| #ifndef __ASM_SH_IO_H |
| #define __ASM_SH_IO_H |
| |
| /* |
| * Convention: |
| * read{b,w,l,q}/write{b,w,l,q} are for PCI, |
| * while in{b,w,l}/out{b,w,l} are for ISA |
| * |
| * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p |
| * and 'string' versions: ins{b,w,l}/outs{b,w,l} |
| * |
| * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers |
| * automatically, there are also __raw versions, which do not. |
| */ |
| #include <linux/errno.h> |
| #include <asm/cache.h> |
| #include <asm/addrspace.h> |
| #include <asm/machvec.h> |
| #include <asm/pgtable.h> |
| #include <asm-generic/iomap.h> |
| |
| #ifdef __KERNEL__ |
| #define __IO_PREFIX generic |
| #include <asm/io_generic.h> |
| #include <asm/io_trapped.h> |
| |
| #define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v)) |
| #define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v)) |
| #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v)) |
| #define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v)) |
| |
| #define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a)) |
| #define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a)) |
| #define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a)) |
| #define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a)) |
| |
| #define readb_relaxed(c) ({ u8 __v = __raw_readb(c); __v; }) |
| #define readw_relaxed(c) ({ u16 __v = le16_to_cpu((__force __le16) \ |
| __raw_readw(c)); __v; }) |
| #define readl_relaxed(c) ({ u32 __v = le32_to_cpu((__force __le32) \ |
| __raw_readl(c)); __v; }) |
| #define readq_relaxed(c) ({ u64 __v = le64_to_cpu((__force __le64) \ |
| __raw_readq(c)); __v; }) |
| |
| #define writeb_relaxed(v,c) ((void)__raw_writeb(v,c)) |
| #define writew_relaxed(v,c) ((void)__raw_writew((__force u16) \ |
| cpu_to_le16(v),c)) |
| #define writel_relaxed(v,c) ((void)__raw_writel((__force u32) \ |
| cpu_to_le32(v),c)) |
| #define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64) \ |
| cpu_to_le64(v),c)) |
| |
| #define readb(a) ({ u8 r_ = readb_relaxed(a); rmb(); r_; }) |
| #define readw(a) ({ u16 r_ = readw_relaxed(a); rmb(); r_; }) |
| #define readl(a) ({ u32 r_ = readl_relaxed(a); rmb(); r_; }) |
| #define readq(a) ({ u64 r_ = readq_relaxed(a); rmb(); r_; }) |
| |
| #define writeb(v,a) ({ wmb(); writeb_relaxed((v),(a)); }) |
| #define writew(v,a) ({ wmb(); writew_relaxed((v),(a)); }) |
| #define writel(v,a) ({ wmb(); writel_relaxed((v),(a)); }) |
| #define writeq(v,a) ({ wmb(); writeq_relaxed((v),(a)); }) |
| |
| #define readsb(p,d,l) __raw_readsb(p,d,l) |
| #define readsw(p,d,l) __raw_readsw(p,d,l) |
| #define readsl(p,d,l) __raw_readsl(p,d,l) |
| |
| #define writesb(p,d,l) __raw_writesb(p,d,l) |
| #define writesw(p,d,l) __raw_writesw(p,d,l) |
| #define writesl(p,d,l) __raw_writesl(p,d,l) |
| |
| #define __BUILD_UNCACHED_IO(bwlq, type) \ |
| static inline type read##bwlq##_uncached(unsigned long addr) \ |
| { \ |
| type ret; \ |
| jump_to_uncached(); \ |
| ret = __raw_read##bwlq(addr); \ |
| back_to_cached(); \ |
| return ret; \ |
| } \ |
| \ |
| static inline void write##bwlq##_uncached(type v, unsigned long addr) \ |
| { \ |
| jump_to_uncached(); \ |
| __raw_write##bwlq(v, addr); \ |
| back_to_cached(); \ |
| } |
| |
| __BUILD_UNCACHED_IO(b, u8) |
| __BUILD_UNCACHED_IO(w, u16) |
| __BUILD_UNCACHED_IO(l, u32) |
| __BUILD_UNCACHED_IO(q, u64) |
| |
| #define __BUILD_MEMORY_STRING(pfx, bwlq, type) \ |
| \ |
| static inline void \ |
| pfx##writes##bwlq(volatile void __iomem *mem, const void *addr, \ |
| unsigned int count) \ |
| { \ |
| const volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| __raw_write##bwlq(*__addr, mem); \ |
| __addr++; \ |
| } \ |
| } \ |
| \ |
| static inline void pfx##reads##bwlq(volatile void __iomem *mem, \ |
| void *addr, unsigned int count) \ |
| { \ |
| volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| *__addr = __raw_read##bwlq(mem); \ |
| __addr++; \ |
| } \ |
| } |
| |
| __BUILD_MEMORY_STRING(__raw_, b, u8) |
| __BUILD_MEMORY_STRING(__raw_, w, u16) |
| |
| #ifdef CONFIG_SUPERH32 |
| void __raw_writesl(void __iomem *addr, const void *data, int longlen); |
| void __raw_readsl(const void __iomem *addr, void *data, int longlen); |
| #else |
| __BUILD_MEMORY_STRING(__raw_, l, u32) |
| #endif |
| |
| __BUILD_MEMORY_STRING(__raw_, q, u64) |
| |
| #ifdef CONFIG_HAS_IOPORT |
| |
| /* |
| * Slowdown I/O port space accesses for antique hardware. |
| */ |
| #undef CONF_SLOWDOWN_IO |
| |
| /* |
| * On SuperH I/O ports are memory mapped, so we access them using normal |
| * load/store instructions. sh_io_port_base is the virtual address to |
| * which all ports are being mapped. |
| */ |
| extern const unsigned long sh_io_port_base; |
| |
| static inline void __set_io_port_base(unsigned long pbase) |
| { |
| *(unsigned long *)&sh_io_port_base = pbase; |
| barrier(); |
| } |
| |
| #ifdef CONFIG_GENERIC_IOMAP |
| #define __ioport_map ioport_map |
| #else |
| extern void __iomem *__ioport_map(unsigned long addr, unsigned int size); |
| #endif |
| |
| #ifdef CONF_SLOWDOWN_IO |
| #define SLOW_DOWN_IO __raw_readw(sh_io_port_base) |
| #else |
| #define SLOW_DOWN_IO |
| #endif |
| |
| #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \ |
| \ |
| static inline void pfx##out##bwlq##p(type val, unsigned long port) \ |
| { \ |
| volatile type *__addr; \ |
| \ |
| __addr = __ioport_map(port, sizeof(type)); \ |
| *__addr = val; \ |
| slow; \ |
| } \ |
| \ |
| static inline type pfx##in##bwlq##p(unsigned long port) \ |
| { \ |
| volatile type *__addr; \ |
| type __val; \ |
| \ |
| __addr = __ioport_map(port, sizeof(type)); \ |
| __val = *__addr; \ |
| slow; \ |
| \ |
| return __val; \ |
| } |
| |
| #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ |
| __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \ |
| __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO) |
| |
| #define BUILDIO_IOPORT(bwlq, type) \ |
| __BUILD_IOPORT_PFX(, bwlq, type) |
| |
| BUILDIO_IOPORT(b, u8) |
| BUILDIO_IOPORT(w, u16) |
| BUILDIO_IOPORT(l, u32) |
| BUILDIO_IOPORT(q, u64) |
| |
| #define __BUILD_IOPORT_STRING(bwlq, type) \ |
| \ |
| static inline void outs##bwlq(unsigned long port, const void *addr, \ |
| unsigned int count) \ |
| { \ |
| const volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| out##bwlq(*__addr, port); \ |
| __addr++; \ |
| } \ |
| } \ |
| \ |
| static inline void ins##bwlq(unsigned long port, void *addr, \ |
| unsigned int count) \ |
| { \ |
| volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| *__addr = in##bwlq(port); \ |
| __addr++; \ |
| } \ |
| } |
| |
| __BUILD_IOPORT_STRING(b, u8) |
| __BUILD_IOPORT_STRING(w, u16) |
| __BUILD_IOPORT_STRING(l, u32) |
| __BUILD_IOPORT_STRING(q, u64) |
| |
| #endif |
| |
| #define IO_SPACE_LIMIT 0xffffffff |
| |
| /* synco on SH-4A, otherwise a nop */ |
| #define mmiowb() wmb() |
| |
| /* We really want to try and get these to memcpy etc */ |
| void memcpy_fromio(void *, const volatile void __iomem *, unsigned long); |
| void memcpy_toio(volatile void __iomem *, const void *, unsigned long); |
| void memset_io(volatile void __iomem *, int, unsigned long); |
| |
| /* Quad-word real-mode I/O, don't ask.. */ |
| unsigned long long peek_real_address_q(unsigned long long addr); |
| unsigned long long poke_real_address_q(unsigned long long addr, |
| unsigned long long val); |
| |
| #if !defined(CONFIG_MMU) |
| #define virt_to_phys(address) ((unsigned long)(address)) |
| #define phys_to_virt(address) ((void *)(address)) |
| #else |
| #define virt_to_phys(address) (__pa(address)) |
| #define phys_to_virt(address) (__va(address)) |
| #endif |
| |
| /* |
| * On 32-bit SH, we traditionally have the whole physical address space |
| * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do |
| * not need to do anything but place the address in the proper segment. |
| * This is true for P1 and P2 addresses, as well as some P3 ones. |
| * However, most of the P3 addresses and newer cores using extended |
| * addressing need to map through page tables, so the ioremap() |
| * implementation becomes a bit more complicated. |
| * |
| * See arch/sh/mm/ioremap.c for additional notes on this. |
| * |
| * We cheat a bit and always return uncachable areas until we've fixed |
| * the drivers to handle caching properly. |
| * |
| * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply |
| * doesn't exist, so everything must go through page tables. |
| */ |
| #ifdef CONFIG_MMU |
| void __iomem *__ioremap_caller(phys_addr_t offset, unsigned long size, |
| pgprot_t prot, void *caller); |
| void __iounmap(void __iomem *addr); |
| |
| static inline void __iomem * |
| __ioremap(phys_addr_t offset, unsigned long size, pgprot_t prot) |
| { |
| return __ioremap_caller(offset, size, prot, __builtin_return_address(0)); |
| } |
| |
| static inline void __iomem * |
| __ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot) |
| { |
| #ifdef CONFIG_29BIT |
| phys_addr_t last_addr = offset + size - 1; |
| |
| /* |
| * For P1 and P2 space this is trivial, as everything is already |
| * mapped. Uncached access for P1 addresses are done through P2. |
| * In the P3 case or for addresses outside of the 29-bit space, |
| * mapping must be done by the PMB or by using page tables. |
| */ |
| if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { |
| u64 flags = pgprot_val(prot); |
| |
| /* |
| * Anything using the legacy PTEA space attributes needs |
| * to be kicked down to page table mappings. |
| */ |
| if (unlikely(flags & _PAGE_PCC_MASK)) |
| return NULL; |
| if (unlikely(flags & _PAGE_CACHABLE)) |
| return (void __iomem *)P1SEGADDR(offset); |
| |
| return (void __iomem *)P2SEGADDR(offset); |
| } |
| |
| /* P4 above the store queues are always mapped. */ |
| if (unlikely(offset >= P3_ADDR_MAX)) |
| return (void __iomem *)P4SEGADDR(offset); |
| #endif |
| |
| return NULL; |
| } |
| |
| static inline void __iomem * |
| __ioremap_mode(phys_addr_t offset, unsigned long size, pgprot_t prot) |
| { |
| void __iomem *ret; |
| |
| ret = __ioremap_trapped(offset, size); |
| if (ret) |
| return ret; |
| |
| ret = __ioremap_29bit(offset, size, prot); |
| if (ret) |
| return ret; |
| |
| return __ioremap(offset, size, prot); |
| } |
| #else |
| #define __ioremap(offset, size, prot) ((void __iomem *)(offset)) |
| #define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset)) |
| #define __iounmap(addr) do { } while (0) |
| #endif /* CONFIG_MMU */ |
| |
| static inline void __iomem *ioremap(phys_addr_t offset, unsigned long size) |
| { |
| return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE); |
| } |
| |
| static inline void __iomem * |
| ioremap_cache(phys_addr_t offset, unsigned long size) |
| { |
| return __ioremap_mode(offset, size, PAGE_KERNEL); |
| } |
| |
| #ifdef CONFIG_HAVE_IOREMAP_PROT |
| static inline void __iomem * |
| ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long flags) |
| { |
| return __ioremap_mode(offset, size, __pgprot(flags)); |
| } |
| #endif |
| |
| #ifdef CONFIG_IOREMAP_FIXED |
| extern void __iomem *ioremap_fixed(phys_addr_t, unsigned long, pgprot_t); |
| extern int iounmap_fixed(void __iomem *); |
| extern void ioremap_fixed_init(void); |
| #else |
| static inline void __iomem * |
| ioremap_fixed(phys_addr_t phys_addr, unsigned long size, pgprot_t prot) |
| { |
| BUG(); |
| return NULL; |
| } |
| |
| static inline void ioremap_fixed_init(void) { } |
| static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; } |
| #endif |
| |
| #define ioremap_nocache ioremap |
| #define iounmap __iounmap |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| #define ARCH_HAS_VALID_PHYS_ADDR_RANGE |
| int valid_phys_addr_range(unsigned long addr, size_t size); |
| int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* __ASM_SH_IO_H */ |