| /* |
| * Common interrupt code for 32 and 64 bit |
| */ |
| #include <linux/cpu.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/of.h> |
| #include <linux/seq_file.h> |
| #include <linux/smp.h> |
| #include <linux/ftrace.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| |
| #include <asm/apic.h> |
| #include <asm/io_apic.h> |
| #include <asm/irq.h> |
| #include <asm/mce.h> |
| #include <asm/hw_irq.h> |
| #include <asm/desc.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <asm/trace/irq_vectors.h> |
| |
| DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); |
| EXPORT_PER_CPU_SYMBOL(irq_stat); |
| |
| DEFINE_PER_CPU(struct pt_regs *, irq_regs); |
| EXPORT_PER_CPU_SYMBOL(irq_regs); |
| |
| atomic_t irq_err_count; |
| |
| /* Function pointer for generic interrupt vector handling */ |
| void (*x86_platform_ipi_callback)(void) = NULL; |
| |
| /* |
| * 'what should we do if we get a hw irq event on an illegal vector'. |
| * each architecture has to answer this themselves. |
| */ |
| void ack_bad_irq(unsigned int irq) |
| { |
| if (printk_ratelimit()) |
| pr_err("unexpected IRQ trap at vector %02x\n", irq); |
| |
| /* |
| * Currently unexpected vectors happen only on SMP and APIC. |
| * We _must_ ack these because every local APIC has only N |
| * irq slots per priority level, and a 'hanging, unacked' IRQ |
| * holds up an irq slot - in excessive cases (when multiple |
| * unexpected vectors occur) that might lock up the APIC |
| * completely. |
| * But only ack when the APIC is enabled -AK |
| */ |
| ack_APIC_irq(); |
| } |
| |
| #define irq_stats(x) (&per_cpu(irq_stat, x)) |
| /* |
| * /proc/interrupts printing for arch specific interrupts |
| */ |
| int arch_show_interrupts(struct seq_file *p, int prec) |
| { |
| int j; |
| |
| seq_printf(p, "%*s: ", prec, "NMI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); |
| seq_puts(p, " Non-maskable interrupts\n"); |
| #ifdef CONFIG_X86_LOCAL_APIC |
| seq_printf(p, "%*s: ", prec, "LOC"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); |
| seq_puts(p, " Local timer interrupts\n"); |
| |
| seq_printf(p, "%*s: ", prec, "SPU"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); |
| seq_puts(p, " Spurious interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "PMI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); |
| seq_puts(p, " Performance monitoring interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "IWI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); |
| seq_puts(p, " IRQ work interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "RTR"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); |
| seq_puts(p, " APIC ICR read retries\n"); |
| #endif |
| if (x86_platform_ipi_callback) { |
| seq_printf(p, "%*s: ", prec, "PLT"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); |
| seq_puts(p, " Platform interrupts\n"); |
| } |
| #ifdef CONFIG_SMP |
| seq_printf(p, "%*s: ", prec, "RES"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); |
| seq_puts(p, " Rescheduling interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "CAL"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); |
| seq_puts(p, " Function call interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "TLB"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); |
| seq_puts(p, " TLB shootdowns\n"); |
| #endif |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| seq_printf(p, "%*s: ", prec, "TRM"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); |
| seq_puts(p, " Thermal event interrupts\n"); |
| #endif |
| #ifdef CONFIG_X86_MCE_THRESHOLD |
| seq_printf(p, "%*s: ", prec, "THR"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); |
| seq_puts(p, " Threshold APIC interrupts\n"); |
| #endif |
| #ifdef CONFIG_X86_MCE_AMD |
| seq_printf(p, "%*s: ", prec, "DFR"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count); |
| seq_puts(p, " Deferred Error APIC interrupts\n"); |
| #endif |
| #ifdef CONFIG_X86_MCE |
| seq_printf(p, "%*s: ", prec, "MCE"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); |
| seq_puts(p, " Machine check exceptions\n"); |
| seq_printf(p, "%*s: ", prec, "MCP"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); |
| seq_puts(p, " Machine check polls\n"); |
| #endif |
| #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN) |
| if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) { |
| seq_printf(p, "%*s: ", prec, "HYP"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", |
| irq_stats(j)->irq_hv_callback_count); |
| seq_puts(p, " Hypervisor callback interrupts\n"); |
| } |
| #endif |
| seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); |
| #if defined(CONFIG_X86_IO_APIC) |
| seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); |
| #endif |
| #ifdef CONFIG_HAVE_KVM |
| seq_printf(p, "%*s: ", prec, "PIN"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis); |
| seq_puts(p, " Posted-interrupt notification event\n"); |
| |
| seq_printf(p, "%*s: ", prec, "PIW"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", |
| irq_stats(j)->kvm_posted_intr_wakeup_ipis); |
| seq_puts(p, " Posted-interrupt wakeup event\n"); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * /proc/stat helpers |
| */ |
| u64 arch_irq_stat_cpu(unsigned int cpu) |
| { |
| u64 sum = irq_stats(cpu)->__nmi_count; |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| sum += irq_stats(cpu)->apic_timer_irqs; |
| sum += irq_stats(cpu)->irq_spurious_count; |
| sum += irq_stats(cpu)->apic_perf_irqs; |
| sum += irq_stats(cpu)->apic_irq_work_irqs; |
| sum += irq_stats(cpu)->icr_read_retry_count; |
| #endif |
| if (x86_platform_ipi_callback) |
| sum += irq_stats(cpu)->x86_platform_ipis; |
| #ifdef CONFIG_SMP |
| sum += irq_stats(cpu)->irq_resched_count; |
| sum += irq_stats(cpu)->irq_call_count; |
| #endif |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| sum += irq_stats(cpu)->irq_thermal_count; |
| #endif |
| #ifdef CONFIG_X86_MCE_THRESHOLD |
| sum += irq_stats(cpu)->irq_threshold_count; |
| #endif |
| #ifdef CONFIG_X86_MCE |
| sum += per_cpu(mce_exception_count, cpu); |
| sum += per_cpu(mce_poll_count, cpu); |
| #endif |
| return sum; |
| } |
| |
| u64 arch_irq_stat(void) |
| { |
| u64 sum = atomic_read(&irq_err_count); |
| return sum; |
| } |
| |
| |
| /* |
| * do_IRQ handles all normal device IRQ's (the special |
| * SMP cross-CPU interrupts have their own specific |
| * handlers). |
| */ |
| __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| struct irq_desc * desc; |
| /* high bit used in ret_from_ code */ |
| unsigned vector = ~regs->orig_ax; |
| |
| /* |
| * NB: Unlike exception entries, IRQ entries do not reliably |
| * handle context tracking in the low-level entry code. This is |
| * because syscall entries execute briefly with IRQs on before |
| * updating context tracking state, so we can take an IRQ from |
| * kernel mode with CONTEXT_USER. The low-level entry code only |
| * updates the context if we came from user mode, so we won't |
| * switch to CONTEXT_KERNEL. We'll fix that once the syscall |
| * code is cleaned up enough that we can cleanly defer enabling |
| * IRQs. |
| */ |
| |
| entering_irq(); |
| |
| /* entering_irq() tells RCU that we're not quiescent. Check it. */ |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU"); |
| |
| desc = __this_cpu_read(vector_irq[vector]); |
| |
| if (!handle_irq(desc, regs)) { |
| ack_APIC_irq(); |
| |
| if (desc != VECTOR_RETRIGGERED) { |
| pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n", |
| __func__, smp_processor_id(), |
| vector); |
| } else { |
| __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); |
| } |
| } |
| |
| exiting_irq(); |
| |
| set_irq_regs(old_regs); |
| return 1; |
| } |
| |
| /* |
| * Handler for X86_PLATFORM_IPI_VECTOR. |
| */ |
| void __smp_x86_platform_ipi(void) |
| { |
| inc_irq_stat(x86_platform_ipis); |
| |
| if (x86_platform_ipi_callback) |
| x86_platform_ipi_callback(); |
| } |
| |
| __visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| entering_ack_irq(); |
| __smp_x86_platform_ipi(); |
| exiting_irq(); |
| set_irq_regs(old_regs); |
| } |
| |
| #ifdef CONFIG_HAVE_KVM |
| static void dummy_handler(void) {} |
| static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler; |
| |
| void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)) |
| { |
| if (handler) |
| kvm_posted_intr_wakeup_handler = handler; |
| else |
| kvm_posted_intr_wakeup_handler = dummy_handler; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler); |
| |
| /* |
| * Handler for POSTED_INTERRUPT_VECTOR. |
| */ |
| __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| entering_ack_irq(); |
| inc_irq_stat(kvm_posted_intr_ipis); |
| exiting_irq(); |
| set_irq_regs(old_regs); |
| } |
| |
| /* |
| * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. |
| */ |
| __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| entering_ack_irq(); |
| inc_irq_stat(kvm_posted_intr_wakeup_ipis); |
| kvm_posted_intr_wakeup_handler(); |
| exiting_irq(); |
| set_irq_regs(old_regs); |
| } |
| #endif |
| |
| __visible void __irq_entry smp_trace_x86_platform_ipi(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| entering_ack_irq(); |
| trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); |
| __smp_x86_platform_ipi(); |
| trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); |
| exiting_irq(); |
| set_irq_regs(old_regs); |
| } |
| |
| EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| /* These two declarations are only used in check_irq_vectors_for_cpu_disable() |
| * below, which is protected by stop_machine(). Putting them on the stack |
| * results in a stack frame overflow. Dynamically allocating could result in a |
| * failure so declare these two cpumasks as global. |
| */ |
| static struct cpumask affinity_new, online_new; |
| |
| /* |
| * This cpu is going to be removed and its vectors migrated to the remaining |
| * online cpus. Check to see if there are enough vectors in the remaining cpus. |
| * This function is protected by stop_machine(). |
| */ |
| int check_irq_vectors_for_cpu_disable(void) |
| { |
| unsigned int this_cpu, vector, this_count, count; |
| struct irq_desc *desc; |
| struct irq_data *data; |
| int cpu; |
| |
| this_cpu = smp_processor_id(); |
| cpumask_copy(&online_new, cpu_online_mask); |
| cpumask_clear_cpu(this_cpu, &online_new); |
| |
| this_count = 0; |
| for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { |
| desc = __this_cpu_read(vector_irq[vector]); |
| if (IS_ERR_OR_NULL(desc)) |
| continue; |
| /* |
| * Protect against concurrent action removal, affinity |
| * changes etc. |
| */ |
| raw_spin_lock(&desc->lock); |
| data = irq_desc_get_irq_data(desc); |
| cpumask_copy(&affinity_new, |
| irq_data_get_affinity_mask(data)); |
| cpumask_clear_cpu(this_cpu, &affinity_new); |
| |
| /* Do not count inactive or per-cpu irqs. */ |
| if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) { |
| raw_spin_unlock(&desc->lock); |
| continue; |
| } |
| |
| raw_spin_unlock(&desc->lock); |
| /* |
| * A single irq may be mapped to multiple cpu's |
| * vector_irq[] (for example IOAPIC cluster mode). In |
| * this case we have two possibilities: |
| * |
| * 1) the resulting affinity mask is empty; that is |
| * this the down'd cpu is the last cpu in the irq's |
| * affinity mask, or |
| * |
| * 2) the resulting affinity mask is no longer a |
| * subset of the online cpus but the affinity mask is |
| * not zero; that is the down'd cpu is the last online |
| * cpu in a user set affinity mask. |
| */ |
| if (cpumask_empty(&affinity_new) || |
| !cpumask_subset(&affinity_new, &online_new)) |
| this_count++; |
| } |
| /* No need to check any further. */ |
| if (!this_count) |
| return 0; |
| |
| count = 0; |
| for_each_online_cpu(cpu) { |
| if (cpu == this_cpu) |
| continue; |
| /* |
| * We scan from FIRST_EXTERNAL_VECTOR to first system |
| * vector. If the vector is marked in the used vectors |
| * bitmap or an irq is assigned to it, we don't count |
| * it as available. |
| * |
| * As this is an inaccurate snapshot anyway, we can do |
| * this w/o holding vector_lock. |
| */ |
| for (vector = FIRST_EXTERNAL_VECTOR; |
| vector < first_system_vector; vector++) { |
| if (!test_bit(vector, used_vectors) && |
| IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) { |
| if (++count == this_count) |
| return 0; |
| } |
| } |
| } |
| |
| if (count < this_count) { |
| pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n", |
| this_cpu, this_count, count); |
| return -ERANGE; |
| } |
| return 0; |
| } |
| |
| /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ |
| void fixup_irqs(void) |
| { |
| unsigned int irq, vector; |
| static int warned; |
| struct irq_desc *desc; |
| struct irq_data *data; |
| struct irq_chip *chip; |
| int ret; |
| |
| for_each_irq_desc(irq, desc) { |
| int break_affinity = 0; |
| int set_affinity = 1; |
| const struct cpumask *affinity; |
| |
| if (!desc) |
| continue; |
| if (irq == 2) |
| continue; |
| |
| /* interrupt's are disabled at this point */ |
| raw_spin_lock(&desc->lock); |
| |
| data = irq_desc_get_irq_data(desc); |
| affinity = irq_data_get_affinity_mask(data); |
| if (!irq_has_action(irq) || irqd_is_per_cpu(data) || |
| cpumask_subset(affinity, cpu_online_mask)) { |
| raw_spin_unlock(&desc->lock); |
| continue; |
| } |
| |
| /* |
| * Complete the irq move. This cpu is going down and for |
| * non intr-remapping case, we can't wait till this interrupt |
| * arrives at this cpu before completing the irq move. |
| */ |
| irq_force_complete_move(desc); |
| |
| if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { |
| break_affinity = 1; |
| affinity = cpu_online_mask; |
| } |
| |
| chip = irq_data_get_irq_chip(data); |
| /* |
| * The interrupt descriptor might have been cleaned up |
| * already, but it is not yet removed from the radix tree |
| */ |
| if (!chip) { |
| raw_spin_unlock(&desc->lock); |
| continue; |
| } |
| |
| if (!irqd_can_move_in_process_context(data) && chip->irq_mask) |
| chip->irq_mask(data); |
| |
| if (chip->irq_set_affinity) { |
| ret = chip->irq_set_affinity(data, affinity, true); |
| if (ret == -ENOSPC) |
| pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq); |
| } else { |
| if (!(warned++)) |
| set_affinity = 0; |
| } |
| |
| /* |
| * We unmask if the irq was not marked masked by the |
| * core code. That respects the lazy irq disable |
| * behaviour. |
| */ |
| if (!irqd_can_move_in_process_context(data) && |
| !irqd_irq_masked(data) && chip->irq_unmask) |
| chip->irq_unmask(data); |
| |
| raw_spin_unlock(&desc->lock); |
| |
| if (break_affinity && set_affinity) |
| pr_notice("Broke affinity for irq %i\n", irq); |
| else if (!set_affinity) |
| pr_notice("Cannot set affinity for irq %i\n", irq); |
| } |
| |
| /* |
| * We can remove mdelay() and then send spuriuous interrupts to |
| * new cpu targets for all the irqs that were handled previously by |
| * this cpu. While it works, I have seen spurious interrupt messages |
| * (nothing wrong but still...). |
| * |
| * So for now, retain mdelay(1) and check the IRR and then send those |
| * interrupts to new targets as this cpu is already offlined... |
| */ |
| mdelay(1); |
| |
| /* |
| * We can walk the vector array of this cpu without holding |
| * vector_lock because the cpu is already marked !online, so |
| * nothing else will touch it. |
| */ |
| for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { |
| unsigned int irr; |
| |
| if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector]))) |
| continue; |
| |
| irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); |
| if (irr & (1 << (vector % 32))) { |
| desc = __this_cpu_read(vector_irq[vector]); |
| |
| raw_spin_lock(&desc->lock); |
| data = irq_desc_get_irq_data(desc); |
| chip = irq_data_get_irq_chip(data); |
| if (chip->irq_retrigger) { |
| chip->irq_retrigger(data); |
| __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); |
| } |
| raw_spin_unlock(&desc->lock); |
| } |
| if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) |
| __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); |
| } |
| } |
| #endif |