|  | /**************************************************************************** | 
|  | * Driver for Solarflare network controllers and boards | 
|  | * Copyright 2005-2006 Fen Systems Ltd. | 
|  | * Copyright 2006-2013 Solarflare Communications Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | #ifndef EFX_IO_H | 
|  | #define EFX_IO_H | 
|  |  | 
|  | #include <linux/io.h> | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * NIC register I/O | 
|  | * | 
|  | ************************************************************************** | 
|  | * | 
|  | * Notes on locking strategy for the Falcon architecture: | 
|  | * | 
|  | * Many CSRs are very wide and cannot be read or written atomically. | 
|  | * Writes from the host are buffered by the Bus Interface Unit (BIU) | 
|  | * up to 128 bits.  Whenever the host writes part of such a register, | 
|  | * the BIU collects the written value and does not write to the | 
|  | * underlying register until all 4 dwords have been written.  A | 
|  | * similar buffering scheme applies to host access to the NIC's 64-bit | 
|  | * SRAM. | 
|  | * | 
|  | * Writes to different CSRs and 64-bit SRAM words must be serialised, | 
|  | * since interleaved access can result in lost writes.  We use | 
|  | * efx_nic::biu_lock for this. | 
|  | * | 
|  | * We also serialise reads from 128-bit CSRs and SRAM with the same | 
|  | * spinlock.  This may not be necessary, but it doesn't really matter | 
|  | * as there are no such reads on the fast path. | 
|  | * | 
|  | * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are | 
|  | * 128-bit but are special-cased in the BIU to avoid the need for | 
|  | * locking in the host: | 
|  | * | 
|  | * - They are write-only. | 
|  | * - The semantics of writing to these registers are such that | 
|  | *   replacing the low 96 bits with zero does not affect functionality. | 
|  | * - If the host writes to the last dword address of such a register | 
|  | *   (i.e. the high 32 bits) the underlying register will always be | 
|  | *   written.  If the collector and the current write together do not | 
|  | *   provide values for all 128 bits of the register, the low 96 bits | 
|  | *   will be written as zero. | 
|  | * - If the host writes to the address of any other part of such a | 
|  | *   register while the collector already holds values for some other | 
|  | *   register, the write is discarded and the collector maintains its | 
|  | *   current state. | 
|  | * | 
|  | * The EF10 architecture exposes very few registers to the host and | 
|  | * most of them are only 32 bits wide.  The only exceptions are the MC | 
|  | * doorbell register pair, which has its own latching, and | 
|  | * TX_DESC_UPD, which works in a similar way to the Falcon | 
|  | * architecture. | 
|  | */ | 
|  |  | 
|  | #if BITS_PER_LONG == 64 | 
|  | #define EFX_USE_QWORD_IO 1 | 
|  | #endif | 
|  |  | 
|  | /* Hardware issue requires that only 64-bit naturally aligned writes | 
|  | * are seen by hardware. Its not strictly necessary to restrict to | 
|  | * x86_64 arch, but done for safety since unusual write combining behaviour | 
|  | * can break PIO. | 
|  | */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* PIO is a win only if write-combining is possible */ | 
|  | #ifdef ARCH_HAS_IOREMAP_WC | 
|  | #define EFX_USE_PIO 1 | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef EFX_USE_QWORD_IO | 
|  | static inline void _efx_writeq(struct efx_nic *efx, __le64 value, | 
|  | unsigned int reg) | 
|  | { | 
|  | __raw_writeq((__force u64)value, efx->membase + reg); | 
|  | } | 
|  | static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg) | 
|  | { | 
|  | return (__force __le64)__raw_readq(efx->membase + reg); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void _efx_writed(struct efx_nic *efx, __le32 value, | 
|  | unsigned int reg) | 
|  | { | 
|  | __raw_writel((__force u32)value, efx->membase + reg); | 
|  | } | 
|  | static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg) | 
|  | { | 
|  | return (__force __le32)__raw_readl(efx->membase + reg); | 
|  | } | 
|  |  | 
|  | /* Write a normal 128-bit CSR, locking as appropriate. */ | 
|  | static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value, | 
|  | unsigned int reg) | 
|  | { | 
|  | unsigned long flags __attribute__ ((unused)); | 
|  |  | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "writing register %x with " EFX_OWORD_FMT "\n", reg, | 
|  | EFX_OWORD_VAL(*value)); | 
|  |  | 
|  | spin_lock_irqsave(&efx->biu_lock, flags); | 
|  | #ifdef EFX_USE_QWORD_IO | 
|  | _efx_writeq(efx, value->u64[0], reg + 0); | 
|  | _efx_writeq(efx, value->u64[1], reg + 8); | 
|  | #else | 
|  | _efx_writed(efx, value->u32[0], reg + 0); | 
|  | _efx_writed(efx, value->u32[1], reg + 4); | 
|  | _efx_writed(efx, value->u32[2], reg + 8); | 
|  | _efx_writed(efx, value->u32[3], reg + 12); | 
|  | #endif | 
|  | mmiowb(); | 
|  | spin_unlock_irqrestore(&efx->biu_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */ | 
|  | static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, | 
|  | const efx_qword_t *value, unsigned int index) | 
|  | { | 
|  | unsigned int addr = index * sizeof(*value); | 
|  | unsigned long flags __attribute__ ((unused)); | 
|  |  | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "writing SRAM address %x with " EFX_QWORD_FMT "\n", | 
|  | addr, EFX_QWORD_VAL(*value)); | 
|  |  | 
|  | spin_lock_irqsave(&efx->biu_lock, flags); | 
|  | #ifdef EFX_USE_QWORD_IO | 
|  | __raw_writeq((__force u64)value->u64[0], membase + addr); | 
|  | #else | 
|  | __raw_writel((__force u32)value->u32[0], membase + addr); | 
|  | __raw_writel((__force u32)value->u32[1], membase + addr + 4); | 
|  | #endif | 
|  | mmiowb(); | 
|  | spin_unlock_irqrestore(&efx->biu_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */ | 
|  | static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value, | 
|  | unsigned int reg) | 
|  | { | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "writing register %x with "EFX_DWORD_FMT"\n", | 
|  | reg, EFX_DWORD_VAL(*value)); | 
|  |  | 
|  | /* No lock required */ | 
|  | _efx_writed(efx, value->u32[0], reg); | 
|  | } | 
|  |  | 
|  | /* Read a 128-bit CSR, locking as appropriate. */ | 
|  | static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value, | 
|  | unsigned int reg) | 
|  | { | 
|  | unsigned long flags __attribute__ ((unused)); | 
|  |  | 
|  | spin_lock_irqsave(&efx->biu_lock, flags); | 
|  | value->u32[0] = _efx_readd(efx, reg + 0); | 
|  | value->u32[1] = _efx_readd(efx, reg + 4); | 
|  | value->u32[2] = _efx_readd(efx, reg + 8); | 
|  | value->u32[3] = _efx_readd(efx, reg + 12); | 
|  | spin_unlock_irqrestore(&efx->biu_lock, flags); | 
|  |  | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "read from register %x, got " EFX_OWORD_FMT "\n", reg, | 
|  | EFX_OWORD_VAL(*value)); | 
|  | } | 
|  |  | 
|  | /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */ | 
|  | static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase, | 
|  | efx_qword_t *value, unsigned int index) | 
|  | { | 
|  | unsigned int addr = index * sizeof(*value); | 
|  | unsigned long flags __attribute__ ((unused)); | 
|  |  | 
|  | spin_lock_irqsave(&efx->biu_lock, flags); | 
|  | #ifdef EFX_USE_QWORD_IO | 
|  | value->u64[0] = (__force __le64)__raw_readq(membase + addr); | 
|  | #else | 
|  | value->u32[0] = (__force __le32)__raw_readl(membase + addr); | 
|  | value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4); | 
|  | #endif | 
|  | spin_unlock_irqrestore(&efx->biu_lock, flags); | 
|  |  | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "read from SRAM address %x, got "EFX_QWORD_FMT"\n", | 
|  | addr, EFX_QWORD_VAL(*value)); | 
|  | } | 
|  |  | 
|  | /* Read a 32-bit CSR or SRAM */ | 
|  | static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, | 
|  | unsigned int reg) | 
|  | { | 
|  | value->u32[0] = _efx_readd(efx, reg); | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "read from register %x, got "EFX_DWORD_FMT"\n", | 
|  | reg, EFX_DWORD_VAL(*value)); | 
|  | } | 
|  |  | 
|  | /* Write a 128-bit CSR forming part of a table */ | 
|  | static inline void | 
|  | efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value, | 
|  | unsigned int reg, unsigned int index) | 
|  | { | 
|  | efx_writeo(efx, value, reg + index * sizeof(efx_oword_t)); | 
|  | } | 
|  |  | 
|  | /* Read a 128-bit CSR forming part of a table */ | 
|  | static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value, | 
|  | unsigned int reg, unsigned int index) | 
|  | { | 
|  | efx_reado(efx, value, reg + index * sizeof(efx_oword_t)); | 
|  | } | 
|  |  | 
|  | /* Page size used as step between per-VI registers */ | 
|  | #define EFX_VI_PAGE_SIZE 0x2000 | 
|  |  | 
|  | /* Calculate offset to page-mapped register */ | 
|  | #define EFX_PAGED_REG(page, reg) \ | 
|  | ((page) * EFX_VI_PAGE_SIZE + (reg)) | 
|  |  | 
|  | /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */ | 
|  | static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value, | 
|  | unsigned int reg, unsigned int page) | 
|  | { | 
|  | reg = EFX_PAGED_REG(page, reg); | 
|  |  | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "writing register %x with " EFX_OWORD_FMT "\n", reg, | 
|  | EFX_OWORD_VAL(*value)); | 
|  |  | 
|  | #ifdef EFX_USE_QWORD_IO | 
|  | _efx_writeq(efx, value->u64[0], reg + 0); | 
|  | _efx_writeq(efx, value->u64[1], reg + 8); | 
|  | #else | 
|  | _efx_writed(efx, value->u32[0], reg + 0); | 
|  | _efx_writed(efx, value->u32[1], reg + 4); | 
|  | _efx_writed(efx, value->u32[2], reg + 8); | 
|  | _efx_writed(efx, value->u32[3], reg + 12); | 
|  | #endif | 
|  | } | 
|  | #define efx_writeo_page(efx, value, reg, page)				\ | 
|  | _efx_writeo_page(efx, value,					\ | 
|  | reg +						\ | 
|  | BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \ | 
|  | page) | 
|  |  | 
|  | /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the | 
|  | * high bits of RX_DESC_UPD or TX_DESC_UPD) | 
|  | */ | 
|  | static inline void | 
|  | _efx_writed_page(struct efx_nic *efx, const efx_dword_t *value, | 
|  | unsigned int reg, unsigned int page) | 
|  | { | 
|  | efx_writed(efx, value, EFX_PAGED_REG(page, reg)); | 
|  | } | 
|  | #define efx_writed_page(efx, value, reg, page)				\ | 
|  | _efx_writed_page(efx, value,					\ | 
|  | reg +						\ | 
|  | BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\ | 
|  | (reg) != 0x420 &&		\ | 
|  | (reg) != 0x830 &&		\ | 
|  | (reg) != 0x83c &&		\ | 
|  | (reg) != 0xa18 &&		\ | 
|  | (reg) != 0xa1c),		\ | 
|  | page) | 
|  |  | 
|  | /* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug | 
|  | * in the BIU means that writes to TIMER_COMMAND[0] invalidate the | 
|  | * collector register. | 
|  | */ | 
|  | static inline void _efx_writed_page_locked(struct efx_nic *efx, | 
|  | const efx_dword_t *value, | 
|  | unsigned int reg, | 
|  | unsigned int page) | 
|  | { | 
|  | unsigned long flags __attribute__ ((unused)); | 
|  |  | 
|  | if (page == 0) { | 
|  | spin_lock_irqsave(&efx->biu_lock, flags); | 
|  | efx_writed(efx, value, EFX_PAGED_REG(page, reg)); | 
|  | spin_unlock_irqrestore(&efx->biu_lock, flags); | 
|  | } else { | 
|  | efx_writed(efx, value, EFX_PAGED_REG(page, reg)); | 
|  | } | 
|  | } | 
|  | #define efx_writed_page_locked(efx, value, reg, page)			\ | 
|  | _efx_writed_page_locked(efx, value,				\ | 
|  | reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \ | 
|  | page) | 
|  |  | 
|  | #endif /* EFX_IO_H */ |