| /* |
| * AMD 10Gb Ethernet driver |
| * |
| * This file is available to you under your choice of the following two |
| * licenses: |
| * |
| * License 1: GPLv2 |
| * |
| * Copyright (c) 2016 Advanced Micro Devices, Inc. |
| * |
| * This file is free software; you may copy, redistribute and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, either version 2 of the License, or (at |
| * your option) any later version. |
| * |
| * This file is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * This file incorporates work covered by the following copyright and |
| * permission notice: |
| * The Synopsys DWC ETHER XGMAC Software Driver and documentation |
| * (hereinafter "Software") is an unsupported proprietary work of Synopsys, |
| * Inc. unless otherwise expressly agreed to in writing between Synopsys |
| * and you. |
| * |
| * The Software IS NOT an item of Licensed Software or Licensed Product |
| * under any End User Software License Agreement or Agreement for Licensed |
| * Product with Synopsys or any supplement thereto. Permission is hereby |
| * granted, free of charge, to any person obtaining a copy of this software |
| * annotated with this license and the Software, to deal in the Software |
| * without restriction, including without limitation the rights to use, |
| * copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
| * of the Software, and to permit persons to whom the Software is furnished |
| * to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" |
| * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * |
| * License 2: Modified BSD |
| * |
| * Copyright (c) 2016 Advanced Micro Devices, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * * Neither the name of Advanced Micro Devices, Inc. nor the |
| * names of its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * This file incorporates work covered by the following copyright and |
| * permission notice: |
| * The Synopsys DWC ETHER XGMAC Software Driver and documentation |
| * (hereinafter "Software") is an unsupported proprietary work of Synopsys, |
| * Inc. unless otherwise expressly agreed to in writing between Synopsys |
| * and you. |
| * |
| * The Software IS NOT an item of Licensed Software or Licensed Product |
| * under any End User Software License Agreement or Agreement for Licensed |
| * Product with Synopsys or any supplement thereto. Permission is hereby |
| * granted, free of charge, to any person obtaining a copy of this software |
| * annotated with this license and the Software, to deal in the Software |
| * without restriction, including without limitation the rights to use, |
| * copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
| * of the Software, and to permit persons to whom the Software is furnished |
| * to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" |
| * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/kmod.h> |
| #include <linux/mdio.h> |
| #include <linux/phy.h> |
| |
| #include "xgbe.h" |
| #include "xgbe-common.h" |
| |
| #define XGBE_PHY_PORT_SPEED_100 BIT(0) |
| #define XGBE_PHY_PORT_SPEED_1000 BIT(1) |
| #define XGBE_PHY_PORT_SPEED_2500 BIT(2) |
| #define XGBE_PHY_PORT_SPEED_10000 BIT(3) |
| |
| #define XGBE_MUTEX_RELEASE 0x80000000 |
| |
| #define XGBE_SFP_DIRECT 7 |
| |
| /* I2C target addresses */ |
| #define XGBE_SFP_SERIAL_ID_ADDRESS 0x50 |
| #define XGBE_SFP_DIAG_INFO_ADDRESS 0x51 |
| #define XGBE_SFP_PHY_ADDRESS 0x56 |
| #define XGBE_GPIO_ADDRESS_PCA9555 0x20 |
| |
| /* SFP sideband signal indicators */ |
| #define XGBE_GPIO_NO_TX_FAULT BIT(0) |
| #define XGBE_GPIO_NO_RATE_SELECT BIT(1) |
| #define XGBE_GPIO_NO_MOD_ABSENT BIT(2) |
| #define XGBE_GPIO_NO_RX_LOS BIT(3) |
| |
| /* Rate-change complete wait/retry count */ |
| #define XGBE_RATECHANGE_COUNT 500 |
| |
| enum xgbe_port_mode { |
| XGBE_PORT_MODE_RSVD = 0, |
| XGBE_PORT_MODE_BACKPLANE, |
| XGBE_PORT_MODE_BACKPLANE_2500, |
| XGBE_PORT_MODE_1000BASE_T, |
| XGBE_PORT_MODE_1000BASE_X, |
| XGBE_PORT_MODE_NBASE_T, |
| XGBE_PORT_MODE_10GBASE_T, |
| XGBE_PORT_MODE_10GBASE_R, |
| XGBE_PORT_MODE_SFP, |
| XGBE_PORT_MODE_MAX, |
| }; |
| |
| enum xgbe_conn_type { |
| XGBE_CONN_TYPE_NONE = 0, |
| XGBE_CONN_TYPE_SFP, |
| XGBE_CONN_TYPE_MDIO, |
| XGBE_CONN_TYPE_RSVD1, |
| XGBE_CONN_TYPE_BACKPLANE, |
| XGBE_CONN_TYPE_MAX, |
| }; |
| |
| /* SFP/SFP+ related definitions */ |
| enum xgbe_sfp_comm { |
| XGBE_SFP_COMM_DIRECT = 0, |
| XGBE_SFP_COMM_PCA9545, |
| }; |
| |
| enum xgbe_sfp_cable { |
| XGBE_SFP_CABLE_UNKNOWN = 0, |
| XGBE_SFP_CABLE_ACTIVE, |
| XGBE_SFP_CABLE_PASSIVE, |
| }; |
| |
| enum xgbe_sfp_base { |
| XGBE_SFP_BASE_UNKNOWN = 0, |
| XGBE_SFP_BASE_1000_T, |
| XGBE_SFP_BASE_1000_SX, |
| XGBE_SFP_BASE_1000_LX, |
| XGBE_SFP_BASE_1000_CX, |
| XGBE_SFP_BASE_10000_SR, |
| XGBE_SFP_BASE_10000_LR, |
| XGBE_SFP_BASE_10000_LRM, |
| XGBE_SFP_BASE_10000_ER, |
| XGBE_SFP_BASE_10000_CR, |
| }; |
| |
| enum xgbe_sfp_speed { |
| XGBE_SFP_SPEED_UNKNOWN = 0, |
| XGBE_SFP_SPEED_100_1000, |
| XGBE_SFP_SPEED_1000, |
| XGBE_SFP_SPEED_10000, |
| }; |
| |
| /* SFP Serial ID Base ID values relative to an offset of 0 */ |
| #define XGBE_SFP_BASE_ID 0 |
| #define XGBE_SFP_ID_SFP 0x03 |
| |
| #define XGBE_SFP_BASE_EXT_ID 1 |
| #define XGBE_SFP_EXT_ID_SFP 0x04 |
| |
| #define XGBE_SFP_BASE_10GBE_CC 3 |
| #define XGBE_SFP_BASE_10GBE_CC_SR BIT(4) |
| #define XGBE_SFP_BASE_10GBE_CC_LR BIT(5) |
| #define XGBE_SFP_BASE_10GBE_CC_LRM BIT(6) |
| #define XGBE_SFP_BASE_10GBE_CC_ER BIT(7) |
| |
| #define XGBE_SFP_BASE_1GBE_CC 6 |
| #define XGBE_SFP_BASE_1GBE_CC_SX BIT(0) |
| #define XGBE_SFP_BASE_1GBE_CC_LX BIT(1) |
| #define XGBE_SFP_BASE_1GBE_CC_CX BIT(2) |
| #define XGBE_SFP_BASE_1GBE_CC_T BIT(3) |
| |
| #define XGBE_SFP_BASE_CABLE 8 |
| #define XGBE_SFP_BASE_CABLE_PASSIVE BIT(2) |
| #define XGBE_SFP_BASE_CABLE_ACTIVE BIT(3) |
| |
| #define XGBE_SFP_BASE_BR 12 |
| #define XGBE_SFP_BASE_BR_1GBE_MIN 0x0a |
| #define XGBE_SFP_BASE_BR_1GBE_MAX 0x0d |
| #define XGBE_SFP_BASE_BR_10GBE_MIN 0x64 |
| #define XGBE_SFP_BASE_BR_10GBE_MAX 0x68 |
| |
| #define XGBE_SFP_BASE_CU_CABLE_LEN 18 |
| |
| #define XGBE_SFP_BASE_VENDOR_NAME 20 |
| #define XGBE_SFP_BASE_VENDOR_NAME_LEN 16 |
| #define XGBE_SFP_BASE_VENDOR_PN 40 |
| #define XGBE_SFP_BASE_VENDOR_PN_LEN 16 |
| #define XGBE_SFP_BASE_VENDOR_REV 56 |
| #define XGBE_SFP_BASE_VENDOR_REV_LEN 4 |
| |
| #define XGBE_SFP_BASE_CC 63 |
| |
| /* SFP Serial ID Extended ID values relative to an offset of 64 */ |
| #define XGBE_SFP_BASE_VENDOR_SN 4 |
| #define XGBE_SFP_BASE_VENDOR_SN_LEN 16 |
| |
| #define XGBE_SFP_EXTD_DIAG 28 |
| #define XGBE_SFP_EXTD_DIAG_ADDR_CHANGE BIT(2) |
| |
| #define XGBE_SFP_EXTD_SFF_8472 30 |
| |
| #define XGBE_SFP_EXTD_CC 31 |
| |
| struct xgbe_sfp_eeprom { |
| u8 base[64]; |
| u8 extd[32]; |
| u8 vendor[32]; |
| }; |
| |
| #define XGBE_BEL_FUSE_VENDOR "BEL-FUSE " |
| #define XGBE_BEL_FUSE_PARTNO "1GBT-SFP06 " |
| |
| struct xgbe_sfp_ascii { |
| union { |
| char vendor[XGBE_SFP_BASE_VENDOR_NAME_LEN + 1]; |
| char partno[XGBE_SFP_BASE_VENDOR_PN_LEN + 1]; |
| char rev[XGBE_SFP_BASE_VENDOR_REV_LEN + 1]; |
| char serno[XGBE_SFP_BASE_VENDOR_SN_LEN + 1]; |
| } u; |
| }; |
| |
| /* MDIO PHY reset types */ |
| enum xgbe_mdio_reset { |
| XGBE_MDIO_RESET_NONE = 0, |
| XGBE_MDIO_RESET_I2C_GPIO, |
| XGBE_MDIO_RESET_INT_GPIO, |
| XGBE_MDIO_RESET_MAX, |
| }; |
| |
| /* Re-driver related definitions */ |
| enum xgbe_phy_redrv_if { |
| XGBE_PHY_REDRV_IF_MDIO = 0, |
| XGBE_PHY_REDRV_IF_I2C, |
| XGBE_PHY_REDRV_IF_MAX, |
| }; |
| |
| enum xgbe_phy_redrv_model { |
| XGBE_PHY_REDRV_MODEL_4223 = 0, |
| XGBE_PHY_REDRV_MODEL_4227, |
| XGBE_PHY_REDRV_MODEL_MAX, |
| }; |
| |
| enum xgbe_phy_redrv_mode { |
| XGBE_PHY_REDRV_MODE_CX = 5, |
| XGBE_PHY_REDRV_MODE_SR = 9, |
| }; |
| |
| #define XGBE_PHY_REDRV_MODE_REG 0x12b0 |
| |
| /* PHY related configuration information */ |
| struct xgbe_phy_data { |
| enum xgbe_port_mode port_mode; |
| |
| unsigned int port_id; |
| |
| unsigned int port_speeds; |
| |
| enum xgbe_conn_type conn_type; |
| |
| enum xgbe_mode cur_mode; |
| enum xgbe_mode start_mode; |
| |
| unsigned int rrc_count; |
| |
| unsigned int mdio_addr; |
| |
| unsigned int comm_owned; |
| |
| /* SFP Support */ |
| enum xgbe_sfp_comm sfp_comm; |
| unsigned int sfp_mux_address; |
| unsigned int sfp_mux_channel; |
| |
| unsigned int sfp_gpio_address; |
| unsigned int sfp_gpio_mask; |
| unsigned int sfp_gpio_rx_los; |
| unsigned int sfp_gpio_tx_fault; |
| unsigned int sfp_gpio_mod_absent; |
| unsigned int sfp_gpio_rate_select; |
| |
| unsigned int sfp_rx_los; |
| unsigned int sfp_tx_fault; |
| unsigned int sfp_mod_absent; |
| unsigned int sfp_diags; |
| unsigned int sfp_changed; |
| unsigned int sfp_phy_avail; |
| unsigned int sfp_cable_len; |
| enum xgbe_sfp_base sfp_base; |
| enum xgbe_sfp_cable sfp_cable; |
| enum xgbe_sfp_speed sfp_speed; |
| struct xgbe_sfp_eeprom sfp_eeprom; |
| |
| /* External PHY support */ |
| enum xgbe_mdio_mode phydev_mode; |
| struct mii_bus *mii; |
| struct phy_device *phydev; |
| enum xgbe_mdio_reset mdio_reset; |
| unsigned int mdio_reset_addr; |
| unsigned int mdio_reset_gpio; |
| |
| /* Re-driver support */ |
| unsigned int redrv; |
| unsigned int redrv_if; |
| unsigned int redrv_addr; |
| unsigned int redrv_lane; |
| unsigned int redrv_model; |
| }; |
| |
| /* I2C, MDIO and GPIO lines are muxed, so only one device at a time */ |
| static DEFINE_MUTEX(xgbe_phy_comm_lock); |
| |
| static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata); |
| |
| static int xgbe_phy_i2c_xfer(struct xgbe_prv_data *pdata, |
| struct xgbe_i2c_op *i2c_op) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| /* Be sure we own the bus */ |
| if (WARN_ON(!phy_data->comm_owned)) |
| return -EIO; |
| |
| return pdata->i2c_if.i2c_xfer(pdata, i2c_op); |
| } |
| |
| static int xgbe_phy_redrv_write(struct xgbe_prv_data *pdata, unsigned int reg, |
| unsigned int val) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| struct xgbe_i2c_op i2c_op; |
| __be16 *redrv_val; |
| u8 redrv_data[5], csum; |
| unsigned int i, retry; |
| int ret; |
| |
| /* High byte of register contains read/write indicator */ |
| redrv_data[0] = ((reg >> 8) & 0xff) << 1; |
| redrv_data[1] = reg & 0xff; |
| redrv_val = (__be16 *)&redrv_data[2]; |
| *redrv_val = cpu_to_be16(val); |
| |
| /* Calculate 1 byte checksum */ |
| csum = 0; |
| for (i = 0; i < 4; i++) { |
| csum += redrv_data[i]; |
| if (redrv_data[i] > csum) |
| csum++; |
| } |
| redrv_data[4] = ~csum; |
| |
| retry = 1; |
| again1: |
| i2c_op.cmd = XGBE_I2C_CMD_WRITE; |
| i2c_op.target = phy_data->redrv_addr; |
| i2c_op.len = sizeof(redrv_data); |
| i2c_op.buf = redrv_data; |
| ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); |
| if (ret) { |
| if ((ret == -EAGAIN) && retry--) |
| goto again1; |
| |
| return ret; |
| } |
| |
| retry = 1; |
| again2: |
| i2c_op.cmd = XGBE_I2C_CMD_READ; |
| i2c_op.target = phy_data->redrv_addr; |
| i2c_op.len = 1; |
| i2c_op.buf = redrv_data; |
| ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); |
| if (ret) { |
| if ((ret == -EAGAIN) && retry--) |
| goto again2; |
| |
| return ret; |
| } |
| |
| if (redrv_data[0] != 0xff) { |
| netif_dbg(pdata, drv, pdata->netdev, |
| "Redriver write checksum error\n"); |
| ret = -EIO; |
| } |
| |
| return ret; |
| } |
| |
| static int xgbe_phy_i2c_write(struct xgbe_prv_data *pdata, unsigned int target, |
| void *val, unsigned int val_len) |
| { |
| struct xgbe_i2c_op i2c_op; |
| int retry, ret; |
| |
| retry = 1; |
| again: |
| /* Write the specfied register */ |
| i2c_op.cmd = XGBE_I2C_CMD_WRITE; |
| i2c_op.target = target; |
| i2c_op.len = val_len; |
| i2c_op.buf = val; |
| ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); |
| if ((ret == -EAGAIN) && retry--) |
| goto again; |
| |
| return ret; |
| } |
| |
| static int xgbe_phy_i2c_read(struct xgbe_prv_data *pdata, unsigned int target, |
| void *reg, unsigned int reg_len, |
| void *val, unsigned int val_len) |
| { |
| struct xgbe_i2c_op i2c_op; |
| int retry, ret; |
| |
| retry = 1; |
| again1: |
| /* Set the specified register to read */ |
| i2c_op.cmd = XGBE_I2C_CMD_WRITE; |
| i2c_op.target = target; |
| i2c_op.len = reg_len; |
| i2c_op.buf = reg; |
| ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); |
| if (ret) { |
| if ((ret == -EAGAIN) && retry--) |
| goto again1; |
| |
| return ret; |
| } |
| |
| retry = 1; |
| again2: |
| /* Read the specfied register */ |
| i2c_op.cmd = XGBE_I2C_CMD_READ; |
| i2c_op.target = target; |
| i2c_op.len = val_len; |
| i2c_op.buf = val; |
| ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); |
| if ((ret == -EAGAIN) && retry--) |
| goto again2; |
| |
| return ret; |
| } |
| |
| static int xgbe_phy_sfp_put_mux(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| struct xgbe_i2c_op i2c_op; |
| u8 mux_channel; |
| |
| if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT) |
| return 0; |
| |
| /* Select no mux channels */ |
| mux_channel = 0; |
| i2c_op.cmd = XGBE_I2C_CMD_WRITE; |
| i2c_op.target = phy_data->sfp_mux_address; |
| i2c_op.len = sizeof(mux_channel); |
| i2c_op.buf = &mux_channel; |
| |
| return xgbe_phy_i2c_xfer(pdata, &i2c_op); |
| } |
| |
| static int xgbe_phy_sfp_get_mux(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| struct xgbe_i2c_op i2c_op; |
| u8 mux_channel; |
| |
| if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT) |
| return 0; |
| |
| /* Select desired mux channel */ |
| mux_channel = 1 << phy_data->sfp_mux_channel; |
| i2c_op.cmd = XGBE_I2C_CMD_WRITE; |
| i2c_op.target = phy_data->sfp_mux_address; |
| i2c_op.len = sizeof(mux_channel); |
| i2c_op.buf = &mux_channel; |
| |
| return xgbe_phy_i2c_xfer(pdata, &i2c_op); |
| } |
| |
| static void xgbe_phy_put_comm_ownership(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| phy_data->comm_owned = 0; |
| |
| mutex_unlock(&xgbe_phy_comm_lock); |
| } |
| |
| static int xgbe_phy_get_comm_ownership(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| unsigned long timeout; |
| unsigned int mutex_id; |
| |
| if (phy_data->comm_owned) |
| return 0; |
| |
| /* The I2C and MDIO/GPIO bus is multiplexed between multiple devices, |
| * the driver needs to take the software mutex and then the hardware |
| * mutexes before being able to use the busses. |
| */ |
| mutex_lock(&xgbe_phy_comm_lock); |
| |
| /* Clear the mutexes */ |
| XP_IOWRITE(pdata, XP_I2C_MUTEX, XGBE_MUTEX_RELEASE); |
| XP_IOWRITE(pdata, XP_MDIO_MUTEX, XGBE_MUTEX_RELEASE); |
| |
| /* Mutex formats are the same for I2C and MDIO/GPIO */ |
| mutex_id = 0; |
| XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ID, phy_data->port_id); |
| XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ACTIVE, 1); |
| |
| timeout = jiffies + (5 * HZ); |
| while (time_before(jiffies, timeout)) { |
| /* Must be all zeroes in order to obtain the mutex */ |
| if (XP_IOREAD(pdata, XP_I2C_MUTEX) || |
| XP_IOREAD(pdata, XP_MDIO_MUTEX)) { |
| usleep_range(100, 200); |
| continue; |
| } |
| |
| /* Obtain the mutex */ |
| XP_IOWRITE(pdata, XP_I2C_MUTEX, mutex_id); |
| XP_IOWRITE(pdata, XP_MDIO_MUTEX, mutex_id); |
| |
| phy_data->comm_owned = 1; |
| return 0; |
| } |
| |
| mutex_unlock(&xgbe_phy_comm_lock); |
| |
| netdev_err(pdata->netdev, "unable to obtain hardware mutexes\n"); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int xgbe_phy_mdio_mii_write(struct xgbe_prv_data *pdata, int addr, |
| int reg, u16 val) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| if (reg & MII_ADDR_C45) { |
| if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45) |
| return -ENOTSUPP; |
| } else { |
| if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22) |
| return -ENOTSUPP; |
| } |
| |
| return pdata->hw_if.write_ext_mii_regs(pdata, addr, reg, val); |
| } |
| |
| static int xgbe_phy_i2c_mii_write(struct xgbe_prv_data *pdata, int reg, u16 val) |
| { |
| __be16 *mii_val; |
| u8 mii_data[3]; |
| int ret; |
| |
| ret = xgbe_phy_sfp_get_mux(pdata); |
| if (ret) |
| return ret; |
| |
| mii_data[0] = reg & 0xff; |
| mii_val = (__be16 *)&mii_data[1]; |
| *mii_val = cpu_to_be16(val); |
| |
| ret = xgbe_phy_i2c_write(pdata, XGBE_SFP_PHY_ADDRESS, |
| mii_data, sizeof(mii_data)); |
| |
| xgbe_phy_sfp_put_mux(pdata); |
| |
| return ret; |
| } |
| |
| static int xgbe_phy_mii_write(struct mii_bus *mii, int addr, int reg, u16 val) |
| { |
| struct xgbe_prv_data *pdata = mii->priv; |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| int ret; |
| |
| ret = xgbe_phy_get_comm_ownership(pdata); |
| if (ret) |
| return ret; |
| |
| if (phy_data->conn_type == XGBE_CONN_TYPE_SFP) |
| ret = xgbe_phy_i2c_mii_write(pdata, reg, val); |
| else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO) |
| ret = xgbe_phy_mdio_mii_write(pdata, addr, reg, val); |
| else |
| ret = -ENOTSUPP; |
| |
| xgbe_phy_put_comm_ownership(pdata); |
| |
| return ret; |
| } |
| |
| static int xgbe_phy_mdio_mii_read(struct xgbe_prv_data *pdata, int addr, |
| int reg) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| if (reg & MII_ADDR_C45) { |
| if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45) |
| return -ENOTSUPP; |
| } else { |
| if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22) |
| return -ENOTSUPP; |
| } |
| |
| return pdata->hw_if.read_ext_mii_regs(pdata, addr, reg); |
| } |
| |
| static int xgbe_phy_i2c_mii_read(struct xgbe_prv_data *pdata, int reg) |
| { |
| __be16 mii_val; |
| u8 mii_reg; |
| int ret; |
| |
| ret = xgbe_phy_sfp_get_mux(pdata); |
| if (ret) |
| return ret; |
| |
| mii_reg = reg; |
| ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_PHY_ADDRESS, |
| &mii_reg, sizeof(mii_reg), |
| &mii_val, sizeof(mii_val)); |
| if (!ret) |
| ret = be16_to_cpu(mii_val); |
| |
| xgbe_phy_sfp_put_mux(pdata); |
| |
| return ret; |
| } |
| |
| static int xgbe_phy_mii_read(struct mii_bus *mii, int addr, int reg) |
| { |
| struct xgbe_prv_data *pdata = mii->priv; |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| int ret; |
| |
| ret = xgbe_phy_get_comm_ownership(pdata); |
| if (ret) |
| return ret; |
| |
| if (phy_data->conn_type == XGBE_CONN_TYPE_SFP) |
| ret = xgbe_phy_i2c_mii_read(pdata, reg); |
| else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO) |
| ret = xgbe_phy_mdio_mii_read(pdata, addr, reg); |
| else |
| ret = -ENOTSUPP; |
| |
| xgbe_phy_put_comm_ownership(pdata); |
| |
| return ret; |
| } |
| |
| static void xgbe_phy_sfp_phy_settings(struct xgbe_prv_data *pdata) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| if (!phy_data->sfp_mod_absent && !phy_data->sfp_changed) |
| return; |
| |
| XGBE_ZERO_SUP(lks); |
| |
| if (phy_data->sfp_mod_absent) { |
| pdata->phy.speed = SPEED_UNKNOWN; |
| pdata->phy.duplex = DUPLEX_UNKNOWN; |
| pdata->phy.autoneg = AUTONEG_ENABLE; |
| pdata->phy.pause_autoneg = AUTONEG_ENABLE; |
| |
| XGBE_SET_SUP(lks, Autoneg); |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| XGBE_SET_SUP(lks, TP); |
| XGBE_SET_SUP(lks, FIBRE); |
| |
| XGBE_LM_COPY(lks, advertising, lks, supported); |
| |
| return; |
| } |
| |
| switch (phy_data->sfp_base) { |
| case XGBE_SFP_BASE_1000_T: |
| case XGBE_SFP_BASE_1000_SX: |
| case XGBE_SFP_BASE_1000_LX: |
| case XGBE_SFP_BASE_1000_CX: |
| pdata->phy.speed = SPEED_UNKNOWN; |
| pdata->phy.duplex = DUPLEX_UNKNOWN; |
| pdata->phy.autoneg = AUTONEG_ENABLE; |
| pdata->phy.pause_autoneg = AUTONEG_ENABLE; |
| XGBE_SET_SUP(lks, Autoneg); |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) { |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) |
| XGBE_SET_SUP(lks, 100baseT_Full); |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) |
| XGBE_SET_SUP(lks, 1000baseT_Full); |
| } else { |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) |
| XGBE_SET_SUP(lks, 1000baseX_Full); |
| } |
| break; |
| case XGBE_SFP_BASE_10000_SR: |
| case XGBE_SFP_BASE_10000_LR: |
| case XGBE_SFP_BASE_10000_LRM: |
| case XGBE_SFP_BASE_10000_ER: |
| case XGBE_SFP_BASE_10000_CR: |
| pdata->phy.speed = SPEED_10000; |
| pdata->phy.duplex = DUPLEX_FULL; |
| pdata->phy.autoneg = AUTONEG_DISABLE; |
| pdata->phy.pause_autoneg = AUTONEG_DISABLE; |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) { |
| switch (phy_data->sfp_base) { |
| case XGBE_SFP_BASE_10000_SR: |
| XGBE_SET_SUP(lks, 10000baseSR_Full); |
| break; |
| case XGBE_SFP_BASE_10000_LR: |
| XGBE_SET_SUP(lks, 10000baseLR_Full); |
| break; |
| case XGBE_SFP_BASE_10000_LRM: |
| XGBE_SET_SUP(lks, 10000baseLRM_Full); |
| break; |
| case XGBE_SFP_BASE_10000_ER: |
| XGBE_SET_SUP(lks, 10000baseER_Full); |
| break; |
| case XGBE_SFP_BASE_10000_CR: |
| XGBE_SET_SUP(lks, 10000baseCR_Full); |
| break; |
| default: |
| break; |
| } |
| } |
| break; |
| default: |
| pdata->phy.speed = SPEED_UNKNOWN; |
| pdata->phy.duplex = DUPLEX_UNKNOWN; |
| pdata->phy.autoneg = AUTONEG_DISABLE; |
| pdata->phy.pause_autoneg = AUTONEG_DISABLE; |
| break; |
| } |
| |
| switch (phy_data->sfp_base) { |
| case XGBE_SFP_BASE_1000_T: |
| case XGBE_SFP_BASE_1000_CX: |
| case XGBE_SFP_BASE_10000_CR: |
| XGBE_SET_SUP(lks, TP); |
| break; |
| default: |
| XGBE_SET_SUP(lks, FIBRE); |
| break; |
| } |
| |
| XGBE_LM_COPY(lks, advertising, lks, supported); |
| } |
| |
| static bool xgbe_phy_sfp_bit_rate(struct xgbe_sfp_eeprom *sfp_eeprom, |
| enum xgbe_sfp_speed sfp_speed) |
| { |
| u8 *sfp_base, min, max; |
| |
| sfp_base = sfp_eeprom->base; |
| |
| switch (sfp_speed) { |
| case XGBE_SFP_SPEED_1000: |
| min = XGBE_SFP_BASE_BR_1GBE_MIN; |
| max = XGBE_SFP_BASE_BR_1GBE_MAX; |
| break; |
| case XGBE_SFP_SPEED_10000: |
| min = XGBE_SFP_BASE_BR_10GBE_MIN; |
| max = XGBE_SFP_BASE_BR_10GBE_MAX; |
| break; |
| default: |
| return false; |
| } |
| |
| return ((sfp_base[XGBE_SFP_BASE_BR] >= min) && |
| (sfp_base[XGBE_SFP_BASE_BR] <= max)); |
| } |
| |
| static void xgbe_phy_free_phy_device(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| if (phy_data->phydev) { |
| phy_detach(phy_data->phydev); |
| phy_device_remove(phy_data->phydev); |
| phy_device_free(phy_data->phydev); |
| phy_data->phydev = NULL; |
| } |
| } |
| |
| static bool xgbe_phy_finisar_phy_quirks(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| unsigned int phy_id = phy_data->phydev->phy_id; |
| |
| if ((phy_id & 0xfffffff0) != 0x01ff0cc0) |
| return false; |
| |
| /* Enable Base-T AN */ |
| phy_write(phy_data->phydev, 0x16, 0x0001); |
| phy_write(phy_data->phydev, 0x00, 0x9140); |
| phy_write(phy_data->phydev, 0x16, 0x0000); |
| |
| /* Enable SGMII at 100Base-T/1000Base-T Full Duplex */ |
| phy_write(phy_data->phydev, 0x1b, 0x9084); |
| phy_write(phy_data->phydev, 0x09, 0x0e00); |
| phy_write(phy_data->phydev, 0x00, 0x8140); |
| phy_write(phy_data->phydev, 0x04, 0x0d01); |
| phy_write(phy_data->phydev, 0x00, 0x9140); |
| |
| phy_data->phydev->supported = PHY_GBIT_FEATURES; |
| phy_data->phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; |
| phy_data->phydev->advertising = phy_data->phydev->supported; |
| |
| netif_dbg(pdata, drv, pdata->netdev, |
| "Finisar PHY quirk in place\n"); |
| |
| return true; |
| } |
| |
| static void xgbe_phy_external_phy_quirks(struct xgbe_prv_data *pdata) |
| { |
| if (xgbe_phy_finisar_phy_quirks(pdata)) |
| return; |
| } |
| |
| static int xgbe_phy_find_phy_device(struct xgbe_prv_data *pdata) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| struct phy_device *phydev; |
| u32 advertising; |
| int ret; |
| |
| /* If we already have a PHY, just return */ |
| if (phy_data->phydev) |
| return 0; |
| |
| /* Check for the use of an external PHY */ |
| if (phy_data->phydev_mode == XGBE_MDIO_MODE_NONE) |
| return 0; |
| |
| /* For SFP, only use an external PHY if available */ |
| if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) && |
| !phy_data->sfp_phy_avail) |
| return 0; |
| |
| /* Set the proper MDIO mode for the PHY */ |
| ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr, |
| phy_data->phydev_mode); |
| if (ret) { |
| netdev_err(pdata->netdev, |
| "mdio port/clause not compatible (%u/%u)\n", |
| phy_data->mdio_addr, phy_data->phydev_mode); |
| return ret; |
| } |
| |
| /* Create and connect to the PHY device */ |
| phydev = get_phy_device(phy_data->mii, phy_data->mdio_addr, |
| (phy_data->phydev_mode == XGBE_MDIO_MODE_CL45)); |
| if (IS_ERR(phydev)) { |
| netdev_err(pdata->netdev, "get_phy_device failed\n"); |
| return -ENODEV; |
| } |
| netif_dbg(pdata, drv, pdata->netdev, "external PHY id is %#010x\n", |
| phydev->phy_id); |
| |
| /*TODO: If c45, add request_module based on one of the MMD ids? */ |
| |
| ret = phy_device_register(phydev); |
| if (ret) { |
| netdev_err(pdata->netdev, "phy_device_register failed\n"); |
| phy_device_free(phydev); |
| return ret; |
| } |
| |
| ret = phy_attach_direct(pdata->netdev, phydev, phydev->dev_flags, |
| PHY_INTERFACE_MODE_SGMII); |
| if (ret) { |
| netdev_err(pdata->netdev, "phy_attach_direct failed\n"); |
| phy_device_remove(phydev); |
| phy_device_free(phydev); |
| return ret; |
| } |
| phy_data->phydev = phydev; |
| |
| xgbe_phy_external_phy_quirks(pdata); |
| |
| ethtool_convert_link_mode_to_legacy_u32(&advertising, |
| lks->link_modes.advertising); |
| phydev->advertising &= advertising; |
| |
| phy_start_aneg(phy_data->phydev); |
| |
| return 0; |
| } |
| |
| static void xgbe_phy_sfp_external_phy(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| int ret; |
| |
| if (!phy_data->sfp_changed) |
| return; |
| |
| phy_data->sfp_phy_avail = 0; |
| |
| if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T) |
| return; |
| |
| /* Check access to the PHY by reading CTRL1 */ |
| ret = xgbe_phy_i2c_mii_read(pdata, MII_BMCR); |
| if (ret < 0) |
| return; |
| |
| /* Successfully accessed the PHY */ |
| phy_data->sfp_phy_avail = 1; |
| } |
| |
| static bool xgbe_phy_belfuse_parse_quirks(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom; |
| |
| if (memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME], |
| XGBE_BEL_FUSE_VENDOR, XGBE_SFP_BASE_VENDOR_NAME_LEN)) |
| return false; |
| |
| if (!memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN], |
| XGBE_BEL_FUSE_PARTNO, XGBE_SFP_BASE_VENDOR_PN_LEN)) { |
| phy_data->sfp_base = XGBE_SFP_BASE_1000_SX; |
| phy_data->sfp_cable = XGBE_SFP_CABLE_ACTIVE; |
| phy_data->sfp_speed = XGBE_SFP_SPEED_1000; |
| if (phy_data->sfp_changed) |
| netif_dbg(pdata, drv, pdata->netdev, |
| "Bel-Fuse SFP quirk in place\n"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool xgbe_phy_sfp_parse_quirks(struct xgbe_prv_data *pdata) |
| { |
| if (xgbe_phy_belfuse_parse_quirks(pdata)) |
| return true; |
| |
| return false; |
| } |
| |
| static void xgbe_phy_sfp_parse_eeprom(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom; |
| u8 *sfp_base; |
| |
| sfp_base = sfp_eeprom->base; |
| |
| if (sfp_base[XGBE_SFP_BASE_ID] != XGBE_SFP_ID_SFP) |
| return; |
| |
| if (sfp_base[XGBE_SFP_BASE_EXT_ID] != XGBE_SFP_EXT_ID_SFP) |
| return; |
| |
| if (xgbe_phy_sfp_parse_quirks(pdata)) |
| return; |
| |
| /* Assume ACTIVE cable unless told it is PASSIVE */ |
| if (sfp_base[XGBE_SFP_BASE_CABLE] & XGBE_SFP_BASE_CABLE_PASSIVE) { |
| phy_data->sfp_cable = XGBE_SFP_CABLE_PASSIVE; |
| phy_data->sfp_cable_len = sfp_base[XGBE_SFP_BASE_CU_CABLE_LEN]; |
| } else { |
| phy_data->sfp_cable = XGBE_SFP_CABLE_ACTIVE; |
| } |
| |
| /* Determine the type of SFP */ |
| if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_SR) |
| phy_data->sfp_base = XGBE_SFP_BASE_10000_SR; |
| else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LR) |
| phy_data->sfp_base = XGBE_SFP_BASE_10000_LR; |
| else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LRM) |
| phy_data->sfp_base = XGBE_SFP_BASE_10000_LRM; |
| else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_ER) |
| phy_data->sfp_base = XGBE_SFP_BASE_10000_ER; |
| else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_SX) |
| phy_data->sfp_base = XGBE_SFP_BASE_1000_SX; |
| else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_LX) |
| phy_data->sfp_base = XGBE_SFP_BASE_1000_LX; |
| else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_CX) |
| phy_data->sfp_base = XGBE_SFP_BASE_1000_CX; |
| else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_T) |
| phy_data->sfp_base = XGBE_SFP_BASE_1000_T; |
| else if ((phy_data->sfp_cable == XGBE_SFP_CABLE_PASSIVE) && |
| xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_10000)) |
| phy_data->sfp_base = XGBE_SFP_BASE_10000_CR; |
| |
| switch (phy_data->sfp_base) { |
| case XGBE_SFP_BASE_1000_T: |
| phy_data->sfp_speed = XGBE_SFP_SPEED_100_1000; |
| break; |
| case XGBE_SFP_BASE_1000_SX: |
| case XGBE_SFP_BASE_1000_LX: |
| case XGBE_SFP_BASE_1000_CX: |
| phy_data->sfp_speed = XGBE_SFP_SPEED_1000; |
| break; |
| case XGBE_SFP_BASE_10000_SR: |
| case XGBE_SFP_BASE_10000_LR: |
| case XGBE_SFP_BASE_10000_LRM: |
| case XGBE_SFP_BASE_10000_ER: |
| case XGBE_SFP_BASE_10000_CR: |
| phy_data->sfp_speed = XGBE_SFP_SPEED_10000; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void xgbe_phy_sfp_eeprom_info(struct xgbe_prv_data *pdata, |
| struct xgbe_sfp_eeprom *sfp_eeprom) |
| { |
| struct xgbe_sfp_ascii sfp_ascii; |
| char *sfp_data = (char *)&sfp_ascii; |
| |
| netif_dbg(pdata, drv, pdata->netdev, "SFP detected:\n"); |
| memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME], |
| XGBE_SFP_BASE_VENDOR_NAME_LEN); |
| sfp_data[XGBE_SFP_BASE_VENDOR_NAME_LEN] = '\0'; |
| netif_dbg(pdata, drv, pdata->netdev, " vendor: %s\n", |
| sfp_data); |
| |
| memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN], |
| XGBE_SFP_BASE_VENDOR_PN_LEN); |
| sfp_data[XGBE_SFP_BASE_VENDOR_PN_LEN] = '\0'; |
| netif_dbg(pdata, drv, pdata->netdev, " part number: %s\n", |
| sfp_data); |
| |
| memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_REV], |
| XGBE_SFP_BASE_VENDOR_REV_LEN); |
| sfp_data[XGBE_SFP_BASE_VENDOR_REV_LEN] = '\0'; |
| netif_dbg(pdata, drv, pdata->netdev, " revision level: %s\n", |
| sfp_data); |
| |
| memcpy(sfp_data, &sfp_eeprom->extd[XGBE_SFP_BASE_VENDOR_SN], |
| XGBE_SFP_BASE_VENDOR_SN_LEN); |
| sfp_data[XGBE_SFP_BASE_VENDOR_SN_LEN] = '\0'; |
| netif_dbg(pdata, drv, pdata->netdev, " serial number: %s\n", |
| sfp_data); |
| } |
| |
| static bool xgbe_phy_sfp_verify_eeprom(u8 cc_in, u8 *buf, unsigned int len) |
| { |
| u8 cc; |
| |
| for (cc = 0; len; buf++, len--) |
| cc += *buf; |
| |
| return (cc == cc_in) ? true : false; |
| } |
| |
| static int xgbe_phy_sfp_read_eeprom(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| struct xgbe_sfp_eeprom sfp_eeprom; |
| u8 eeprom_addr; |
| int ret; |
| |
| ret = xgbe_phy_sfp_get_mux(pdata); |
| if (ret) { |
| dev_err_once(pdata->dev, "%s: I2C error setting SFP MUX\n", |
| netdev_name(pdata->netdev)); |
| return ret; |
| } |
| |
| /* Read the SFP serial ID eeprom */ |
| eeprom_addr = 0; |
| ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_SERIAL_ID_ADDRESS, |
| &eeprom_addr, sizeof(eeprom_addr), |
| &sfp_eeprom, sizeof(sfp_eeprom)); |
| if (ret) { |
| dev_err_once(pdata->dev, "%s: I2C error reading SFP EEPROM\n", |
| netdev_name(pdata->netdev)); |
| goto put; |
| } |
| |
| /* Validate the contents read */ |
| if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.base[XGBE_SFP_BASE_CC], |
| sfp_eeprom.base, |
| sizeof(sfp_eeprom.base) - 1)) { |
| ret = -EINVAL; |
| goto put; |
| } |
| |
| if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.extd[XGBE_SFP_EXTD_CC], |
| sfp_eeprom.extd, |
| sizeof(sfp_eeprom.extd) - 1)) { |
| ret = -EINVAL; |
| goto put; |
| } |
| |
| /* Check for an added or changed SFP */ |
| if (memcmp(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom))) { |
| phy_data->sfp_changed = 1; |
| |
| if (netif_msg_drv(pdata)) |
| xgbe_phy_sfp_eeprom_info(pdata, &sfp_eeprom); |
| |
| memcpy(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom)); |
| |
| if (sfp_eeprom.extd[XGBE_SFP_EXTD_SFF_8472]) { |
| u8 diag_type = sfp_eeprom.extd[XGBE_SFP_EXTD_DIAG]; |
| |
| if (!(diag_type & XGBE_SFP_EXTD_DIAG_ADDR_CHANGE)) |
| phy_data->sfp_diags = 1; |
| } |
| |
| xgbe_phy_free_phy_device(pdata); |
| } else { |
| phy_data->sfp_changed = 0; |
| } |
| |
| put: |
| xgbe_phy_sfp_put_mux(pdata); |
| |
| return ret; |
| } |
| |
| static void xgbe_phy_sfp_signals(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| unsigned int gpio_input; |
| u8 gpio_reg, gpio_ports[2]; |
| int ret; |
| |
| /* Read the input port registers */ |
| gpio_reg = 0; |
| ret = xgbe_phy_i2c_read(pdata, phy_data->sfp_gpio_address, |
| &gpio_reg, sizeof(gpio_reg), |
| gpio_ports, sizeof(gpio_ports)); |
| if (ret) { |
| dev_err_once(pdata->dev, "%s: I2C error reading SFP GPIOs\n", |
| netdev_name(pdata->netdev)); |
| return; |
| } |
| |
| gpio_input = (gpio_ports[1] << 8) | gpio_ports[0]; |
| |
| if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_MOD_ABSENT) { |
| /* No GPIO, just assume the module is present for now */ |
| phy_data->sfp_mod_absent = 0; |
| } else { |
| if (!(gpio_input & (1 << phy_data->sfp_gpio_mod_absent))) |
| phy_data->sfp_mod_absent = 0; |
| } |
| |
| if (!(phy_data->sfp_gpio_mask & XGBE_GPIO_NO_RX_LOS) && |
| (gpio_input & (1 << phy_data->sfp_gpio_rx_los))) |
| phy_data->sfp_rx_los = 1; |
| |
| if (!(phy_data->sfp_gpio_mask & XGBE_GPIO_NO_TX_FAULT) && |
| (gpio_input & (1 << phy_data->sfp_gpio_tx_fault))) |
| phy_data->sfp_tx_fault = 1; |
| } |
| |
| static void xgbe_phy_sfp_mod_absent(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| xgbe_phy_free_phy_device(pdata); |
| |
| phy_data->sfp_mod_absent = 1; |
| phy_data->sfp_phy_avail = 0; |
| memset(&phy_data->sfp_eeprom, 0, sizeof(phy_data->sfp_eeprom)); |
| } |
| |
| static void xgbe_phy_sfp_reset(struct xgbe_phy_data *phy_data) |
| { |
| phy_data->sfp_rx_los = 0; |
| phy_data->sfp_tx_fault = 0; |
| phy_data->sfp_mod_absent = 1; |
| phy_data->sfp_diags = 0; |
| phy_data->sfp_base = XGBE_SFP_BASE_UNKNOWN; |
| phy_data->sfp_cable = XGBE_SFP_CABLE_UNKNOWN; |
| phy_data->sfp_speed = XGBE_SFP_SPEED_UNKNOWN; |
| } |
| |
| static void xgbe_phy_sfp_detect(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| int ret; |
| |
| /* Reset the SFP signals and info */ |
| xgbe_phy_sfp_reset(phy_data); |
| |
| ret = xgbe_phy_get_comm_ownership(pdata); |
| if (ret) |
| return; |
| |
| /* Read the SFP signals and check for module presence */ |
| xgbe_phy_sfp_signals(pdata); |
| if (phy_data->sfp_mod_absent) { |
| xgbe_phy_sfp_mod_absent(pdata); |
| goto put; |
| } |
| |
| ret = xgbe_phy_sfp_read_eeprom(pdata); |
| if (ret) { |
| /* Treat any error as if there isn't an SFP plugged in */ |
| xgbe_phy_sfp_reset(phy_data); |
| xgbe_phy_sfp_mod_absent(pdata); |
| goto put; |
| } |
| |
| xgbe_phy_sfp_parse_eeprom(pdata); |
| |
| xgbe_phy_sfp_external_phy(pdata); |
| |
| put: |
| xgbe_phy_sfp_phy_settings(pdata); |
| |
| xgbe_phy_put_comm_ownership(pdata); |
| } |
| |
| static void xgbe_phy_phydev_flowctrl(struct xgbe_prv_data *pdata) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| u16 lcl_adv = 0, rmt_adv = 0; |
| u8 fc; |
| |
| pdata->phy.tx_pause = 0; |
| pdata->phy.rx_pause = 0; |
| |
| if (!phy_data->phydev) |
| return; |
| |
| if (phy_data->phydev->advertising & ADVERTISED_Pause) |
| lcl_adv |= ADVERTISE_PAUSE_CAP; |
| if (phy_data->phydev->advertising & ADVERTISED_Asym_Pause) |
| lcl_adv |= ADVERTISE_PAUSE_ASYM; |
| |
| if (phy_data->phydev->pause) { |
| XGBE_SET_LP_ADV(lks, Pause); |
| rmt_adv |= LPA_PAUSE_CAP; |
| } |
| if (phy_data->phydev->asym_pause) { |
| XGBE_SET_LP_ADV(lks, Asym_Pause); |
| rmt_adv |= LPA_PAUSE_ASYM; |
| } |
| |
| fc = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); |
| if (fc & FLOW_CTRL_TX) |
| pdata->phy.tx_pause = 1; |
| if (fc & FLOW_CTRL_RX) |
| pdata->phy.rx_pause = 1; |
| } |
| |
| static enum xgbe_mode xgbe_phy_an37_sgmii_outcome(struct xgbe_prv_data *pdata) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| enum xgbe_mode mode; |
| |
| XGBE_SET_LP_ADV(lks, Autoneg); |
| XGBE_SET_LP_ADV(lks, TP); |
| |
| /* Use external PHY to determine flow control */ |
| if (pdata->phy.pause_autoneg) |
| xgbe_phy_phydev_flowctrl(pdata); |
| |
| switch (pdata->an_status & XGBE_SGMII_AN_LINK_SPEED) { |
| case XGBE_SGMII_AN_LINK_SPEED_100: |
| if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) { |
| XGBE_SET_LP_ADV(lks, 100baseT_Full); |
| mode = XGBE_MODE_SGMII_100; |
| } else { |
| /* Half-duplex not supported */ |
| XGBE_SET_LP_ADV(lks, 100baseT_Half); |
| mode = XGBE_MODE_UNKNOWN; |
| } |
| break; |
| case XGBE_SGMII_AN_LINK_SPEED_1000: |
| if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) { |
| XGBE_SET_LP_ADV(lks, 1000baseT_Full); |
| mode = XGBE_MODE_SGMII_1000; |
| } else { |
| /* Half-duplex not supported */ |
| XGBE_SET_LP_ADV(lks, 1000baseT_Half); |
| mode = XGBE_MODE_UNKNOWN; |
| } |
| break; |
| default: |
| mode = XGBE_MODE_UNKNOWN; |
| } |
| |
| return mode; |
| } |
| |
| static enum xgbe_mode xgbe_phy_an37_outcome(struct xgbe_prv_data *pdata) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| enum xgbe_mode mode; |
| unsigned int ad_reg, lp_reg; |
| |
| XGBE_SET_LP_ADV(lks, Autoneg); |
| XGBE_SET_LP_ADV(lks, FIBRE); |
| |
| /* Compare Advertisement and Link Partner register */ |
| ad_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_ADVERTISE); |
| lp_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_LP_ABILITY); |
| if (lp_reg & 0x100) |
| XGBE_SET_LP_ADV(lks, Pause); |
| if (lp_reg & 0x80) |
| XGBE_SET_LP_ADV(lks, Asym_Pause); |
| |
| if (pdata->phy.pause_autoneg) { |
| /* Set flow control based on auto-negotiation result */ |
| pdata->phy.tx_pause = 0; |
| pdata->phy.rx_pause = 0; |
| |
| if (ad_reg & lp_reg & 0x100) { |
| pdata->phy.tx_pause = 1; |
| pdata->phy.rx_pause = 1; |
| } else if (ad_reg & lp_reg & 0x80) { |
| if (ad_reg & 0x100) |
| pdata->phy.rx_pause = 1; |
| else if (lp_reg & 0x100) |
| pdata->phy.tx_pause = 1; |
| } |
| } |
| |
| if (lp_reg & 0x20) |
| XGBE_SET_LP_ADV(lks, 1000baseX_Full); |
| |
| /* Half duplex is not supported */ |
| ad_reg &= lp_reg; |
| mode = (ad_reg & 0x20) ? XGBE_MODE_X : XGBE_MODE_UNKNOWN; |
| |
| return mode; |
| } |
| |
| static enum xgbe_mode xgbe_phy_an73_redrv_outcome(struct xgbe_prv_data *pdata) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| enum xgbe_mode mode; |
| unsigned int ad_reg, lp_reg; |
| |
| XGBE_SET_LP_ADV(lks, Autoneg); |
| XGBE_SET_LP_ADV(lks, Backplane); |
| |
| /* Use external PHY to determine flow control */ |
| if (pdata->phy.pause_autoneg) |
| xgbe_phy_phydev_flowctrl(pdata); |
| |
| /* Compare Advertisement and Link Partner register 2 */ |
| ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); |
| lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1); |
| if (lp_reg & 0x80) |
| XGBE_SET_LP_ADV(lks, 10000baseKR_Full); |
| if (lp_reg & 0x20) |
| XGBE_SET_LP_ADV(lks, 1000baseKX_Full); |
| |
| ad_reg &= lp_reg; |
| if (ad_reg & 0x80) { |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| mode = XGBE_MODE_KR; |
| break; |
| default: |
| mode = XGBE_MODE_SFI; |
| break; |
| } |
| } else if (ad_reg & 0x20) { |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| mode = XGBE_MODE_KX_1000; |
| break; |
| case XGBE_PORT_MODE_1000BASE_X: |
| mode = XGBE_MODE_X; |
| break; |
| case XGBE_PORT_MODE_SFP: |
| switch (phy_data->sfp_base) { |
| case XGBE_SFP_BASE_1000_T: |
| if (phy_data->phydev && |
| (phy_data->phydev->speed == SPEED_100)) |
| mode = XGBE_MODE_SGMII_100; |
| else |
| mode = XGBE_MODE_SGMII_1000; |
| break; |
| case XGBE_SFP_BASE_1000_SX: |
| case XGBE_SFP_BASE_1000_LX: |
| case XGBE_SFP_BASE_1000_CX: |
| default: |
| mode = XGBE_MODE_X; |
| break; |
| } |
| break; |
| default: |
| if (phy_data->phydev && |
| (phy_data->phydev->speed == SPEED_100)) |
| mode = XGBE_MODE_SGMII_100; |
| else |
| mode = XGBE_MODE_SGMII_1000; |
| break; |
| } |
| } else { |
| mode = XGBE_MODE_UNKNOWN; |
| } |
| |
| /* Compare Advertisement and Link Partner register 3 */ |
| ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); |
| lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2); |
| if (lp_reg & 0xc000) |
| XGBE_SET_LP_ADV(lks, 10000baseR_FEC); |
| |
| return mode; |
| } |
| |
| static enum xgbe_mode xgbe_phy_an73_outcome(struct xgbe_prv_data *pdata) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| enum xgbe_mode mode; |
| unsigned int ad_reg, lp_reg; |
| |
| XGBE_SET_LP_ADV(lks, Autoneg); |
| XGBE_SET_LP_ADV(lks, Backplane); |
| |
| /* Compare Advertisement and Link Partner register 1 */ |
| ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE); |
| lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA); |
| if (lp_reg & 0x400) |
| XGBE_SET_LP_ADV(lks, Pause); |
| if (lp_reg & 0x800) |
| XGBE_SET_LP_ADV(lks, Asym_Pause); |
| |
| if (pdata->phy.pause_autoneg) { |
| /* Set flow control based on auto-negotiation result */ |
| pdata->phy.tx_pause = 0; |
| pdata->phy.rx_pause = 0; |
| |
| if (ad_reg & lp_reg & 0x400) { |
| pdata->phy.tx_pause = 1; |
| pdata->phy.rx_pause = 1; |
| } else if (ad_reg & lp_reg & 0x800) { |
| if (ad_reg & 0x400) |
| pdata->phy.rx_pause = 1; |
| else if (lp_reg & 0x400) |
| pdata->phy.tx_pause = 1; |
| } |
| } |
| |
| /* Compare Advertisement and Link Partner register 2 */ |
| ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); |
| lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1); |
| if (lp_reg & 0x80) |
| XGBE_SET_LP_ADV(lks, 10000baseKR_Full); |
| if (lp_reg & 0x20) |
| XGBE_SET_LP_ADV(lks, 1000baseKX_Full); |
| |
| ad_reg &= lp_reg; |
| if (ad_reg & 0x80) |
| mode = XGBE_MODE_KR; |
| else if (ad_reg & 0x20) |
| mode = XGBE_MODE_KX_1000; |
| else |
| mode = XGBE_MODE_UNKNOWN; |
| |
| /* Compare Advertisement and Link Partner register 3 */ |
| ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); |
| lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2); |
| if (lp_reg & 0xc000) |
| XGBE_SET_LP_ADV(lks, 10000baseR_FEC); |
| |
| return mode; |
| } |
| |
| static enum xgbe_mode xgbe_phy_an_outcome(struct xgbe_prv_data *pdata) |
| { |
| switch (pdata->an_mode) { |
| case XGBE_AN_MODE_CL73: |
| return xgbe_phy_an73_outcome(pdata); |
| case XGBE_AN_MODE_CL73_REDRV: |
| return xgbe_phy_an73_redrv_outcome(pdata); |
| case XGBE_AN_MODE_CL37: |
| return xgbe_phy_an37_outcome(pdata); |
| case XGBE_AN_MODE_CL37_SGMII: |
| return xgbe_phy_an37_sgmii_outcome(pdata); |
| default: |
| return XGBE_MODE_UNKNOWN; |
| } |
| } |
| |
| static void xgbe_phy_an_advertising(struct xgbe_prv_data *pdata, |
| struct ethtool_link_ksettings *dlks) |
| { |
| struct ethtool_link_ksettings *slks = &pdata->phy.lks; |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| XGBE_LM_COPY(dlks, advertising, slks, advertising); |
| |
| /* Without a re-driver, just return current advertising */ |
| if (!phy_data->redrv) |
| return; |
| |
| /* With the KR re-driver we need to advertise a single speed */ |
| XGBE_CLR_ADV(dlks, 1000baseKX_Full); |
| XGBE_CLR_ADV(dlks, 10000baseKR_Full); |
| |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| XGBE_SET_ADV(dlks, 10000baseKR_Full); |
| break; |
| case XGBE_PORT_MODE_BACKPLANE_2500: |
| XGBE_SET_ADV(dlks, 1000baseKX_Full); |
| break; |
| case XGBE_PORT_MODE_1000BASE_T: |
| case XGBE_PORT_MODE_1000BASE_X: |
| case XGBE_PORT_MODE_NBASE_T: |
| XGBE_SET_ADV(dlks, 1000baseKX_Full); |
| break; |
| case XGBE_PORT_MODE_10GBASE_T: |
| if (phy_data->phydev && |
| (phy_data->phydev->speed == SPEED_10000)) |
| XGBE_SET_ADV(dlks, 10000baseKR_Full); |
| else |
| XGBE_SET_ADV(dlks, 1000baseKX_Full); |
| break; |
| case XGBE_PORT_MODE_10GBASE_R: |
| XGBE_SET_ADV(dlks, 10000baseKR_Full); |
| break; |
| case XGBE_PORT_MODE_SFP: |
| switch (phy_data->sfp_base) { |
| case XGBE_SFP_BASE_1000_T: |
| case XGBE_SFP_BASE_1000_SX: |
| case XGBE_SFP_BASE_1000_LX: |
| case XGBE_SFP_BASE_1000_CX: |
| XGBE_SET_ADV(dlks, 1000baseKX_Full); |
| break; |
| default: |
| XGBE_SET_ADV(dlks, 10000baseKR_Full); |
| break; |
| } |
| break; |
| default: |
| XGBE_SET_ADV(dlks, 10000baseKR_Full); |
| break; |
| } |
| } |
| |
| static int xgbe_phy_an_config(struct xgbe_prv_data *pdata) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| u32 advertising; |
| int ret; |
| |
| ret = xgbe_phy_find_phy_device(pdata); |
| if (ret) |
| return ret; |
| |
| if (!phy_data->phydev) |
| return 0; |
| |
| ethtool_convert_link_mode_to_legacy_u32(&advertising, |
| lks->link_modes.advertising); |
| |
| phy_data->phydev->autoneg = pdata->phy.autoneg; |
| phy_data->phydev->advertising = phy_data->phydev->supported & |
| advertising; |
| |
| if (pdata->phy.autoneg != AUTONEG_ENABLE) { |
| phy_data->phydev->speed = pdata->phy.speed; |
| phy_data->phydev->duplex = pdata->phy.duplex; |
| } |
| |
| ret = phy_start_aneg(phy_data->phydev); |
| |
| return ret; |
| } |
| |
| static enum xgbe_an_mode xgbe_phy_an_sfp_mode(struct xgbe_phy_data *phy_data) |
| { |
| switch (phy_data->sfp_base) { |
| case XGBE_SFP_BASE_1000_T: |
| return XGBE_AN_MODE_CL37_SGMII; |
| case XGBE_SFP_BASE_1000_SX: |
| case XGBE_SFP_BASE_1000_LX: |
| case XGBE_SFP_BASE_1000_CX: |
| return XGBE_AN_MODE_CL37; |
| default: |
| return XGBE_AN_MODE_NONE; |
| } |
| } |
| |
| static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| /* A KR re-driver will always require CL73 AN */ |
| if (phy_data->redrv) |
| return XGBE_AN_MODE_CL73_REDRV; |
| |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| return XGBE_AN_MODE_CL73; |
| case XGBE_PORT_MODE_BACKPLANE_2500: |
| return XGBE_AN_MODE_NONE; |
| case XGBE_PORT_MODE_1000BASE_T: |
| return XGBE_AN_MODE_CL37_SGMII; |
| case XGBE_PORT_MODE_1000BASE_X: |
| return XGBE_AN_MODE_CL37; |
| case XGBE_PORT_MODE_NBASE_T: |
| return XGBE_AN_MODE_CL37_SGMII; |
| case XGBE_PORT_MODE_10GBASE_T: |
| return XGBE_AN_MODE_CL73; |
| case XGBE_PORT_MODE_10GBASE_R: |
| return XGBE_AN_MODE_NONE; |
| case XGBE_PORT_MODE_SFP: |
| return xgbe_phy_an_sfp_mode(phy_data); |
| default: |
| return XGBE_AN_MODE_NONE; |
| } |
| } |
| |
| static int xgbe_phy_set_redrv_mode_mdio(struct xgbe_prv_data *pdata, |
| enum xgbe_phy_redrv_mode mode) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| u16 redrv_reg, redrv_val; |
| |
| redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000); |
| redrv_val = (u16)mode; |
| |
| return pdata->hw_if.write_ext_mii_regs(pdata, phy_data->redrv_addr, |
| redrv_reg, redrv_val); |
| } |
| |
| static int xgbe_phy_set_redrv_mode_i2c(struct xgbe_prv_data *pdata, |
| enum xgbe_phy_redrv_mode mode) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| unsigned int redrv_reg; |
| int ret; |
| |
| /* Calculate the register to write */ |
| redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000); |
| |
| ret = xgbe_phy_redrv_write(pdata, redrv_reg, mode); |
| |
| return ret; |
| } |
| |
| static void xgbe_phy_set_redrv_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| enum xgbe_phy_redrv_mode mode; |
| int ret; |
| |
| if (!phy_data->redrv) |
| return; |
| |
| mode = XGBE_PHY_REDRV_MODE_CX; |
| if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) && |
| (phy_data->sfp_base != XGBE_SFP_BASE_1000_CX) && |
| (phy_data->sfp_base != XGBE_SFP_BASE_10000_CR)) |
| mode = XGBE_PHY_REDRV_MODE_SR; |
| |
| ret = xgbe_phy_get_comm_ownership(pdata); |
| if (ret) |
| return; |
| |
| if (phy_data->redrv_if) |
| xgbe_phy_set_redrv_mode_i2c(pdata, mode); |
| else |
| xgbe_phy_set_redrv_mode_mdio(pdata, mode); |
| |
| xgbe_phy_put_comm_ownership(pdata); |
| } |
| |
| static void xgbe_phy_perform_ratechange(struct xgbe_prv_data *pdata, |
| unsigned int cmd, unsigned int sub_cmd) |
| { |
| unsigned int s0 = 0; |
| unsigned int wait; |
| |
| /* Log if a previous command did not complete */ |
| if (XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) |
| netif_dbg(pdata, link, pdata->netdev, |
| "firmware mailbox not ready for command\n"); |
| |
| /* Construct the command */ |
| XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, cmd); |
| XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, sub_cmd); |
| |
| /* Issue the command */ |
| XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0); |
| XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0); |
| XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1); |
| |
| /* Wait for command to complete */ |
| wait = XGBE_RATECHANGE_COUNT; |
| while (wait--) { |
| if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) |
| return; |
| |
| usleep_range(1000, 2000); |
| } |
| |
| netif_dbg(pdata, link, pdata->netdev, |
| "firmware mailbox command did not complete\n"); |
| } |
| |
| static void xgbe_phy_rrc(struct xgbe_prv_data *pdata) |
| { |
| /* Receiver Reset Cycle */ |
| xgbe_phy_perform_ratechange(pdata, 5, 0); |
| |
| netif_dbg(pdata, link, pdata->netdev, "receiver reset complete\n"); |
| } |
| |
| static void xgbe_phy_power_off(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| /* Power off */ |
| xgbe_phy_perform_ratechange(pdata, 0, 0); |
| |
| phy_data->cur_mode = XGBE_MODE_UNKNOWN; |
| |
| netif_dbg(pdata, link, pdata->netdev, "phy powered off\n"); |
| } |
| |
| static void xgbe_phy_sfi_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| xgbe_phy_set_redrv_mode(pdata); |
| |
| /* 10G/SFI */ |
| if (phy_data->sfp_cable != XGBE_SFP_CABLE_PASSIVE) { |
| xgbe_phy_perform_ratechange(pdata, 3, 0); |
| } else { |
| if (phy_data->sfp_cable_len <= 1) |
| xgbe_phy_perform_ratechange(pdata, 3, 1); |
| else if (phy_data->sfp_cable_len <= 3) |
| xgbe_phy_perform_ratechange(pdata, 3, 2); |
| else |
| xgbe_phy_perform_ratechange(pdata, 3, 3); |
| } |
| |
| phy_data->cur_mode = XGBE_MODE_SFI; |
| |
| netif_dbg(pdata, link, pdata->netdev, "10GbE SFI mode set\n"); |
| } |
| |
| static void xgbe_phy_x_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| xgbe_phy_set_redrv_mode(pdata); |
| |
| /* 1G/X */ |
| xgbe_phy_perform_ratechange(pdata, 1, 3); |
| |
| phy_data->cur_mode = XGBE_MODE_X; |
| |
| netif_dbg(pdata, link, pdata->netdev, "1GbE X mode set\n"); |
| } |
| |
| static void xgbe_phy_sgmii_1000_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| xgbe_phy_set_redrv_mode(pdata); |
| |
| /* 1G/SGMII */ |
| xgbe_phy_perform_ratechange(pdata, 1, 2); |
| |
| phy_data->cur_mode = XGBE_MODE_SGMII_1000; |
| |
| netif_dbg(pdata, link, pdata->netdev, "1GbE SGMII mode set\n"); |
| } |
| |
| static void xgbe_phy_sgmii_100_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| xgbe_phy_set_redrv_mode(pdata); |
| |
| /* 100M/SGMII */ |
| xgbe_phy_perform_ratechange(pdata, 1, 1); |
| |
| phy_data->cur_mode = XGBE_MODE_SGMII_100; |
| |
| netif_dbg(pdata, link, pdata->netdev, "100MbE SGMII mode set\n"); |
| } |
| |
| static void xgbe_phy_kr_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| xgbe_phy_set_redrv_mode(pdata); |
| |
| /* 10G/KR */ |
| xgbe_phy_perform_ratechange(pdata, 4, 0); |
| |
| phy_data->cur_mode = XGBE_MODE_KR; |
| |
| netif_dbg(pdata, link, pdata->netdev, "10GbE KR mode set\n"); |
| } |
| |
| static void xgbe_phy_kx_2500_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| xgbe_phy_set_redrv_mode(pdata); |
| |
| /* 2.5G/KX */ |
| xgbe_phy_perform_ratechange(pdata, 2, 0); |
| |
| phy_data->cur_mode = XGBE_MODE_KX_2500; |
| |
| netif_dbg(pdata, link, pdata->netdev, "2.5GbE KX mode set\n"); |
| } |
| |
| static void xgbe_phy_kx_1000_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| xgbe_phy_set_redrv_mode(pdata); |
| |
| /* 1G/KX */ |
| xgbe_phy_perform_ratechange(pdata, 1, 3); |
| |
| phy_data->cur_mode = XGBE_MODE_KX_1000; |
| |
| netif_dbg(pdata, link, pdata->netdev, "1GbE KX mode set\n"); |
| } |
| |
| static enum xgbe_mode xgbe_phy_cur_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| return phy_data->cur_mode; |
| } |
| |
| static enum xgbe_mode xgbe_phy_switch_baset_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| /* No switching if not 10GBase-T */ |
| if (phy_data->port_mode != XGBE_PORT_MODE_10GBASE_T) |
| return xgbe_phy_cur_mode(pdata); |
| |
| switch (xgbe_phy_cur_mode(pdata)) { |
| case XGBE_MODE_SGMII_100: |
| case XGBE_MODE_SGMII_1000: |
| return XGBE_MODE_KR; |
| case XGBE_MODE_KR: |
| default: |
| return XGBE_MODE_SGMII_1000; |
| } |
| } |
| |
| static enum xgbe_mode xgbe_phy_switch_bp_2500_mode(struct xgbe_prv_data *pdata) |
| { |
| return XGBE_MODE_KX_2500; |
| } |
| |
| static enum xgbe_mode xgbe_phy_switch_bp_mode(struct xgbe_prv_data *pdata) |
| { |
| /* If we are in KR switch to KX, and vice-versa */ |
| switch (xgbe_phy_cur_mode(pdata)) { |
| case XGBE_MODE_KX_1000: |
| return XGBE_MODE_KR; |
| case XGBE_MODE_KR: |
| default: |
| return XGBE_MODE_KX_1000; |
| } |
| } |
| |
| static enum xgbe_mode xgbe_phy_switch_mode(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| return xgbe_phy_switch_bp_mode(pdata); |
| case XGBE_PORT_MODE_BACKPLANE_2500: |
| return xgbe_phy_switch_bp_2500_mode(pdata); |
| case XGBE_PORT_MODE_1000BASE_T: |
| case XGBE_PORT_MODE_NBASE_T: |
| case XGBE_PORT_MODE_10GBASE_T: |
| return xgbe_phy_switch_baset_mode(pdata); |
| case XGBE_PORT_MODE_1000BASE_X: |
| case XGBE_PORT_MODE_10GBASE_R: |
| case XGBE_PORT_MODE_SFP: |
| /* No switching, so just return current mode */ |
| return xgbe_phy_cur_mode(pdata); |
| default: |
| return XGBE_MODE_UNKNOWN; |
| } |
| } |
| |
| static enum xgbe_mode xgbe_phy_get_basex_mode(struct xgbe_phy_data *phy_data, |
| int speed) |
| { |
| switch (speed) { |
| case SPEED_1000: |
| return XGBE_MODE_X; |
| case SPEED_10000: |
| return XGBE_MODE_KR; |
| default: |
| return XGBE_MODE_UNKNOWN; |
| } |
| } |
| |
| static enum xgbe_mode xgbe_phy_get_baset_mode(struct xgbe_phy_data *phy_data, |
| int speed) |
| { |
| switch (speed) { |
| case SPEED_100: |
| return XGBE_MODE_SGMII_100; |
| case SPEED_1000: |
| return XGBE_MODE_SGMII_1000; |
| case SPEED_2500: |
| return XGBE_MODE_KX_2500; |
| case SPEED_10000: |
| return XGBE_MODE_KR; |
| default: |
| return XGBE_MODE_UNKNOWN; |
| } |
| } |
| |
| static enum xgbe_mode xgbe_phy_get_sfp_mode(struct xgbe_phy_data *phy_data, |
| int speed) |
| { |
| switch (speed) { |
| case SPEED_100: |
| return XGBE_MODE_SGMII_100; |
| case SPEED_1000: |
| if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) |
| return XGBE_MODE_SGMII_1000; |
| else |
| return XGBE_MODE_X; |
| case SPEED_10000: |
| case SPEED_UNKNOWN: |
| return XGBE_MODE_SFI; |
| default: |
| return XGBE_MODE_UNKNOWN; |
| } |
| } |
| |
| static enum xgbe_mode xgbe_phy_get_bp_2500_mode(int speed) |
| { |
| switch (speed) { |
| case SPEED_2500: |
| return XGBE_MODE_KX_2500; |
| default: |
| return XGBE_MODE_UNKNOWN; |
| } |
| } |
| |
| static enum xgbe_mode xgbe_phy_get_bp_mode(int speed) |
| { |
| switch (speed) { |
| case SPEED_1000: |
| return XGBE_MODE_KX_1000; |
| case SPEED_10000: |
| return XGBE_MODE_KR; |
| default: |
| return XGBE_MODE_UNKNOWN; |
| } |
| } |
| |
| static enum xgbe_mode xgbe_phy_get_mode(struct xgbe_prv_data *pdata, |
| int speed) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| return xgbe_phy_get_bp_mode(speed); |
| case XGBE_PORT_MODE_BACKPLANE_2500: |
| return xgbe_phy_get_bp_2500_mode(speed); |
| case XGBE_PORT_MODE_1000BASE_T: |
| case XGBE_PORT_MODE_NBASE_T: |
| case XGBE_PORT_MODE_10GBASE_T: |
| return xgbe_phy_get_baset_mode(phy_data, speed); |
| case XGBE_PORT_MODE_1000BASE_X: |
| case XGBE_PORT_MODE_10GBASE_R: |
| return xgbe_phy_get_basex_mode(phy_data, speed); |
| case XGBE_PORT_MODE_SFP: |
| return xgbe_phy_get_sfp_mode(phy_data, speed); |
| default: |
| return XGBE_MODE_UNKNOWN; |
| } |
| } |
| |
| static void xgbe_phy_set_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) |
| { |
| switch (mode) { |
| case XGBE_MODE_KX_1000: |
| xgbe_phy_kx_1000_mode(pdata); |
| break; |
| case XGBE_MODE_KX_2500: |
| xgbe_phy_kx_2500_mode(pdata); |
| break; |
| case XGBE_MODE_KR: |
| xgbe_phy_kr_mode(pdata); |
| break; |
| case XGBE_MODE_SGMII_100: |
| xgbe_phy_sgmii_100_mode(pdata); |
| break; |
| case XGBE_MODE_SGMII_1000: |
| xgbe_phy_sgmii_1000_mode(pdata); |
| break; |
| case XGBE_MODE_X: |
| xgbe_phy_x_mode(pdata); |
| break; |
| case XGBE_MODE_SFI: |
| xgbe_phy_sfi_mode(pdata); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static bool xgbe_phy_check_mode(struct xgbe_prv_data *pdata, |
| enum xgbe_mode mode, bool advert) |
| { |
| if (pdata->phy.autoneg == AUTONEG_ENABLE) { |
| return advert; |
| } else { |
| enum xgbe_mode cur_mode; |
| |
| cur_mode = xgbe_phy_get_mode(pdata, pdata->phy.speed); |
| if (cur_mode == mode) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool xgbe_phy_use_basex_mode(struct xgbe_prv_data *pdata, |
| enum xgbe_mode mode) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| |
| switch (mode) { |
| case XGBE_MODE_X: |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 1000baseX_Full)); |
| case XGBE_MODE_KR: |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 10000baseKR_Full)); |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_use_baset_mode(struct xgbe_prv_data *pdata, |
| enum xgbe_mode mode) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| |
| switch (mode) { |
| case XGBE_MODE_SGMII_100: |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 100baseT_Full)); |
| case XGBE_MODE_SGMII_1000: |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 1000baseT_Full)); |
| case XGBE_MODE_KX_2500: |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 2500baseT_Full)); |
| case XGBE_MODE_KR: |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 10000baseT_Full)); |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_use_sfp_mode(struct xgbe_prv_data *pdata, |
| enum xgbe_mode mode) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| switch (mode) { |
| case XGBE_MODE_X: |
| if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) |
| return false; |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 1000baseX_Full)); |
| case XGBE_MODE_SGMII_100: |
| if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T) |
| return false; |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 100baseT_Full)); |
| case XGBE_MODE_SGMII_1000: |
| if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T) |
| return false; |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 1000baseT_Full)); |
| case XGBE_MODE_SFI: |
| if (phy_data->sfp_mod_absent) |
| return true; |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 10000baseSR_Full) || |
| XGBE_ADV(lks, 10000baseLR_Full) || |
| XGBE_ADV(lks, 10000baseLRM_Full) || |
| XGBE_ADV(lks, 10000baseER_Full) || |
| XGBE_ADV(lks, 10000baseCR_Full)); |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_use_bp_2500_mode(struct xgbe_prv_data *pdata, |
| enum xgbe_mode mode) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| |
| switch (mode) { |
| case XGBE_MODE_KX_2500: |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 2500baseX_Full)); |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_use_bp_mode(struct xgbe_prv_data *pdata, |
| enum xgbe_mode mode) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| |
| switch (mode) { |
| case XGBE_MODE_KX_1000: |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 1000baseKX_Full)); |
| case XGBE_MODE_KR: |
| return xgbe_phy_check_mode(pdata, mode, |
| XGBE_ADV(lks, 10000baseKR_Full)); |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_use_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| return xgbe_phy_use_bp_mode(pdata, mode); |
| case XGBE_PORT_MODE_BACKPLANE_2500: |
| return xgbe_phy_use_bp_2500_mode(pdata, mode); |
| case XGBE_PORT_MODE_1000BASE_T: |
| case XGBE_PORT_MODE_NBASE_T: |
| case XGBE_PORT_MODE_10GBASE_T: |
| return xgbe_phy_use_baset_mode(pdata, mode); |
| case XGBE_PORT_MODE_1000BASE_X: |
| case XGBE_PORT_MODE_10GBASE_R: |
| return xgbe_phy_use_basex_mode(pdata, mode); |
| case XGBE_PORT_MODE_SFP: |
| return xgbe_phy_use_sfp_mode(pdata, mode); |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_valid_speed_basex_mode(struct xgbe_phy_data *phy_data, |
| int speed) |
| { |
| switch (speed) { |
| case SPEED_1000: |
| return (phy_data->port_mode == XGBE_PORT_MODE_1000BASE_X); |
| case SPEED_10000: |
| return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_R); |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_valid_speed_baset_mode(struct xgbe_phy_data *phy_data, |
| int speed) |
| { |
| switch (speed) { |
| case SPEED_100: |
| case SPEED_1000: |
| return true; |
| case SPEED_2500: |
| return (phy_data->port_mode == XGBE_PORT_MODE_NBASE_T); |
| case SPEED_10000: |
| return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_T); |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_valid_speed_sfp_mode(struct xgbe_phy_data *phy_data, |
| int speed) |
| { |
| switch (speed) { |
| case SPEED_100: |
| return (phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000); |
| case SPEED_1000: |
| return ((phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000) || |
| (phy_data->sfp_speed == XGBE_SFP_SPEED_1000)); |
| case SPEED_10000: |
| return (phy_data->sfp_speed == XGBE_SFP_SPEED_10000); |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_valid_speed_bp_2500_mode(int speed) |
| { |
| switch (speed) { |
| case SPEED_2500: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_valid_speed_bp_mode(int speed) |
| { |
| switch (speed) { |
| case SPEED_1000: |
| case SPEED_10000: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool xgbe_phy_valid_speed(struct xgbe_prv_data *pdata, int speed) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| return xgbe_phy_valid_speed_bp_mode(speed); |
| case XGBE_PORT_MODE_BACKPLANE_2500: |
| return xgbe_phy_valid_speed_bp_2500_mode(speed); |
| case XGBE_PORT_MODE_1000BASE_T: |
| case XGBE_PORT_MODE_NBASE_T: |
| case XGBE_PORT_MODE_10GBASE_T: |
| return xgbe_phy_valid_speed_baset_mode(phy_data, speed); |
| case XGBE_PORT_MODE_1000BASE_X: |
| case XGBE_PORT_MODE_10GBASE_R: |
| return xgbe_phy_valid_speed_basex_mode(phy_data, speed); |
| case XGBE_PORT_MODE_SFP: |
| return xgbe_phy_valid_speed_sfp_mode(phy_data, speed); |
| default: |
| return false; |
| } |
| } |
| |
| static int xgbe_phy_link_status(struct xgbe_prv_data *pdata, int *an_restart) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| unsigned int reg; |
| int ret; |
| |
| *an_restart = 0; |
| |
| if (phy_data->port_mode == XGBE_PORT_MODE_SFP) { |
| /* Check SFP signals */ |
| xgbe_phy_sfp_detect(pdata); |
| |
| if (phy_data->sfp_changed) { |
| *an_restart = 1; |
| return 0; |
| } |
| |
| if (phy_data->sfp_mod_absent || phy_data->sfp_rx_los) |
| return 0; |
| } |
| |
| if (phy_data->phydev) { |
| /* Check external PHY */ |
| ret = phy_read_status(phy_data->phydev); |
| if (ret < 0) |
| return 0; |
| |
| if ((pdata->phy.autoneg == AUTONEG_ENABLE) && |
| !phy_aneg_done(phy_data->phydev)) |
| return 0; |
| |
| if (!phy_data->phydev->link) |
| return 0; |
| } |
| |
| /* Link status is latched low, so read once to clear |
| * and then read again to get current state |
| */ |
| reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1); |
| reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1); |
| if (reg & MDIO_STAT1_LSTATUS) |
| return 1; |
| |
| /* No link, attempt a receiver reset cycle */ |
| if (phy_data->rrc_count++) { |
| phy_data->rrc_count = 0; |
| xgbe_phy_rrc(pdata); |
| } |
| |
| return 0; |
| } |
| |
| static void xgbe_phy_sfp_gpio_setup(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| unsigned int reg; |
| |
| reg = XP_IOREAD(pdata, XP_PROP_3); |
| |
| phy_data->sfp_gpio_address = XGBE_GPIO_ADDRESS_PCA9555 + |
| XP_GET_BITS(reg, XP_PROP_3, GPIO_ADDR); |
| |
| phy_data->sfp_gpio_mask = XP_GET_BITS(reg, XP_PROP_3, GPIO_MASK); |
| |
| phy_data->sfp_gpio_rx_los = XP_GET_BITS(reg, XP_PROP_3, |
| GPIO_RX_LOS); |
| phy_data->sfp_gpio_tx_fault = XP_GET_BITS(reg, XP_PROP_3, |
| GPIO_TX_FAULT); |
| phy_data->sfp_gpio_mod_absent = XP_GET_BITS(reg, XP_PROP_3, |
| GPIO_MOD_ABS); |
| phy_data->sfp_gpio_rate_select = XP_GET_BITS(reg, XP_PROP_3, |
| GPIO_RATE_SELECT); |
| |
| if (netif_msg_probe(pdata)) { |
| dev_dbg(pdata->dev, "SFP: gpio_address=%#x\n", |
| phy_data->sfp_gpio_address); |
| dev_dbg(pdata->dev, "SFP: gpio_mask=%#x\n", |
| phy_data->sfp_gpio_mask); |
| dev_dbg(pdata->dev, "SFP: gpio_rx_los=%u\n", |
| phy_data->sfp_gpio_rx_los); |
| dev_dbg(pdata->dev, "SFP: gpio_tx_fault=%u\n", |
| phy_data->sfp_gpio_tx_fault); |
| dev_dbg(pdata->dev, "SFP: gpio_mod_absent=%u\n", |
| phy_data->sfp_gpio_mod_absent); |
| dev_dbg(pdata->dev, "SFP: gpio_rate_select=%u\n", |
| phy_data->sfp_gpio_rate_select); |
| } |
| } |
| |
| static void xgbe_phy_sfp_comm_setup(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| unsigned int reg, mux_addr_hi, mux_addr_lo; |
| |
| reg = XP_IOREAD(pdata, XP_PROP_4); |
| |
| mux_addr_hi = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_HI); |
| mux_addr_lo = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_LO); |
| if (mux_addr_lo == XGBE_SFP_DIRECT) |
| return; |
| |
| phy_data->sfp_comm = XGBE_SFP_COMM_PCA9545; |
| phy_data->sfp_mux_address = (mux_addr_hi << 2) + mux_addr_lo; |
| phy_data->sfp_mux_channel = XP_GET_BITS(reg, XP_PROP_4, MUX_CHAN); |
| |
| if (netif_msg_probe(pdata)) { |
| dev_dbg(pdata->dev, "SFP: mux_address=%#x\n", |
| phy_data->sfp_mux_address); |
| dev_dbg(pdata->dev, "SFP: mux_channel=%u\n", |
| phy_data->sfp_mux_channel); |
| } |
| } |
| |
| static void xgbe_phy_sfp_setup(struct xgbe_prv_data *pdata) |
| { |
| xgbe_phy_sfp_comm_setup(pdata); |
| xgbe_phy_sfp_gpio_setup(pdata); |
| } |
| |
| static int xgbe_phy_int_mdio_reset(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| unsigned int ret; |
| |
| ret = pdata->hw_if.set_gpio(pdata, phy_data->mdio_reset_gpio); |
| if (ret) |
| return ret; |
| |
| ret = pdata->hw_if.clr_gpio(pdata, phy_data->mdio_reset_gpio); |
| |
| return ret; |
| } |
| |
| static int xgbe_phy_i2c_mdio_reset(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| u8 gpio_reg, gpio_ports[2], gpio_data[3]; |
| int ret; |
| |
| /* Read the output port registers */ |
| gpio_reg = 2; |
| ret = xgbe_phy_i2c_read(pdata, phy_data->mdio_reset_addr, |
| &gpio_reg, sizeof(gpio_reg), |
| gpio_ports, sizeof(gpio_ports)); |
| if (ret) |
| return ret; |
| |
| /* Prepare to write the GPIO data */ |
| gpio_data[0] = 2; |
| gpio_data[1] = gpio_ports[0]; |
| gpio_data[2] = gpio_ports[1]; |
| |
| /* Set the GPIO pin */ |
| if (phy_data->mdio_reset_gpio < 8) |
| gpio_data[1] |= (1 << (phy_data->mdio_reset_gpio % 8)); |
| else |
| gpio_data[2] |= (1 << (phy_data->mdio_reset_gpio % 8)); |
| |
| /* Write the output port registers */ |
| ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr, |
| gpio_data, sizeof(gpio_data)); |
| if (ret) |
| return ret; |
| |
| /* Clear the GPIO pin */ |
| if (phy_data->mdio_reset_gpio < 8) |
| gpio_data[1] &= ~(1 << (phy_data->mdio_reset_gpio % 8)); |
| else |
| gpio_data[2] &= ~(1 << (phy_data->mdio_reset_gpio % 8)); |
| |
| /* Write the output port registers */ |
| ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr, |
| gpio_data, sizeof(gpio_data)); |
| |
| return ret; |
| } |
| |
| static int xgbe_phy_mdio_reset(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| int ret; |
| |
| if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO) |
| return 0; |
| |
| ret = xgbe_phy_get_comm_ownership(pdata); |
| if (ret) |
| return ret; |
| |
| if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO) |
| ret = xgbe_phy_i2c_mdio_reset(pdata); |
| else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO) |
| ret = xgbe_phy_int_mdio_reset(pdata); |
| |
| xgbe_phy_put_comm_ownership(pdata); |
| |
| return ret; |
| } |
| |
| static bool xgbe_phy_redrv_error(struct xgbe_phy_data *phy_data) |
| { |
| if (!phy_data->redrv) |
| return false; |
| |
| if (phy_data->redrv_if >= XGBE_PHY_REDRV_IF_MAX) |
| return true; |
| |
| switch (phy_data->redrv_model) { |
| case XGBE_PHY_REDRV_MODEL_4223: |
| if (phy_data->redrv_lane > 3) |
| return true; |
| break; |
| case XGBE_PHY_REDRV_MODEL_4227: |
| if (phy_data->redrv_lane > 1) |
| return true; |
| break; |
| default: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int xgbe_phy_mdio_reset_setup(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| unsigned int reg; |
| |
| if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO) |
| return 0; |
| |
| reg = XP_IOREAD(pdata, XP_PROP_3); |
| phy_data->mdio_reset = XP_GET_BITS(reg, XP_PROP_3, MDIO_RESET); |
| switch (phy_data->mdio_reset) { |
| case XGBE_MDIO_RESET_NONE: |
| case XGBE_MDIO_RESET_I2C_GPIO: |
| case XGBE_MDIO_RESET_INT_GPIO: |
| break; |
| default: |
| dev_err(pdata->dev, "unsupported MDIO reset (%#x)\n", |
| phy_data->mdio_reset); |
| return -EINVAL; |
| } |
| |
| if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO) { |
| phy_data->mdio_reset_addr = XGBE_GPIO_ADDRESS_PCA9555 + |
| XP_GET_BITS(reg, XP_PROP_3, |
| MDIO_RESET_I2C_ADDR); |
| phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3, |
| MDIO_RESET_I2C_GPIO); |
| } else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO) { |
| phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3, |
| MDIO_RESET_INT_GPIO); |
| } |
| |
| return 0; |
| } |
| |
| static bool xgbe_phy_port_mode_mismatch(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || |
| (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)) |
| return false; |
| break; |
| case XGBE_PORT_MODE_BACKPLANE_2500: |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500) |
| return false; |
| break; |
| case XGBE_PORT_MODE_1000BASE_T: |
| if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || |
| (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)) |
| return false; |
| break; |
| case XGBE_PORT_MODE_1000BASE_X: |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) |
| return false; |
| break; |
| case XGBE_PORT_MODE_NBASE_T: |
| if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || |
| (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || |
| (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500)) |
| return false; |
| break; |
| case XGBE_PORT_MODE_10GBASE_T: |
| if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || |
| (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || |
| (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)) |
| return false; |
| break; |
| case XGBE_PORT_MODE_10GBASE_R: |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) |
| return false; |
| break; |
| case XGBE_PORT_MODE_SFP: |
| if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || |
| (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || |
| (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)) |
| return false; |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| static bool xgbe_phy_conn_type_mismatch(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_BACKPLANE: |
| case XGBE_PORT_MODE_BACKPLANE_2500: |
| if (phy_data->conn_type == XGBE_CONN_TYPE_BACKPLANE) |
| return false; |
| break; |
| case XGBE_PORT_MODE_1000BASE_T: |
| case XGBE_PORT_MODE_1000BASE_X: |
| case XGBE_PORT_MODE_NBASE_T: |
| case XGBE_PORT_MODE_10GBASE_T: |
| case XGBE_PORT_MODE_10GBASE_R: |
| if (phy_data->conn_type == XGBE_CONN_TYPE_MDIO) |
| return false; |
| break; |
| case XGBE_PORT_MODE_SFP: |
| if (phy_data->conn_type == XGBE_CONN_TYPE_SFP) |
| return false; |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| static bool xgbe_phy_port_enabled(struct xgbe_prv_data *pdata) |
| { |
| unsigned int reg; |
| |
| reg = XP_IOREAD(pdata, XP_PROP_0); |
| if (!XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS)) |
| return false; |
| if (!XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE)) |
| return false; |
| |
| return true; |
| } |
| |
| static void xgbe_phy_stop(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| /* If we have an external PHY, free it */ |
| xgbe_phy_free_phy_device(pdata); |
| |
| /* Reset SFP data */ |
| xgbe_phy_sfp_reset(phy_data); |
| xgbe_phy_sfp_mod_absent(pdata); |
| |
| /* Power off the PHY */ |
| xgbe_phy_power_off(pdata); |
| |
| /* Stop the I2C controller */ |
| pdata->i2c_if.i2c_stop(pdata); |
| } |
| |
| static int xgbe_phy_start(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| int ret; |
| |
| /* Start the I2C controller */ |
| ret = pdata->i2c_if.i2c_start(pdata); |
| if (ret) |
| return ret; |
| |
| /* Set the proper MDIO mode for the re-driver */ |
| if (phy_data->redrv && !phy_data->redrv_if) { |
| ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr, |
| XGBE_MDIO_MODE_CL22); |
| if (ret) { |
| netdev_err(pdata->netdev, |
| "redriver mdio port not compatible (%u)\n", |
| phy_data->redrv_addr); |
| return ret; |
| } |
| } |
| |
| /* Start in highest supported mode */ |
| xgbe_phy_set_mode(pdata, phy_data->start_mode); |
| |
| /* After starting the I2C controller, we can check for an SFP */ |
| switch (phy_data->port_mode) { |
| case XGBE_PORT_MODE_SFP: |
| xgbe_phy_sfp_detect(pdata); |
| break; |
| default: |
| break; |
| } |
| |
| /* If we have an external PHY, start it */ |
| ret = xgbe_phy_find_phy_device(pdata); |
| if (ret) |
| goto err_i2c; |
| |
| return 0; |
| |
| err_i2c: |
| pdata->i2c_if.i2c_stop(pdata); |
| |
| return ret; |
| } |
| |
| static int xgbe_phy_reset(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| enum xgbe_mode cur_mode; |
| int ret; |
| |
| /* Reset by power cycling the PHY */ |
| cur_mode = phy_data->cur_mode; |
| xgbe_phy_power_off(pdata); |
| xgbe_phy_set_mode(pdata, cur_mode); |
| |
| if (!phy_data->phydev) |
| return 0; |
| |
| /* Reset the external PHY */ |
| ret = xgbe_phy_mdio_reset(pdata); |
| if (ret) |
| return ret; |
| |
| return phy_init_hw(phy_data->phydev); |
| } |
| |
| static void xgbe_phy_exit(struct xgbe_prv_data *pdata) |
| { |
| struct xgbe_phy_data *phy_data = pdata->phy_data; |
| |
| /* Unregister for driving external PHYs */ |
| mdiobus_unregister(phy_data->mii); |
| } |
| |
| static int xgbe_phy_init(struct xgbe_prv_data *pdata) |
| { |
| struct ethtool_link_ksettings *lks = &pdata->phy.lks; |
| struct xgbe_phy_data *phy_data; |
| struct mii_bus *mii; |
| unsigned int reg; |
| int ret; |
| |
| /* Check if enabled */ |
| if (!xgbe_phy_port_enabled(pdata)) { |
| dev_info(pdata->dev, "device is not enabled\n"); |
| return -ENODEV; |
| } |
| |
| /* Initialize the I2C controller */ |
| ret = pdata->i2c_if.i2c_init(pdata); |
| if (ret) |
| return ret; |
| |
| phy_data = devm_kzalloc(pdata->dev, sizeof(*phy_data), GFP_KERNEL); |
| if (!phy_data) |
| return -ENOMEM; |
| pdata->phy_data = phy_data; |
| |
| reg = XP_IOREAD(pdata, XP_PROP_0); |
| phy_data->port_mode = XP_GET_BITS(reg, XP_PROP_0, PORT_MODE); |
| phy_data->port_id = XP_GET_BITS(reg, XP_PROP_0, PORT_ID); |
| phy_data->port_speeds = XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS); |
| phy_data->conn_type = XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE); |
| phy_data->mdio_addr = XP_GET_BITS(reg, XP_PROP_0, MDIO_ADDR); |
| if (netif_msg_probe(pdata)) { |
| dev_dbg(pdata->dev, "port mode=%u\n", phy_data->port_mode); |
| dev_dbg(pdata->dev, "port id=%u\n", phy_data->port_id); |
| dev_dbg(pdata->dev, "port speeds=%#x\n", phy_data->port_speeds); |
| dev_dbg(pdata->dev, "conn type=%u\n", phy_data->conn_type); |
| dev_dbg(pdata->dev, "mdio addr=%u\n", phy_data->mdio_addr); |
| } |
| |
| reg = XP_IOREAD(pdata, XP_PROP_4); |
| phy_data->redrv = XP_GET_BITS(reg, XP_PROP_4, REDRV_PRESENT); |
| phy_data->redrv_if = XP_GET_BITS(reg, XP_PROP_4, REDRV_IF); |
| phy_data->redrv_addr = XP_GET_BITS(reg, XP_PROP_4, REDRV_ADDR); |
| phy_data->redrv_lane = XP_GET_BITS(reg, XP_PROP_4, REDRV_LANE); |
| phy_data->redrv_model = XP_GET_BITS(reg, XP_PROP_4, REDRV_MODEL); |
| if (phy_data->redrv && netif_msg_probe(pdata)) { |
| dev_dbg(pdata->dev, "redrv present\n"); |
| dev_dbg(pdata->dev, "redrv i/f=%u\n", phy_data->redrv_if); |
| dev_dbg(pdata->dev, "redrv addr=%#x\n", phy_data->redrv_addr); |
| dev_dbg(pdata->dev, "redrv lane=%u\n", phy_data->redrv_lane); |
| dev_dbg(pdata->dev, "redrv model=%u\n", phy_data->redrv_model); |
| } |
| |
| /* Validate the connection requested */ |
| if (xgbe_phy_conn_type_mismatch(pdata)) { |
| dev_err(pdata->dev, "phy mode/connection mismatch (%#x/%#x)\n", |
| phy_data->port_mode, phy_data->conn_type); |
| return -EINVAL; |
| } |
| |
| /* Validate the mode requested */ |
| if (xgbe_phy_port_mode_mismatch(pdata)) { |
| dev_err(pdata->dev, "phy mode/speed mismatch (%#x/%#x)\n", |
| phy_data->port_mode, phy_data->port_speeds); |
| return -EINVAL; |
| } |
| |
| /* Check for and validate MDIO reset support */ |
| ret = xgbe_phy_mdio_reset_setup(pdata); |
| if (ret) |
| return ret; |
| |
| /* Validate the re-driver information */ |
| if (xgbe_phy_redrv_error(phy_data)) { |
| dev_err(pdata->dev, "phy re-driver settings error\n"); |
| return -EINVAL; |
| } |
| pdata->kr_redrv = phy_data->redrv; |
| |
| /* Indicate current mode is unknown */ |
| phy_data->cur_mode = XGBE_MODE_UNKNOWN; |
| |
| /* Initialize supported features */ |
| XGBE_ZERO_SUP(lks); |
| |
| switch (phy_data->port_mode) { |
| /* Backplane support */ |
| case XGBE_PORT_MODE_BACKPLANE: |
| XGBE_SET_SUP(lks, Autoneg); |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| XGBE_SET_SUP(lks, Backplane); |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { |
| XGBE_SET_SUP(lks, 1000baseKX_Full); |
| phy_data->start_mode = XGBE_MODE_KX_1000; |
| } |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) { |
| XGBE_SET_SUP(lks, 10000baseKR_Full); |
| if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) |
| XGBE_SET_SUP(lks, 10000baseR_FEC); |
| phy_data->start_mode = XGBE_MODE_KR; |
| } |
| |
| phy_data->phydev_mode = XGBE_MDIO_MODE_NONE; |
| break; |
| case XGBE_PORT_MODE_BACKPLANE_2500: |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| XGBE_SET_SUP(lks, Backplane); |
| XGBE_SET_SUP(lks, 2500baseX_Full); |
| phy_data->start_mode = XGBE_MODE_KX_2500; |
| |
| phy_data->phydev_mode = XGBE_MDIO_MODE_NONE; |
| break; |
| |
| /* MDIO 1GBase-T support */ |
| case XGBE_PORT_MODE_1000BASE_T: |
| XGBE_SET_SUP(lks, Autoneg); |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| XGBE_SET_SUP(lks, TP); |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) { |
| XGBE_SET_SUP(lks, 100baseT_Full); |
| phy_data->start_mode = XGBE_MODE_SGMII_100; |
| } |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { |
| XGBE_SET_SUP(lks, 1000baseT_Full); |
| phy_data->start_mode = XGBE_MODE_SGMII_1000; |
| } |
| |
| phy_data->phydev_mode = XGBE_MDIO_MODE_CL22; |
| break; |
| |
| /* MDIO Base-X support */ |
| case XGBE_PORT_MODE_1000BASE_X: |
| XGBE_SET_SUP(lks, Autoneg); |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| XGBE_SET_SUP(lks, FIBRE); |
| XGBE_SET_SUP(lks, 1000baseX_Full); |
| phy_data->start_mode = XGBE_MODE_X; |
| |
| phy_data->phydev_mode = XGBE_MDIO_MODE_CL22; |
| break; |
| |
| /* MDIO NBase-T support */ |
| case XGBE_PORT_MODE_NBASE_T: |
| XGBE_SET_SUP(lks, Autoneg); |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| XGBE_SET_SUP(lks, TP); |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) { |
| XGBE_SET_SUP(lks, 100baseT_Full); |
| phy_data->start_mode = XGBE_MODE_SGMII_100; |
| } |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { |
| XGBE_SET_SUP(lks, 1000baseT_Full); |
| phy_data->start_mode = XGBE_MODE_SGMII_1000; |
| } |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500) { |
| XGBE_SET_SUP(lks, 2500baseT_Full); |
| phy_data->start_mode = XGBE_MODE_KX_2500; |
| } |
| |
| phy_data->phydev_mode = XGBE_MDIO_MODE_CL45; |
| break; |
| |
| /* 10GBase-T support */ |
| case XGBE_PORT_MODE_10GBASE_T: |
| XGBE_SET_SUP(lks, Autoneg); |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| XGBE_SET_SUP(lks, TP); |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) { |
| XGBE_SET_SUP(lks, 100baseT_Full); |
| phy_data->start_mode = XGBE_MODE_SGMII_100; |
| } |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { |
| XGBE_SET_SUP(lks, 1000baseT_Full); |
| phy_data->start_mode = XGBE_MODE_SGMII_1000; |
| } |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) { |
| XGBE_SET_SUP(lks, 10000baseT_Full); |
| phy_data->start_mode = XGBE_MODE_KR; |
| } |
| |
| phy_data->phydev_mode = XGBE_MDIO_MODE_CL45; |
| break; |
| |
| /* 10GBase-R support */ |
| case XGBE_PORT_MODE_10GBASE_R: |
| XGBE_SET_SUP(lks, Autoneg); |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| XGBE_SET_SUP(lks, FIBRE); |
| XGBE_SET_SUP(lks, 10000baseSR_Full); |
| XGBE_SET_SUP(lks, 10000baseLR_Full); |
| XGBE_SET_SUP(lks, 10000baseLRM_Full); |
| XGBE_SET_SUP(lks, 10000baseER_Full); |
| if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) |
| XGBE_SET_SUP(lks, 10000baseR_FEC); |
| phy_data->start_mode = XGBE_MODE_SFI; |
| |
| phy_data->phydev_mode = XGBE_MDIO_MODE_NONE; |
| break; |
| |
| /* SFP support */ |
| case XGBE_PORT_MODE_SFP: |
| XGBE_SET_SUP(lks, Autoneg); |
| XGBE_SET_SUP(lks, Pause); |
| XGBE_SET_SUP(lks, Asym_Pause); |
| XGBE_SET_SUP(lks, TP); |
| XGBE_SET_SUP(lks, FIBRE); |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) |
| phy_data->start_mode = XGBE_MODE_SGMII_100; |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) |
| phy_data->start_mode = XGBE_MODE_SGMII_1000; |
| if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) |
| phy_data->start_mode = XGBE_MODE_SFI; |
| |
| phy_data->phydev_mode = XGBE_MDIO_MODE_CL22; |
| |
| xgbe_phy_sfp_setup(pdata); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (netif_msg_probe(pdata)) |
| dev_dbg(pdata->dev, "phy supported=0x%*pb\n", |
| __ETHTOOL_LINK_MODE_MASK_NBITS, |
| lks->link_modes.supported); |
| |
| if ((phy_data->conn_type & XGBE_CONN_TYPE_MDIO) && |
| (phy_data->phydev_mode != XGBE_MDIO_MODE_NONE)) { |
| ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr, |
| phy_data->phydev_mode); |
| if (ret) { |
| dev_err(pdata->dev, |
| "mdio port/clause not compatible (%d/%u)\n", |
| phy_data->mdio_addr, phy_data->phydev_mode); |
| return -EINVAL; |
| } |
| } |
| |
| if (phy_data->redrv && !phy_data->redrv_if) { |
| ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr, |
| XGBE_MDIO_MODE_CL22); |
| if (ret) { |
| dev_err(pdata->dev, |
| "redriver mdio port not compatible (%u)\n", |
| phy_data->redrv_addr); |
| return -EINVAL; |
| } |
| } |
| |
| /* Register for driving external PHYs */ |
| mii = devm_mdiobus_alloc(pdata->dev); |
| if (!mii) { |
| dev_err(pdata->dev, "mdiobus_alloc failed\n"); |
| return -ENOMEM; |
| } |
| |
| mii->priv = pdata; |
| mii->name = "amd-xgbe-mii"; |
| mii->read = xgbe_phy_mii_read; |
| mii->write = xgbe_phy_mii_write; |
| mii->parent = pdata->dev; |
| mii->phy_mask = ~0; |
| snprintf(mii->id, sizeof(mii->id), "%s", dev_name(pdata->dev)); |
| ret = mdiobus_register(mii); |
| if (ret) { |
| dev_err(pdata->dev, "mdiobus_register failed\n"); |
| return ret; |
| } |
| phy_data->mii = mii; |
| |
| return 0; |
| } |
| |
| void xgbe_init_function_ptrs_phy_v2(struct xgbe_phy_if *phy_if) |
| { |
| struct xgbe_phy_impl_if *phy_impl = &phy_if->phy_impl; |
| |
| phy_impl->init = xgbe_phy_init; |
| phy_impl->exit = xgbe_phy_exit; |
| |
| phy_impl->reset = xgbe_phy_reset; |
| phy_impl->start = xgbe_phy_start; |
| phy_impl->stop = xgbe_phy_stop; |
| |
| phy_impl->link_status = xgbe_phy_link_status; |
| |
| phy_impl->valid_speed = xgbe_phy_valid_speed; |
| |
| phy_impl->use_mode = xgbe_phy_use_mode; |
| phy_impl->set_mode = xgbe_phy_set_mode; |
| phy_impl->get_mode = xgbe_phy_get_mode; |
| phy_impl->switch_mode = xgbe_phy_switch_mode; |
| phy_impl->cur_mode = xgbe_phy_cur_mode; |
| |
| phy_impl->an_mode = xgbe_phy_an_mode; |
| |
| phy_impl->an_config = xgbe_phy_an_config; |
| |
| phy_impl->an_advertising = xgbe_phy_an_advertising; |
| |
| phy_impl->an_outcome = xgbe_phy_an_outcome; |
| } |