 
|  | u32 dct_sel_base_addr, | 
|  | u64 dct_sel_base_off, | 
|  | u32 hole_valid, u32 hole_off, | 
|  | u64 dram_base) | 
|  | { | 
|  | u64 chan_off; | 
|  |  | 
|  | if (hi_range_sel) { | 
|  | if (!(dct_sel_base_addr & 0xFFFF0000) && | 
|  | hole_valid && (sys_addr >= 0x100000000ULL)) | 
|  | chan_off = hole_off << 16; | 
|  | else | 
|  | chan_off = dct_sel_base_off; | 
|  | } else { | 
|  | if (hole_valid && (sys_addr >= 0x100000000ULL)) | 
|  | chan_off = hole_off << 16; | 
|  | else | 
|  | chan_off = dram_base & 0xFFFFF8000000ULL; | 
|  | } | 
|  |  | 
|  | return (sys_addr & 0x0000FFFFFFFFFFC0ULL) - | 
|  | (chan_off & 0x0000FFFFFF800000ULL); | 
|  | } | 
|  |  | 
|  | /* Hack for the time being - Can we get this from BIOS?? */ | 
|  | #define	CH0SPARE_RANK	0 | 
|  | #define	CH1SPARE_RANK	1 | 
|  |  | 
|  | /* | 
|  | * checks if the csrow passed in is marked as SPARED, if so returns the new | 
|  | * spare row | 
|  | */ | 
|  | static inline int f10_process_possible_spare(int csrow, | 
|  | u32 cs, struct amd64_pvt *pvt) | 
|  | { | 
|  | u32 swap_done; | 
|  | u32 bad_dram_cs; | 
|  |  | 
|  | /* Depending on channel, isolate respective SPARING info */ | 
|  | if (cs) { | 
|  | swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare); | 
|  | bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare); | 
|  | if (swap_done && (csrow == bad_dram_cs)) | 
|  | csrow = CH1SPARE_RANK; | 
|  | } else { | 
|  | swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare); | 
|  | bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare); | 
|  | if (swap_done && (csrow == bad_dram_cs)) | 
|  | csrow = CH0SPARE_RANK; | 
|  | } | 
|  | return csrow; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate over the DRAM DCT "base" and "mask" registers looking for a | 
|  | * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' | 
|  | * | 
|  | * Return: | 
|  | *	-EINVAL:  NOT FOUND | 
|  | *	0..csrow = Chip-Select Row | 
|  | */ | 
|  | static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct amd64_pvt *pvt; | 
|  | u32 cs_base, cs_mask; | 
|  | int cs_found = -EINVAL; | 
|  | int csrow; | 
|  |  | 
|  | mci = mci_lookup[nid]; | 
|  | if (!mci) | 
|  | return cs_found; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs); | 
|  |  | 
|  | for (csrow = 0; csrow < pvt->cs_count; csrow++) { | 
|  |  | 
|  | cs_base = amd64_get_dct_base(pvt, cs, csrow); | 
|  | if (!(cs_base & K8_DCSB_CS_ENABLE)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We have an ENABLED CSROW, Isolate just the MASK bits of the | 
|  | * target: [28:19] and [13:5], which map to [36:27] and [21:13] | 
|  | * of the actual address. | 
|  | */ | 
|  | cs_base &= REV_F_F1Xh_DCSB_BASE_BITS; | 
|  |  | 
|  | /* | 
|  | * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and | 
|  | * [4:0] to become ON. Then mask off bits [28:0] ([36:8]) | 
|  | */ | 
|  | cs_mask = amd64_get_dct_mask(pvt, cs, csrow); | 
|  |  | 
|  | debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n", | 
|  | csrow, cs_base, cs_mask); | 
|  |  | 
|  | cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF; | 
|  |  | 
|  | debugf1("              Final CSMask=0x%x\n", cs_mask); | 
|  | debugf1("    (InputAddr & ~CSMask)=0x%x " | 
|  | "(CSBase & ~CSMask)=0x%x\n", | 
|  | (in_addr & ~cs_mask), (cs_base & ~cs_mask)); | 
|  |  | 
|  | if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) { | 
|  | cs_found = f10_process_possible_spare(csrow, cs, pvt); | 
|  |  | 
|  | debugf1(" MATCH csrow=%d\n", cs_found); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return cs_found; | 
|  | } | 
|  |  | 
|  | /* For a given @dram_range, check if @sys_addr falls within it. */ | 
|  | static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range, | 
|  | u64 sys_addr, int *nid, int *chan_sel) | 
|  | { | 
|  | int node_id, cs_found = -EINVAL, high_range = 0; | 
|  | u32 intlv_en, intlv_sel, intlv_shift, hole_off; | 
|  | u32 hole_valid, tmp, dct_sel_base, channel; | 
|  | u64 dram_base, chan_addr, dct_sel_base_off; | 
|  |  | 
|  | dram_base = pvt->dram_base[dram_range]; | 
|  | intlv_en = pvt->dram_IntlvEn[dram_range]; | 
|  |  | 
|  | node_id = pvt->dram_DstNode[dram_range]; | 
|  | intlv_sel = pvt->dram_IntlvSel[dram_range]; | 
|  |  | 
|  | debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n", | 
|  | dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]); | 
|  |  | 
|  | /* | 
|  | * This assumes that one node's DHAR is the same as all the other | 
|  | * nodes' DHAR. | 
|  | */ | 
|  | hole_off = (pvt->dhar & 0x0000FF80); | 
|  | hole_valid = (pvt->dhar & 0x1); | 
|  | dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16; | 
|  |  | 
|  | debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n", | 
|  | hole_off, hole_valid, intlv_sel); | 
|  |  | 
|  | if (intlv_en || | 
|  | (intlv_sel != ((sys_addr >> 12) & intlv_en))) | 
|  | return -EINVAL; | 
|  |  | 
|  | dct_sel_base = dct_sel_baseaddr(pvt); | 
|  |  | 
|  | /* | 
|  | * check whether addresses >= DctSelBaseAddr[47:27] are to be used to | 
|  | * select between DCT0 and DCT1. | 
|  | */ | 
|  | if (dct_high_range_enabled(pvt) && | 
|  | !dct_ganging_enabled(pvt) && | 
|  | ((sys_addr >> 27) >= (dct_sel_base >> 11))) | 
|  | high_range = 1; | 
|  |  | 
|  | channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en); | 
|  |  | 
|  | chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base, | 
|  | dct_sel_base_off, hole_valid, | 
|  | hole_off, dram_base); | 
|  |  | 
|  | intlv_shift = f10_map_intlv_en_to_shift(intlv_en); | 
|  |  | 
|  | /* remove Node ID (in case of memory interleaving) */ | 
|  | tmp = chan_addr & 0xFC0; | 
|  |  | 
|  | chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp; | 
|  |  | 
|  | /* remove channel interleave and hash */ | 
|  | if (dct_interleave_enabled(pvt) && | 
|  | !dct_high_range_enabled(pvt) && | 
|  | !dct_ganging_enabled(pvt)) { | 
|  | if (dct_sel_interleave_addr(pvt) != 1) | 
|  | chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL; | 
|  | else { | 
|  | tmp = chan_addr & 0xFC0; | 
|  | chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1) | 
|  | | tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n", | 
|  | chan_addr, (u32)(chan_addr >> 8)); | 
|  |  | 
|  | cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel); | 
|  |  | 
|  | if (cs_found >= 0) { | 
|  | *nid = node_id; | 
|  | *chan_sel = channel; | 
|  | } | 
|  | return cs_found; | 
|  | } | 
|  |  | 
|  | static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, | 
|  | int *node, int *chan_sel) | 
|  | { | 
|  | int dram_range, cs_found = -EINVAL; | 
|  | u64 dram_base, dram_limit; | 
|  |  | 
|  | for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) { | 
|  |  | 
|  | if (!pvt->dram_rw_en[dram_range]) | 
|  | continue; | 
|  |  | 
|  | dram_base = pvt->dram_base[dram_range]; | 
|  | dram_limit = pvt->dram_limit[dram_range]; | 
|  |  | 
|  | if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) { | 
|  |  | 
|  | cs_found = f10_match_to_this_node(pvt, dram_range, | 
|  | sys_addr, node, | 
|  | chan_sel); | 
|  | if (cs_found >= 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return cs_found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps | 
|  | * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). | 
|  | * | 
|  | * The @sys_addr is usually an error address received from the hardware | 
|  | * (MCX_ADDR). | 
|  | */ | 
|  | static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, | 
|  | struct err_regs *err_info, | 
|  | u64 sys_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u32 page, offset; | 
|  | int nid, csrow, chan = 0; | 
|  | u16 syndrome; | 
|  |  | 
|  | csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); | 
|  |  | 
|  | if (csrow < 0) { | 
|  | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | error_address_to_page_and_offset(sys_addr, &page, &offset); | 
|  |  | 
|  | syndrome = extract_syndrome(err_info); | 
|  |  | 
|  | /* | 
|  | * We need the syndromes for channel detection only when we're | 
|  | * ganged. Otherwise @chan should already contain the channel at | 
|  | * this point. | 
|  | */ | 
|  | if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL)) | 
|  | chan = get_channel_from_ecc_syndrome(mci, syndrome); | 
|  |  | 
|  | if (chan >= 0) | 
|  | edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan, | 
|  | EDAC_MOD_STR); | 
|  | else | 
|  | /* | 
|  | * Channel unknown, report all channels on this CSROW as failed. | 
|  | */ | 
|  | for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++) | 
|  | edac_mc_handle_ce(mci, page, offset, syndrome, | 
|  | csrow, chan, EDAC_MOD_STR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * debug routine to display the memory sizes of all logical DIMMs and its | 
|  | * CSROWs as well | 
|  | */ | 
|  | static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt) | 
|  | { | 
|  | int dimm, size0, size1, factor = 0; | 
|  | u32 dbam; | 
|  | u32 *dcsb; | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0xf) { | 
|  | if (pvt->dclr0 & F10_WIDTH_128) | 
|  | factor = 1; | 
|  |  | 
|  | /* K8 families < revF not supported yet */ | 
|  | if (pvt->ext_model < K8_REV_F) | 
|  | return; | 
|  | else | 
|  | WARN_ON(ctrl != 0); | 
|  | } | 
|  |  | 
|  | debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", | 
|  | ctrl, ctrl ? pvt->dbam1 : pvt->dbam0); | 
|  |  | 
|  | dbam = ctrl ? pvt->dbam1 : pvt->dbam0; | 
|  | dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0; | 
|  |  | 
|  | edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); | 
|  |  | 
|  | /* Dump memory sizes for DIMM and its CSROWs */ | 
|  | for (dimm = 0; dimm < 4; dimm++) { | 
|  |  | 
|  | size0 = 0; | 
|  | if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE) | 
|  | size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); | 
|  |  | 
|  | size1 = 0; | 
|  | if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE) | 
|  | size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); | 
|  |  | 
|  | edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n", | 
|  | dimm * 2,     size0 << factor, | 
|  | dimm * 2 + 1, size1 << factor); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There currently are 3 types type of MC devices for AMD Athlon/Opterons | 
|  | * (as per PCI DEVICE_IDs): | 
|  | * | 
|  | * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI | 
|  | * DEVICE ID, even though there is differences between the different Revisions | 
|  | * (CG,D,E,F). | 
|  | * | 
|  | * Family F10h and F11h. | 
|  | * | 
|  | */ | 
|  | static struct amd64_family_type amd64_family_types[] = { | 
|  | [K8_CPUS] = { | 
|  | .ctl_name = "RevF", | 
|  | .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, | 
|  | .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC, | 
|  | .ops = { | 
|  | .early_channel_count	= k8_early_channel_count, | 
|  | .get_error_address	= k8_get_error_address, | 
|  | .read_dram_base_limit	= k8_read_dram_base_limit, | 
|  | .map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow, | 
|  | .dbam_to_cs		= k8_dbam_to_chip_select, | 
|  | } | 
|  | }, | 
|  | [F10_CPUS] = { | 
|  | .ctl_name = "Family 10h", | 
|  | .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP, | 
|  | .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC, | 
|  | .ops = { | 
|  | .early_channel_count	= f10_early_channel_count, | 
|  | .get_error_address	= f10_get_error_address, | 
|  | .read_dram_base_limit	= f10_read_dram_base_limit, | 
|  | .read_dram_ctl_register	= f10_read_dram_ctl_register, | 
|  | .map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow, | 
|  | .dbam_to_cs		= f10_dbam_to_chip_select, | 
|  | } | 
|  | }, | 
|  | [F11_CPUS] = { | 
|  | .ctl_name = "Family 11h", | 
|  | .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP, | 
|  | .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC, | 
|  | .ops = { | 
|  | .early_channel_count	= f10_early_channel_count, | 
|  | .get_error_address	= f10_get_error_address, | 
|  | .read_dram_base_limit	= f10_read_dram_base_limit, | 
|  | .read_dram_ctl_register	= f10_read_dram_ctl_register, | 
|  | .map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow, | 
|  | .dbam_to_cs		= f10_dbam_to_chip_select, | 
|  | } | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct pci_dev *pci_get_related_function(unsigned int vendor, | 
|  | unsigned int device, | 
|  | struct pci_dev *related) | 
|  | { | 
|  | struct pci_dev *dev = NULL; | 
|  |  | 
|  | dev = pci_get_device(vendor, device, dev); | 
|  | while (dev) { | 
|  | if ((dev->bus->number == related->bus->number) && | 
|  | (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) | 
|  | break; | 
|  | dev = pci_get_device(vendor, device, dev); | 
|  | } | 
|  |  | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are tables of eigenvectors (one per line) which can be used for the | 
|  | * construction of the syndrome tables. The modified syndrome search algorithm | 
|  | * uses those to find the symbol in error and thus the DIMM. | 
|  | * | 
|  | * Algorithm courtesy of Ross LaFetra from AMD. | 
|  | */ | 
|  | static u16 x4_vectors[] = { | 
|  | 0x2f57, 0x1afe, 0x66cc, 0xdd88, | 
|  | 0x11eb, 0x3396, 0x7f4c, 0xeac8, | 
|  | 0x0001, 0x0002, 0x0004, 0x0008, | 
|  | 0x1013, 0x3032, 0x4044, 0x8088, | 
|  | 0x106b, 0x30d6, 0x70fc, 0xe0a8, | 
|  | 0x4857, 0xc4fe, 0x13cc, 0x3288, | 
|  | 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, | 
|  | 0x1f39, 0x251e, 0xbd6c, 0x6bd8, | 
|  | 0x15c1, 0x2a42, 0x89ac, 0x4758, | 
|  | 0x2b03, 0x1602, 0x4f0c, 0xca08, | 
|  | 0x1f07, 0x3a0e, 0x6b04, 0xbd08, | 
|  | 0x8ba7, 0x465e, 0x244c, 0x1cc8, | 
|  | 0x2b87, 0x164e, 0x642c, 0xdc18, | 
|  | 0x40b9, 0x80de, 0x1094, 0x20e8, | 
|  | 0x27db, 0x1eb6, 0x9dac, 0x7b58, | 
|  | 0x11c1, 0x2242, 0x84ac, 0x4c58, | 
|  | 0x1be5, 0x2d7a, 0x5e34, 0xa718, | 
|  | 0x4b39, 0x8d1e, 0x14b4, 0x28d8, | 
|  | 0x4c97, 0xc87e, 0x11fc, 0x33a8, | 
|  | 0x8e97, 0x497e, 0x2ffc, 0x1aa8, | 
|  | 0x16b3, 0x3d62, 0x4f34, 0x8518, | 
|  | 0x1e2f, 0x391a, 0x5cac, 0xf858, | 
|  | 0x1d9f, 0x3b7a, 0x572c, 0xfe18, | 
|  | 0x15f5, 0x2a5a, 0x5264, 0xa3b8, | 
|  | 0x1dbb, 0x3b66, 0x715c, 0xe3f8, | 
|  | 0x4397, 0xc27e, 0x17fc, 0x3ea8, | 
|  | 0x1617, 0x3d3e, 0x6464, 0xb8b8, | 
|  | 0x23ff, 0x12aa, 0xab6c, 0x56d8, | 
|  | 0x2dfb, 0x1ba6, 0x913c, 0x7328, | 
|  | 0x185d, 0x2ca6, 0x7914, 0x9e28, | 
|  | 0x171b, 0x3e36, 0x7d7c, 0xebe8, | 
|  | 0x4199, 0x82ee, 0x19f4, 0x2e58, | 
|  | 0x4807, 0xc40e, 0x130c, 0x3208, | 
|  | 0x1905, 0x2e0a, 0x5804, 0xac08, | 
|  | 0x213f, 0x132a, 0xadfc, 0x5ba8, | 
|  | 0x19a9, 0x2efe, 0xb5cc, 0x6f88, | 
|  | }; | 
|  |  | 
|  | static u16 x8_vectors[] = { | 
|  | 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, | 
|  | 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, | 
|  | 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, | 
|  | 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, | 
|  | 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, | 
|  | 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, | 
|  | 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, | 
|  | 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, | 
|  | 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, | 
|  | 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, | 
|  | 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, | 
|  | 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, | 
|  | 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, | 
|  | 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, | 
|  | 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, | 
|  | 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, | 
|  | 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, | 
|  | 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | 
|  | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, | 
|  | }; | 
|  |  | 
|  | static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs, | 
|  | int v_dim) | 
|  | { | 
|  | unsigned int i, err_sym; | 
|  |  | 
|  | for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { | 
|  | u16 s = syndrome; | 
|  | int v_idx =  err_sym * v_dim; | 
|  | int v_end = (err_sym + 1) * v_dim; | 
|  |  | 
|  | /* walk over all 16 bits of the syndrome */ | 
|  | for (i = 1; i < (1U << 16); i <<= 1) { | 
|  |  | 
|  | /* if bit is set in that eigenvector... */ | 
|  | if (v_idx < v_end && vectors[v_idx] & i) { | 
|  | u16 ev_comp = vectors[v_idx++]; | 
|  |  | 
|  | /* ... and bit set in the modified syndrome, */ | 
|  | if (s & i) { | 
|  | /* remove it. */ | 
|  | s ^= ev_comp; | 
|  |  | 
|  | if (!s) | 
|  | return err_sym; | 
|  | } | 
|  |  | 
|  | } else if (s & i) | 
|  | /* can't get to zero, move to next symbol */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | debugf0("syndrome(%x) not found\n", syndrome); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int map_err_sym_to_channel(int err_sym, int sym_size) | 
|  | { | 
|  | if (sym_size == 4) | 
|  | switch (err_sym) { | 
|  | case 0x20: | 
|  | case 0x21: | 
|  | return 0; | 
|  | break; | 
|  | case 0x22: | 
|  | case 0x23: | 
|  | return 1; | 
|  | break; | 
|  | default: | 
|  | return err_sym >> 4; | 
|  | break; | 
|  | } | 
|  | /* x8 symbols */ | 
|  | else | 
|  | switch (err_sym) { | 
|  | /* imaginary bits not in a DIMM */ | 
|  | case 0x10: | 
|  | WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", | 
|  | err_sym); | 
|  | return -1; | 
|  | break; | 
|  |  | 
|  | case 0x11: | 
|  | return 0; | 
|  | break; | 
|  | case 0x12: | 
|  | return 1; | 
|  | break; | 
|  | default: | 
|  | return err_sym >> 3; | 
|  | break; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | int err_sym = -1; | 
|  |  | 
|  | if (pvt->syn_type == 8) | 
|  | err_sym = decode_syndrome(syndrome, x8_vectors, | 
|  | ARRAY_SIZE(x8_vectors), | 
|  | pvt->syn_type); | 
|  | else if (pvt->syn_type == 4) | 
|  | err_sym = decode_syndrome(syndrome, x4_vectors, | 
|  | ARRAY_SIZE(x4_vectors), | 
|  | pvt->syn_type); | 
|  | else { | 
|  | amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n", | 
|  | __func__, pvt->syn_type); | 
|  | return err_sym; | 
|  | } | 
|  |  | 
|  | return map_err_sym_to_channel(err_sym, pvt->syn_type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR | 
|  | * ADDRESS and process. | 
|  | */ | 
|  | static void amd64_handle_ce(struct mem_ctl_info *mci, | 
|  | struct err_regs *info) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u64 sys_addr; | 
|  |  | 
|  | /* Ensure that the Error Address is VALID */ | 
|  | if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { | 
|  | amd64_mc_printk(mci, KERN_ERR, | 
|  | "HW has no ERROR_ADDRESS available\n"); | 
|  | edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sys_addr = pvt->ops->get_error_address(mci, info); | 
|  |  | 
|  | amd64_mc_printk(mci, KERN_ERR, | 
|  | "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); | 
|  |  | 
|  | pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr); | 
|  | } | 
|  |  | 
|  | /* Handle any Un-correctable Errors (UEs) */ | 
|  | static void amd64_handle_ue(struct mem_ctl_info *mci, | 
|  | struct err_regs *info) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | struct mem_ctl_info *log_mci, *src_mci = NULL; | 
|  | int csrow; | 
|  | u64 sys_addr; | 
|  | u32 page, offset; | 
|  |  | 
|  | log_mci = mci; | 
|  |  | 
|  | if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { | 
|  | amd64_mc_printk(mci, KERN_CRIT, | 
|  | "HW has no ERROR_ADDRESS available\n"); | 
|  | edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sys_addr = pvt->ops->get_error_address(mci, info); | 
|  |  | 
|  | /* | 
|  | * Find out which node the error address belongs to. This may be | 
|  | * different from the node that detected the error. | 
|  | */ | 
|  | src_mci = find_mc_by_sys_addr(mci, sys_addr); | 
|  | if (!src_mci) { | 
|  | amd64_mc_printk(mci, KERN_CRIT, | 
|  | "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n", | 
|  | (unsigned long)sys_addr); | 
|  | edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | log_mci = src_mci; | 
|  |  | 
|  | csrow = sys_addr_to_csrow(log_mci, sys_addr); | 
|  | if (csrow < 0) { | 
|  | amd64_mc_printk(mci, KERN_CRIT, | 
|  | "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n", | 
|  | (unsigned long)sys_addr); | 
|  | edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); | 
|  | } else { | 
|  | error_address_to_page_and_offset(sys_addr, &page, &offset); | 
|  | edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, | 
|  | struct err_regs *info) | 
|  | { | 
|  | u32 ec  = ERROR_CODE(info->nbsl); | 
|  | u32 xec = EXT_ERROR_CODE(info->nbsl); | 
|  | int ecc_type = (info->nbsh >> 13) & 0x3; | 
|  |  | 
|  | /* Bail early out if this was an 'observed' error */ | 
|  | if (PP(ec) == K8_NBSL_PP_OBS) | 
|  | return; | 
|  |  | 
|  | /* Do only ECC errors */ | 
|  | if (xec && xec != F10_NBSL_EXT_ERR_ECC) | 
|  | return; | 
|  |  | 
|  | if (ecc_type == 2) | 
|  | amd64_handle_ce(mci, info); | 
|  | else if (ecc_type == 1) | 
|  | amd64_handle_ue(mci, info); | 
|  | } | 
|  |  | 
|  | void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg) | 
|  | { | 
|  | struct mem_ctl_info *mci = mci_lookup[node_id]; | 
|  | struct err_regs regs; | 
|  |  | 
|  | regs.nbsl  = (u32) m->status; | 
|  | regs.nbsh  = (u32)(m->status >> 32); | 
|  | regs.nbeal = (u32) m->addr; | 
|  | regs.nbeah = (u32)(m->addr >> 32); | 
|  | regs.nbcfg = nbcfg; | 
|  |  | 
|  | __amd64_decode_bus_error(mci, ®s); | 
|  |  | 
|  | /* | 
|  | * Check the UE bit of the NB status high register, if set generate some | 
|  | * logs. If NOT a GART error, then process the event as a NO-INFO event. | 
|  | * If it was a GART error, skip that process. | 
|  | * | 
|  | * FIXME: this should go somewhere else, if at all. | 
|  | */ | 
|  | if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors) | 
|  | edac_mc_handle_ue_no_info(mci, "UE bit is set"); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Input: | 
|  | *	1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer | 
|  | *	2) AMD Family index value | 
|  | * | 
|  | * Ouput: | 
|  | *	Upon return of 0, the following filled in: | 
|  | * | 
|  | *		struct pvt->addr_f1_ctl | 
|  | *		struct pvt->misc_f3_ctl | 
|  | * | 
|  | *	Filled in with related device funcitions of 'dram_f2_ctl' | 
|  | *	These devices are "reserved" via the pci_get_device() | 
|  | * | 
|  | *	Upon return of 1 (error status): | 
|  | * | 
|  | *		Nothing reserved | 
|  | */ | 
|  | static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx) | 
|  | { | 
|  | const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx]; | 
|  |  | 
|  | /* Reserve the ADDRESS MAP Device */ | 
|  | pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, | 
|  | amd64_dev->addr_f1_ctl, | 
|  | pvt->dram_f2_ctl); | 
|  |  | 
|  | if (!pvt->addr_f1_ctl) { | 
|  | amd64_printk(KERN_ERR, "error address map device not found: " | 
|  | "vendor %x device 0x%x (broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Reserve the MISC Device */ | 
|  | pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, | 
|  | amd64_dev->misc_f3_ctl, | 
|  | pvt->dram_f2_ctl); | 
|  |  | 
|  | if (!pvt->misc_f3_ctl) { | 
|  | pci_dev_put(pvt->addr_f1_ctl); | 
|  | pvt->addr_f1_ctl = NULL; | 
|  |  | 
|  | amd64_printk(KERN_ERR, "error miscellaneous device not found: " | 
|  | "vendor %x device 0x%x (broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | debugf1("    Addr Map device PCI Bus ID:\t%s\n", | 
|  | pci_name(pvt->addr_f1_ctl)); | 
|  | debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n", | 
|  | pci_name(pvt->dram_f2_ctl)); | 
|  | debugf1("    Misc device PCI Bus ID:\t%s\n", | 
|  | pci_name(pvt->misc_f3_ctl)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt) | 
|  | { | 
|  | pci_dev_put(pvt->addr_f1_ctl); | 
|  | pci_dev_put(pvt->misc_f3_ctl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieve the hardware registers of the memory controller (this includes the | 
|  | * 'Address Map' and 'Misc' device regs) | 
|  | */ | 
|  | static void amd64_read_mc_registers(struct amd64_pvt *pvt) | 
|  | { | 
|  | u64 msr_val; | 
|  | u32 tmp; | 
|  | int dram; | 
|  |  | 
|  | /* | 
|  | * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since | 
|  | * those are Read-As-Zero | 
|  | */ | 
|  | rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); | 
|  | debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem); | 
|  |  | 
|  | /* check first whether TOP_MEM2 is enabled */ | 
|  | rdmsrl(MSR_K8_SYSCFG, msr_val); | 
|  | if (msr_val & (1U << 21)) { | 
|  | rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); | 
|  | debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2); | 
|  | } else | 
|  | debugf0("  TOP_MEM2 disabled.\n"); | 
|  |  | 
|  | amd64_cpu_display_info(pvt); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap); | 
|  |  | 
|  | if (pvt->ops->read_dram_ctl_register) | 
|  | pvt->ops->read_dram_ctl_register(pvt); | 
|  |  | 
|  | for (dram = 0; dram < DRAM_REG_COUNT; dram++) { | 
|  | /* | 
|  | * Call CPU specific READ function to get the DRAM Base and | 
|  | * Limit values from the DCT. | 
|  | */ | 
|  | pvt->ops->read_dram_base_limit(pvt, dram); | 
|  |  | 
|  | /* | 
|  | * Only print out debug info on rows with both R and W Enabled. | 
|  | * Normal processing, compiler should optimize this whole 'if' | 
|  | * debug output block away. | 
|  | */ | 
|  | if (pvt->dram_rw_en[dram] != 0) { | 
|  | debugf1("  DRAM-BASE[%d]: 0x%016llx " | 
|  | "DRAM-LIMIT:  0x%016llx\n", | 
|  | dram, | 
|  | pvt->dram_base[dram], | 
|  | pvt->dram_limit[dram]); | 
|  |  | 
|  | debugf1("        IntlvEn=%s %s %s " | 
|  | "IntlvSel=%d DstNode=%d\n", | 
|  | pvt->dram_IntlvEn[dram] ? | 
|  | "Enabled" : "Disabled", | 
|  | (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W", | 
|  | (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R", | 
|  | pvt->dram_IntlvSel[dram], | 
|  | pvt->dram_DstNode[dram]); | 
|  | } | 
|  | } | 
|  |  | 
|  | amd64_read_dct_base_mask(pvt); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar); | 
|  | amd64_read_dbam_reg(pvt); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, | 
|  | F10_ONLINE_SPARE, &pvt->online_spare); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); | 
|  | amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0); | 
|  |  | 
|  | if (boot_cpu_data.x86 >= 0x10) { | 
|  | if (!dct_ganging_enabled(pvt)) { | 
|  | amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1); | 
|  | amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1); | 
|  | } | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp); | 
|  | } | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0x10 && | 
|  | boot_cpu_data.x86_model > 7 && | 
|  | /* F3x180[EccSymbolSize]=1 => x8 symbols */ | 
|  | tmp & BIT(25)) | 
|  | pvt->syn_type = 8; | 
|  | else | 
|  | pvt->syn_type = 4; | 
|  |  | 
|  | amd64_dump_misc_regs(pvt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE: CPU Revision Dependent code | 
|  | * | 
|  | * Input: | 
|  | *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1) | 
|  | *	k8 private pointer to --> | 
|  | *			DRAM Bank Address mapping register | 
|  | *			node_id | 
|  | *			DCL register where dual_channel_active is | 
|  | * | 
|  | * The DBAM register consists of 4 sets of 4 bits each definitions: | 
|  | * | 
|  | * Bits:	CSROWs | 
|  | * 0-3		CSROWs 0 and 1 | 
|  | * 4-7		CSROWs 2 and 3 | 
|  | * 8-11		CSROWs 4 and 5 | 
|  | * 12-15	CSROWs 6 and 7 | 
|  | * | 
|  | * Values range from: 0 to 15 | 
|  | * The meaning of the values depends on CPU revision and dual-channel state, | 
|  | * see relevant BKDG more info. | 
|  | * | 
|  | * The memory controller provides for total of only 8 CSROWs in its current | 
|  | * architecture. Each "pair" of CSROWs normally represents just one DIMM in | 
|  | * single channel or two (2) DIMMs in dual channel mode. | 
|  | * | 
|  | * The following code logic collapses the various tables for CSROW based on CPU | 
|  | * revision. | 
|  | * | 
|  | * Returns: | 
|  | *	The number of PAGE_SIZE pages on the specified CSROW number it | 
|  | *	encompasses | 
|  | * | 
|  | */ | 
|  | static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt) | 
|  | { | 
|  | u32 cs_mode, nr_pages; | 
|  |  | 
|  | /* | 
|  | * The math on this doesn't look right on the surface because x/2*4 can | 
|  | * be simplified to x*2 but this expression makes use of the fact that | 
|  | * it is integral math where 1/2=0. This intermediate value becomes the | 
|  | * number of bits to shift the DBAM register to extract the proper CSROW | 
|  | * field. | 
|  | */ | 
|  | cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF; | 
|  |  | 
|  | nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * If dual channel then double the memory size of single channel. | 
|  | * Channel count is 1 or 2 | 
|  | */ | 
|  | nr_pages <<= (pvt->channel_count - 1); | 
|  |  | 
|  | debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); | 
|  | debugf0("    nr_pages= %u  channel-count = %d\n", | 
|  | nr_pages, pvt->channel_count); | 
|  |  | 
|  | return nr_pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the array of csrow attribute instances, based on the values | 
|  | * from pci config hardware registers. | 
|  | */ | 
|  | static int amd64_init_csrows(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct csrow_info *csrow; | 
|  | struct amd64_pvt *pvt; | 
|  | u64 input_addr_min, input_addr_max, sys_addr; | 
|  | int i, empty = 1; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg); | 
|  |  | 
|  | debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg, | 
|  | (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", | 
|  | (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled" | 
|  | ); | 
|  |  | 
|  | for (i = 0; i < pvt->cs_count; i++) { | 
|  | csrow = &mci->csrows[i]; | 
|  |  | 
|  | if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) { | 
|  | debugf1("----CSROW %d EMPTY for node %d\n", i, | 
|  | pvt->mc_node_id); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | debugf1("----CSROW %d VALID for MC node %d\n", | 
|  | i, pvt->mc_node_id); | 
|  |  | 
|  | empty = 0; | 
|  | csrow->nr_pages = amd64_csrow_nr_pages(i, pvt); | 
|  | find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); | 
|  | sys_addr = input_addr_to_sys_addr(mci, input_addr_min); | 
|  | csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); | 
|  | sys_addr = input_addr_to_sys_addr(mci, input_addr_max); | 
|  | csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); | 
|  | csrow->page_mask = ~mask_from_dct_mask(pvt, i); | 
|  | /* 8 bytes of resolution */ | 
|  |  | 
|  | csrow->mtype = amd64_determine_memory_type(pvt); | 
|  |  | 
|  | debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i); | 
|  | debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n", | 
|  | (unsigned long)input_addr_min, | 
|  | (unsigned long)input_addr_max); | 
|  | debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n", | 
|  | (unsigned long)sys_addr, csrow->page_mask); | 
|  | debugf1("    nr_pages: %u  first_page: 0x%lx " | 
|  | "last_page: 0x%lx\n", | 
|  | (unsigned)csrow->nr_pages, | 
|  | csrow->first_page, csrow->last_page); | 
|  |  | 
|  | /* | 
|  | * determine whether CHIPKILL or JUST ECC or NO ECC is operating | 
|  | */ | 
|  | if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) | 
|  | csrow->edac_mode = | 
|  | (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? | 
|  | EDAC_S4ECD4ED : EDAC_SECDED; | 
|  | else | 
|  | csrow->edac_mode = EDAC_NONE; | 
|  | } | 
|  |  | 
|  | return empty; | 
|  | } | 
|  |  | 
|  | /* get all cores on this DCT */ | 
|  | static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | if (amd_get_nb_id(cpu) == nid) | 
|  | cpumask_set_cpu(cpu, mask); | 
|  | } | 
|  |  | 
|  | /* check MCG_CTL on all the cpus on this node */ | 
|  | static bool amd64_nb_mce_bank_enabled_on_node(int nid) | 
|  | { | 
|  | cpumask_var_t mask; | 
|  | int cpu, nbe; | 
|  | bool ret = false; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { | 
|  | amd64_printk(KERN_WARNING, "%s: error allocating mask\n", | 
|  | __func__); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | get_cpus_on_this_dct_cpumask(mask, nid); | 
|  |  | 
|  | rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); | 
|  |  | 
|  | for_each_cpu(cpu, mask) { | 
|  | struct msr *reg = per_cpu_ptr(msrs, cpu); | 
|  | nbe = reg->l & K8_MSR_MCGCTL_NBE; | 
|  |  | 
|  | debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", | 
|  | cpu, reg->q, | 
|  | (nbe ? "enabled" : "disabled")); | 
|  |  | 
|  | if (!nbe) | 
|  | goto out; | 
|  | } | 
|  | ret = true; | 
|  |  | 
|  | out: | 
|  | free_cpumask_var(mask); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on) | 
|  | { | 
|  | cpumask_var_t cmask; | 
|  | int cpu; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { | 
|  | amd64_printk(KERN_WARNING, "%s: error allocating mask\n", | 
|  | __func__); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id); | 
|  |  | 
|  | rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); | 
|  |  | 
|  | for_each_cpu(cpu, cmask) { | 
|  |  | 
|  | struct msr *reg = per_cpu_ptr(msrs, cpu); | 
|  |  | 
|  | if (on) { | 
|  | if (reg->l & K8_MSR_MCGCTL_NBE) | 
|  | pvt->flags.nb_mce_enable = 1; | 
|  |  | 
|  | reg->l |= K8_MSR_MCGCTL_NBE; | 
|  | } else { | 
|  | /* | 
|  | * Turn off NB MCE reporting only when it was off before | 
|  | */ | 
|  | if (!pvt->flags.nb_mce_enable) | 
|  | reg->l &= ~K8_MSR_MCGCTL_NBE; | 
|  | } | 
|  | } | 
|  | wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); | 
|  |  | 
|  | free_cpumask_var(cmask); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value); | 
|  |  | 
|  | /* turn on UECCn and CECCEn bits */ | 
|  | pvt->old_nbctl = value & mask; | 
|  | pvt->nbctl_mcgctl_saved = 1; | 
|  |  | 
|  | value |= mask; | 
|  | pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); | 
|  |  | 
|  | if (amd64_toggle_ecc_err_reporting(pvt, ON)) | 
|  | amd64_printk(KERN_WARNING, "Error enabling ECC reporting over " | 
|  | "MCGCTL!\n"); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); | 
|  |  | 
|  | debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value, | 
|  | (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", | 
|  | (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); | 
|  |  | 
|  | if (!(value & K8_NBCFG_ECC_ENABLE)) { | 
|  | amd64_printk(KERN_WARNING, | 
|  | "This node reports that DRAM ECC is " | 
|  | "currently Disabled; ENABLING now\n"); | 
|  |  | 
|  | pvt->flags.nb_ecc_prev = 0; | 
|  |  | 
|  | /* Attempt to turn on DRAM ECC Enable */ | 
|  | value |= K8_NBCFG_ECC_ENABLE; | 
|  | pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); | 
|  |  | 
|  | if (!(value & K8_NBCFG_ECC_ENABLE)) { | 
|  | amd64_printk(KERN_WARNING, | 
|  | "Hardware rejects Enabling DRAM ECC checking\n" | 
|  | "Check memory DIMM configuration\n"); | 
|  | } else { | 
|  | amd64_printk(KERN_DEBUG, | 
|  | "Hardware accepted DRAM ECC Enable\n"); | 
|  | } | 
|  | } else { | 
|  | pvt->flags.nb_ecc_prev = 1; | 
|  | } | 
|  |  | 
|  | debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value, | 
|  | (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", | 
|  | (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); | 
|  |  | 
|  | pvt->ctl_error_info.nbcfg = value; | 
|  | } | 
|  |  | 
|  | static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt) | 
|  | { | 
|  | u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; | 
|  |  | 
|  | if (!pvt->nbctl_mcgctl_saved) | 
|  | return; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value); | 
|  | value &= ~mask; | 
|  | value |= pvt->old_nbctl; | 
|  |  | 
|  | pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); | 
|  |  | 
|  | /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */ | 
|  | if (!pvt->flags.nb_ecc_prev) { | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); | 
|  | value &= ~K8_NBCFG_ECC_ENABLE; | 
|  | pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value); | 
|  | } | 
|  |  | 
|  | /* restore the NB Enable MCGCTL bit */ | 
|  | if (amd64_toggle_ecc_err_reporting(pvt, OFF)) | 
|  | amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * EDAC requires that the BIOS have ECC enabled before taking over the | 
|  | * processing of ECC errors. This is because the BIOS can properly initialize | 
|  | * the memory system completely. A command line option allows to force-enable | 
|  | * hardware ECC later in amd64_enable_ecc_error_reporting(). | 
|  | */ | 
|  | static const char *ecc_msg = | 
|  | "ECC disabled in the BIOS or no ECC capability, module will not load.\n" | 
|  | " Either enable ECC checking or force module loading by setting " | 
|  | "'ecc_enable_override'.\n" | 
|  | " (Note that use of the override may cause unknown side effects.)\n"; | 
|  |  | 
|  | static int amd64_check_ecc_enabled(struct amd64_pvt *pvt) | 
|  | { | 
|  | u32 value; | 
|  | u8 ecc_enabled = 0; | 
|  | bool nb_mce_en = false; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); | 
|  |  | 
|  | ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE); | 
|  | if (!ecc_enabled) | 
|  | amd64_printk(KERN_NOTICE, "This node reports that Memory ECC " | 
|  | "is currently disabled, set F3x%x[22] (%s).\n", | 
|  | K8_NBCFG, pci_name(pvt->misc_f3_ctl)); | 
|  | else | 
|  | amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n"); | 
|  |  | 
|  | nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id); | 
|  | if (!nb_mce_en) | 
|  | amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR " | 
|  | "0x%08x[4] on node %d to enable.\n", | 
|  | MSR_IA32_MCG_CTL, pvt->mc_node_id); | 
|  |  | 
|  | if (!ecc_enabled || !nb_mce_en) { | 
|  | if (!ecc_enable_override) { | 
|  | amd64_printk(KERN_NOTICE, "%s", ecc_msg); | 
|  | return -ENODEV; | 
|  | } else { | 
|  | amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + | 
|  | ARRAY_SIZE(amd64_inj_attrs) + | 
|  | 1]; | 
|  |  | 
|  | struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; | 
|  |  | 
|  | static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci) | 
|  | { | 
|  | unsigned int i = 0, j = 0; | 
|  |  | 
|  | for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) | 
|  | sysfs_attrs[i] = amd64_dbg_attrs[i]; | 
|  |  | 
|  | for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) | 
|  | sysfs_attrs[i] = amd64_inj_attrs[j]; | 
|  |  | 
|  | sysfs_attrs[i] = terminator; | 
|  |  | 
|  | mci->mc_driver_sysfs_attributes = sysfs_attrs; | 
|  | } | 
|  |  | 
|  | static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  |  | 
|  | mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; | 
|  | mci->edac_ctl_cap	= EDAC_FLAG_NONE; | 
|  |  | 
|  | if (pvt->nbcap & K8_NBCAP_SECDED) | 
|  | mci->edac_ctl_cap |= EDAC_FLAG_SECDED; | 
|  |  | 
|  | if (pvt->nbcap & K8_NBCAP_CHIPKILL) | 
|  | mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; | 
|  |  | 
|  | mci->edac_cap		= amd64_determine_edac_cap(pvt); | 
|  | mci->mod_name		= EDAC_MOD_STR; | 
|  | mci->mod_ver		= EDAC_AMD64_VERSION; | 
|  | mci->ctl_name		= get_amd_family_name(pvt->mc_type_index); | 
|  | mci->dev_name		= pci_name(pvt->dram_f2_ctl); | 
|  | mci->ctl_page_to_phys	= NULL; | 
|  |  | 
|  | /* memory scrubber interface */ | 
|  | mci->set_sdram_scrub_rate = amd64_set_scrub_rate; | 
|  | mci->get_sdram_scrub_rate = amd64_get_scrub_rate; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init stuff for this DRAM Controller device. | 
|  | * | 
|  | * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration | 
|  | * Space feature MUST be enabled on ALL Processors prior to actually reading | 
|  | * from the ECS registers. Since the loading of the module can occur on any | 
|  | * 'core', and cores don't 'see' all the other processors ECS data when the | 
|  | * others are NOT enabled. Our solution is to first enable ECS access in this | 
|  | * routine on all processors, gather some data in a amd64_pvt structure and | 
|  | * later come back in a finish-setup function to perform that final | 
|  | * initialization. See also amd64_init_2nd_stage() for that. | 
|  | */ | 
|  | static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl, | 
|  | int mc_type_index) | 
|  | { | 
|  | struct amd64_pvt *pvt = NULL; | 
|  | int err = 0, ret; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); | 
|  | if (!pvt) | 
|  | goto err_exit; | 
|  |  | 
|  | pvt->mc_node_id = get_node_id(dram_f2_ctl); | 
|  |  | 
|  | pvt->dram_f2_ctl	= dram_f2_ctl; | 
|  | pvt->ext_model		= boot_cpu_data.x86_model >> 4; | 
|  | pvt->mc_type_index	= mc_type_index; | 
|  | pvt->ops		= family_ops(mc_type_index); | 
|  |  | 
|  | /* | 
|  | * We have the dram_f2_ctl device as an argument, now go reserve its | 
|  | * sibling devices from the PCI system. | 
|  | */ | 
|  | ret = -ENODEV; | 
|  | err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index); | 
|  | if (err) | 
|  | goto err_free; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | err = amd64_check_ecc_enabled(pvt); | 
|  | if (err) | 
|  | goto err_put; | 
|  |  | 
|  | /* | 
|  | * Key operation here: setup of HW prior to performing ops on it. Some | 
|  | * setup is required to access ECS data. After this is performed, the | 
|  | * 'teardown' function must be called upon error and normal exit paths. | 
|  | */ | 
|  | if (boot_cpu_data.x86 >= 0x10) | 
|  | amd64_setup(pvt); | 
|  |  | 
|  | /* | 
|  | * Save the pointer to the private data for use in 2nd initialization | 
|  | * stage | 
|  | */ | 
|  | pvt_lookup[pvt->mc_node_id] = pvt; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_put: | 
|  | amd64_free_mc_sibling_devices(pvt); | 
|  |  | 
|  | err_free: | 
|  | kfree(pvt); | 
|  |  | 
|  | err_exit: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the finishing stage of the init code. Needs to be performed after all | 
|  | * MCs' hardware have been prepped for accessing extended config space. | 
|  | */ | 
|  | static int amd64_init_2nd_stage(struct amd64_pvt *pvt) | 
|  | { | 
|  | int node_id = pvt->mc_node_id; | 
|  | struct mem_ctl_info *mci; | 
|  | int ret = -ENODEV; | 
|  |  | 
|  | amd64_read_mc_registers(pvt); | 
|  |  | 
|  | /* | 
|  | * We need to determine how many memory channels there are. Then use | 
|  | * that information for calculating the size of the dynamic instance | 
|  | * tables in the 'mci' structure | 
|  | */ | 
|  | pvt->channel_count = pvt->ops->early_channel_count(pvt); | 
|  | if (pvt->channel_count < 0) | 
|  | goto err_exit; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id); | 
|  | if (!mci) | 
|  | goto err_exit; | 
|  |  | 
|  | mci->pvt_info = pvt; | 
|  |  | 
|  | mci->dev = &pvt->dram_f2_ctl->dev; | 
|  | amd64_setup_mci_misc_attributes(mci); | 
|  |  | 
|  | if (amd64_init_csrows(mci)) | 
|  | mci->edac_cap = EDAC_FLAG_NONE; | 
|  |  | 
|  | amd64_enable_ecc_error_reporting(mci); | 
|  | amd64_set_mc_sysfs_attributes(mci); | 
|  |  | 
|  | ret = -ENODEV; | 
|  | if (edac_mc_add_mc(mci)) { | 
|  | debugf1("failed edac_mc_add_mc()\n"); | 
|  | goto err_add_mc; | 
|  | } | 
|  |  | 
|  | mci_lookup[node_id] = mci; | 
|  | pvt_lookup[node_id] = NULL; | 
|  |  | 
|  | /* register stuff with EDAC MCE */ | 
|  | if (report_gart_errors) | 
|  | amd_report_gart_errors(true); | 
|  |  | 
|  | amd_register_ecc_decoder(amd64_decode_bus_error); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_add_mc: | 
|  | edac_mc_free(mci); | 
|  |  | 
|  | err_exit: | 
|  | debugf0("failure to init 2nd stage: ret=%d\n", ret); | 
|  |  | 
|  | amd64_restore_ecc_error_reporting(pvt); | 
|  |  | 
|  | if (boot_cpu_data.x86 > 0xf) | 
|  | amd64_teardown(pvt); | 
|  |  | 
|  | amd64_free_mc_sibling_devices(pvt); | 
|  |  | 
|  | kfree(pvt_lookup[pvt->mc_node_id]); | 
|  | pvt_lookup[node_id] = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __devinit amd64_init_one_instance(struct pci_dev *pdev, | 
|  | const struct pci_device_id *mc_type) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev), | 
|  | get_amd_family_name(mc_type->driver_data)); | 
|  |  | 
|  | ret = pci_enable_device(pdev); | 
|  | if (ret < 0) | 
|  | ret = -EIO; | 
|  | else | 
|  | ret = amd64_probe_one_instance(pdev, mc_type->driver_data); | 
|  |  | 
|  | if (ret < 0) | 
|  | debugf0("ret=%d\n", ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct amd64_pvt *pvt; | 
|  |  | 
|  | /* Remove from EDAC CORE tracking list */ | 
|  | mci = edac_mc_del_mc(&pdev->dev); | 
|  | if (!mci) | 
|  | return; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | amd64_restore_ecc_error_reporting(pvt); | 
|  |  | 
|  | if (boot_cpu_data.x86 > 0xf) | 
|  | amd64_teardown(pvt); | 
|  |  | 
|  | amd64_free_mc_sibling_devices(pvt); | 
|  |  | 
|  | /* unregister from EDAC MCE */ | 
|  | amd_report_gart_errors(false); | 
|  | amd_unregister_ecc_decoder(amd64_decode_bus_error); | 
|  |  | 
|  | /* Free the EDAC CORE resources */ | 
|  | mci->pvt_info = NULL; | 
|  | mci_lookup[pvt->mc_node_id] = NULL; | 
|  |  | 
|  | kfree(pvt); | 
|  | edac_mc_free(mci); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This table is part of the interface for loading drivers for PCI devices. The | 
|  | * PCI core identifies what devices are on a system during boot, and then | 
|  | * inquiry this table to see if this driver is for a given device found. | 
|  | */ | 
|  | static const struct pci_device_id amd64_pci_table[] __devinitdata = { | 
|  | { | 
|  | .vendor		= PCI_VENDOR_ID_AMD, | 
|  | .device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, | 
|  | .subvendor	= PCI_ANY_ID, | 
|  | .subdevice	= PCI_ANY_ID, | 
|  | .class		= 0, | 
|  | .class_mask	= 0, | 
|  | .driver_data	= K8_CPUS | 
|  | }, | 
|  | { | 
|  | .vendor		= PCI_VENDOR_ID_AMD, | 
|  | .device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM, | 
|  | .subvendor	= PCI_ANY_ID, | 
|  | .subdevice	= PCI_ANY_ID, | 
|  | .class		= 0, | 
|  | .class_mask	= 0, | 
|  | .driver_data	= F10_CPUS | 
|  | }, | 
|  | { | 
|  | .vendor		= PCI_VENDOR_ID_AMD, | 
|  | .device		= PCI_DEVICE_ID_AMD_11H_NB_DRAM, | 
|  | .subvendor	= PCI_ANY_ID, | 
|  | .subdevice	= PCI_ANY_ID, | 
|  | .class		= 0, | 
|  | .class_mask	= 0, | 
|  | .driver_data	= F11_CPUS | 
|  | }, | 
|  | {0, } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pci, amd64_pci_table); | 
|  |  | 
|  | static struct pci_driver amd64_pci_driver = { | 
|  | .name		= EDAC_MOD_STR, | 
|  | .probe		= amd64_init_one_instance, | 
|  | .remove		= __devexit_p(amd64_remove_one_instance), | 
|  | .id_table	= amd64_pci_table, | 
|  | }; | 
|  |  | 
|  | static void amd64_setup_pci_device(void) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct amd64_pvt *pvt; | 
|  |  | 
|  | if (amd64_ctl_pci) | 
|  | return; | 
|  |  | 
|  | mci = mci_lookup[0]; | 
|  | if (mci) { | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  | amd64_ctl_pci = | 
|  | edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev, | 
|  | EDAC_MOD_STR); | 
|  |  | 
|  | if (!amd64_ctl_pci) { | 
|  | pr_warning("%s(): Unable to create PCI control\n", | 
|  | __func__); | 
|  |  | 
|  | pr_warning("%s(): PCI error report via EDAC not set\n", | 
|  | __func__); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init amd64_edac_init(void) | 
|  | { | 
|  | int nb, err = -ENODEV; | 
|  | bool load_ok = false; | 
|  |  | 
|  | edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n"); | 
|  |  | 
|  | opstate_init(); | 
|  |  | 
|  | if (cache_k8_northbridges() < 0) | 
|  | goto err_ret; | 
|  |  | 
|  | msrs = msrs_alloc(); | 
|  | if (!msrs) | 
|  | goto err_ret; | 
|  |  | 
|  | err = pci_register_driver(&amd64_pci_driver); | 
|  | if (err) | 
|  | goto err_pci; | 
|  |  | 
|  | /* | 
|  | * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd | 
|  | * amd64_pvt structs. These will be used in the 2nd stage init function | 
|  | * to finish initialization of the MC instances. | 
|  | */ | 
|  | err = -ENODEV; | 
|  | for (nb = 0; nb < k8_northbridges.num; nb++) { | 
|  | if (!pvt_lookup[nb]) | 
|  | continue; | 
|  |  | 
|  | err = amd64_init_2nd_stage(pvt_lookup[nb]); | 
|  | if (err) | 
|  | goto err_2nd_stage; | 
|  |  | 
|  | load_ok = true; | 
|  | } | 
|  |  | 
|  | if (load_ok) { | 
|  | amd64_setup_pci_device(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err_2nd_stage: | 
|  | pci_unregister_driver(&amd64_pci_driver); | 
|  | err_pci: | 
|  | msrs_free(msrs); | 
|  | msrs = NULL; | 
|  | err_ret: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __exit amd64_edac_exit(void) | 
|  | { | 
|  | if (amd64_ctl_pci) | 
|  | edac_pci_release_generic_ctl(amd64_ctl_pci); | 
|  |  | 
|  | pci_unregister_driver(&amd64_pci_driver); | 
|  |  | 
|  | msrs_free(msrs); | 
|  | msrs = NULL; | 
|  | } | 
|  |  | 
|  | module_init(amd64_edac_init); | 
|  | module_exit(amd64_edac_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " | 
|  | "Dave Peterson, Thayne Harbaugh"); | 
|  | MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " | 
|  | EDAC_AMD64_VERSION); | 
|  |  | 
|  | module_param(edac_op_state, int, 0444); | 
|  | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |