| /* |
| * Intel IXP4xx NPE-C crypto driver |
| * |
| * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License |
| * as published by the Free Software Foundation. |
| * |
| */ |
| |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/crypto.h> |
| #include <linux/kernel.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/gfp.h> |
| #include <linux/module.h> |
| |
| #include <crypto/ctr.h> |
| #include <crypto/des.h> |
| #include <crypto/aes.h> |
| #include <crypto/sha.h> |
| #include <crypto/algapi.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/authenc.h> |
| #include <crypto/scatterwalk.h> |
| |
| #include <mach/npe.h> |
| #include <mach/qmgr.h> |
| |
| #define MAX_KEYLEN 32 |
| |
| /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */ |
| #define NPE_CTX_LEN 80 |
| #define AES_BLOCK128 16 |
| |
| #define NPE_OP_HASH_VERIFY 0x01 |
| #define NPE_OP_CCM_ENABLE 0x04 |
| #define NPE_OP_CRYPT_ENABLE 0x08 |
| #define NPE_OP_HASH_ENABLE 0x10 |
| #define NPE_OP_NOT_IN_PLACE 0x20 |
| #define NPE_OP_HMAC_DISABLE 0x40 |
| #define NPE_OP_CRYPT_ENCRYPT 0x80 |
| |
| #define NPE_OP_CCM_GEN_MIC 0xcc |
| #define NPE_OP_HASH_GEN_ICV 0x50 |
| #define NPE_OP_ENC_GEN_KEY 0xc9 |
| |
| #define MOD_ECB 0x0000 |
| #define MOD_CTR 0x1000 |
| #define MOD_CBC_ENC 0x2000 |
| #define MOD_CBC_DEC 0x3000 |
| #define MOD_CCM_ENC 0x4000 |
| #define MOD_CCM_DEC 0x5000 |
| |
| #define KEYLEN_128 4 |
| #define KEYLEN_192 6 |
| #define KEYLEN_256 8 |
| |
| #define CIPH_DECR 0x0000 |
| #define CIPH_ENCR 0x0400 |
| |
| #define MOD_DES 0x0000 |
| #define MOD_TDEA2 0x0100 |
| #define MOD_3DES 0x0200 |
| #define MOD_AES 0x0800 |
| #define MOD_AES128 (0x0800 | KEYLEN_128) |
| #define MOD_AES192 (0x0900 | KEYLEN_192) |
| #define MOD_AES256 (0x0a00 | KEYLEN_256) |
| |
| #define MAX_IVLEN 16 |
| #define NPE_ID 2 /* NPE C */ |
| #define NPE_QLEN 16 |
| /* Space for registering when the first |
| * NPE_QLEN crypt_ctl are busy */ |
| #define NPE_QLEN_TOTAL 64 |
| |
| #define SEND_QID 29 |
| #define RECV_QID 30 |
| |
| #define CTL_FLAG_UNUSED 0x0000 |
| #define CTL_FLAG_USED 0x1000 |
| #define CTL_FLAG_PERFORM_ABLK 0x0001 |
| #define CTL_FLAG_GEN_ICV 0x0002 |
| #define CTL_FLAG_GEN_REVAES 0x0004 |
| #define CTL_FLAG_PERFORM_AEAD 0x0008 |
| #define CTL_FLAG_MASK 0x000f |
| |
| #define HMAC_IPAD_VALUE 0x36 |
| #define HMAC_OPAD_VALUE 0x5C |
| #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE |
| |
| #define MD5_DIGEST_SIZE 16 |
| |
| struct buffer_desc { |
| u32 phys_next; |
| #ifdef __ARMEB__ |
| u16 buf_len; |
| u16 pkt_len; |
| #else |
| u16 pkt_len; |
| u16 buf_len; |
| #endif |
| u32 phys_addr; |
| u32 __reserved[4]; |
| struct buffer_desc *next; |
| enum dma_data_direction dir; |
| }; |
| |
| struct crypt_ctl { |
| #ifdef __ARMEB__ |
| u8 mode; /* NPE_OP_* operation mode */ |
| u8 init_len; |
| u16 reserved; |
| #else |
| u16 reserved; |
| u8 init_len; |
| u8 mode; /* NPE_OP_* operation mode */ |
| #endif |
| u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */ |
| u32 icv_rev_aes; /* icv or rev aes */ |
| u32 src_buf; |
| u32 dst_buf; |
| #ifdef __ARMEB__ |
| u16 auth_offs; /* Authentication start offset */ |
| u16 auth_len; /* Authentication data length */ |
| u16 crypt_offs; /* Cryption start offset */ |
| u16 crypt_len; /* Cryption data length */ |
| #else |
| u16 auth_len; /* Authentication data length */ |
| u16 auth_offs; /* Authentication start offset */ |
| u16 crypt_len; /* Cryption data length */ |
| u16 crypt_offs; /* Cryption start offset */ |
| #endif |
| u32 aadAddr; /* Additional Auth Data Addr for CCM mode */ |
| u32 crypto_ctx; /* NPE Crypto Param structure address */ |
| |
| /* Used by Host: 4*4 bytes*/ |
| unsigned ctl_flags; |
| union { |
| struct ablkcipher_request *ablk_req; |
| struct aead_request *aead_req; |
| struct crypto_tfm *tfm; |
| } data; |
| struct buffer_desc *regist_buf; |
| u8 *regist_ptr; |
| }; |
| |
| struct ablk_ctx { |
| struct buffer_desc *src; |
| struct buffer_desc *dst; |
| }; |
| |
| struct aead_ctx { |
| struct buffer_desc *src; |
| struct buffer_desc *dst; |
| struct scatterlist ivlist; |
| /* used when the hmac is not on one sg entry */ |
| u8 *hmac_virt; |
| int encrypt; |
| }; |
| |
| struct ix_hash_algo { |
| u32 cfgword; |
| unsigned char *icv; |
| }; |
| |
| struct ix_sa_dir { |
| unsigned char *npe_ctx; |
| dma_addr_t npe_ctx_phys; |
| int npe_ctx_idx; |
| u8 npe_mode; |
| }; |
| |
| struct ixp_ctx { |
| struct ix_sa_dir encrypt; |
| struct ix_sa_dir decrypt; |
| int authkey_len; |
| u8 authkey[MAX_KEYLEN]; |
| int enckey_len; |
| u8 enckey[MAX_KEYLEN]; |
| u8 salt[MAX_IVLEN]; |
| u8 nonce[CTR_RFC3686_NONCE_SIZE]; |
| unsigned salted; |
| atomic_t configuring; |
| struct completion completion; |
| }; |
| |
| struct ixp_alg { |
| struct crypto_alg crypto; |
| const struct ix_hash_algo *hash; |
| u32 cfg_enc; |
| u32 cfg_dec; |
| |
| int registered; |
| }; |
| |
| struct ixp_aead_alg { |
| struct aead_alg crypto; |
| const struct ix_hash_algo *hash; |
| u32 cfg_enc; |
| u32 cfg_dec; |
| |
| int registered; |
| }; |
| |
| static const struct ix_hash_algo hash_alg_md5 = { |
| .cfgword = 0xAA010004, |
| .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF" |
| "\xFE\xDC\xBA\x98\x76\x54\x32\x10", |
| }; |
| static const struct ix_hash_algo hash_alg_sha1 = { |
| .cfgword = 0x00000005, |
| .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA" |
| "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0", |
| }; |
| |
| static struct npe *npe_c; |
| static struct dma_pool *buffer_pool = NULL; |
| static struct dma_pool *ctx_pool = NULL; |
| |
| static struct crypt_ctl *crypt_virt = NULL; |
| static dma_addr_t crypt_phys; |
| |
| static int support_aes = 1; |
| |
| #define DRIVER_NAME "ixp4xx_crypto" |
| |
| static struct platform_device *pdev; |
| |
| static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt) |
| { |
| return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl); |
| } |
| |
| static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys) |
| { |
| return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl); |
| } |
| |
| static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm) |
| { |
| return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc; |
| } |
| |
| static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm) |
| { |
| return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec; |
| } |
| |
| static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm) |
| { |
| return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash; |
| } |
| |
| static int setup_crypt_desc(void) |
| { |
| struct device *dev = &pdev->dev; |
| BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64); |
| crypt_virt = dma_alloc_coherent(dev, |
| NPE_QLEN * sizeof(struct crypt_ctl), |
| &crypt_phys, GFP_ATOMIC); |
| if (!crypt_virt) |
| return -ENOMEM; |
| memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl)); |
| return 0; |
| } |
| |
| static spinlock_t desc_lock; |
| static struct crypt_ctl *get_crypt_desc(void) |
| { |
| int i; |
| static int idx = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&desc_lock, flags); |
| |
| if (unlikely(!crypt_virt)) |
| setup_crypt_desc(); |
| if (unlikely(!crypt_virt)) { |
| spin_unlock_irqrestore(&desc_lock, flags); |
| return NULL; |
| } |
| i = idx; |
| if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { |
| if (++idx >= NPE_QLEN) |
| idx = 0; |
| crypt_virt[i].ctl_flags = CTL_FLAG_USED; |
| spin_unlock_irqrestore(&desc_lock, flags); |
| return crypt_virt +i; |
| } else { |
| spin_unlock_irqrestore(&desc_lock, flags); |
| return NULL; |
| } |
| } |
| |
| static spinlock_t emerg_lock; |
| static struct crypt_ctl *get_crypt_desc_emerg(void) |
| { |
| int i; |
| static int idx = NPE_QLEN; |
| struct crypt_ctl *desc; |
| unsigned long flags; |
| |
| desc = get_crypt_desc(); |
| if (desc) |
| return desc; |
| if (unlikely(!crypt_virt)) |
| return NULL; |
| |
| spin_lock_irqsave(&emerg_lock, flags); |
| i = idx; |
| if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { |
| if (++idx >= NPE_QLEN_TOTAL) |
| idx = NPE_QLEN; |
| crypt_virt[i].ctl_flags = CTL_FLAG_USED; |
| spin_unlock_irqrestore(&emerg_lock, flags); |
| return crypt_virt +i; |
| } else { |
| spin_unlock_irqrestore(&emerg_lock, flags); |
| return NULL; |
| } |
| } |
| |
| static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys) |
| { |
| while (buf) { |
| struct buffer_desc *buf1; |
| u32 phys1; |
| |
| buf1 = buf->next; |
| phys1 = buf->phys_next; |
| dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir); |
| dma_pool_free(buffer_pool, buf, phys); |
| buf = buf1; |
| phys = phys1; |
| } |
| } |
| |
| static struct tasklet_struct crypto_done_tasklet; |
| |
| static void finish_scattered_hmac(struct crypt_ctl *crypt) |
| { |
| struct aead_request *req = crypt->data.aead_req; |
| struct aead_ctx *req_ctx = aead_request_ctx(req); |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| int authsize = crypto_aead_authsize(tfm); |
| int decryptlen = req->assoclen + req->cryptlen - authsize; |
| |
| if (req_ctx->encrypt) { |
| scatterwalk_map_and_copy(req_ctx->hmac_virt, |
| req->dst, decryptlen, authsize, 1); |
| } |
| dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes); |
| } |
| |
| static void one_packet(dma_addr_t phys) |
| { |
| struct device *dev = &pdev->dev; |
| struct crypt_ctl *crypt; |
| struct ixp_ctx *ctx; |
| int failed; |
| |
| failed = phys & 0x1 ? -EBADMSG : 0; |
| phys &= ~0x3; |
| crypt = crypt_phys2virt(phys); |
| |
| switch (crypt->ctl_flags & CTL_FLAG_MASK) { |
| case CTL_FLAG_PERFORM_AEAD: { |
| struct aead_request *req = crypt->data.aead_req; |
| struct aead_ctx *req_ctx = aead_request_ctx(req); |
| |
| free_buf_chain(dev, req_ctx->src, crypt->src_buf); |
| free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); |
| if (req_ctx->hmac_virt) { |
| finish_scattered_hmac(crypt); |
| } |
| req->base.complete(&req->base, failed); |
| break; |
| } |
| case CTL_FLAG_PERFORM_ABLK: { |
| struct ablkcipher_request *req = crypt->data.ablk_req; |
| struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); |
| |
| if (req_ctx->dst) { |
| free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); |
| } |
| free_buf_chain(dev, req_ctx->src, crypt->src_buf); |
| req->base.complete(&req->base, failed); |
| break; |
| } |
| case CTL_FLAG_GEN_ICV: |
| ctx = crypto_tfm_ctx(crypt->data.tfm); |
| dma_pool_free(ctx_pool, crypt->regist_ptr, |
| crypt->regist_buf->phys_addr); |
| dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf); |
| if (atomic_dec_and_test(&ctx->configuring)) |
| complete(&ctx->completion); |
| break; |
| case CTL_FLAG_GEN_REVAES: |
| ctx = crypto_tfm_ctx(crypt->data.tfm); |
| *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR); |
| if (atomic_dec_and_test(&ctx->configuring)) |
| complete(&ctx->completion); |
| break; |
| default: |
| BUG(); |
| } |
| crypt->ctl_flags = CTL_FLAG_UNUSED; |
| } |
| |
| static void irqhandler(void *_unused) |
| { |
| tasklet_schedule(&crypto_done_tasklet); |
| } |
| |
| static void crypto_done_action(unsigned long arg) |
| { |
| int i; |
| |
| for(i=0; i<4; i++) { |
| dma_addr_t phys = qmgr_get_entry(RECV_QID); |
| if (!phys) |
| return; |
| one_packet(phys); |
| } |
| tasklet_schedule(&crypto_done_tasklet); |
| } |
| |
| static int init_ixp_crypto(struct device *dev) |
| { |
| int ret = -ENODEV; |
| u32 msg[2] = { 0, 0 }; |
| |
| if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH | |
| IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) { |
| printk(KERN_ERR "ixp_crypto: No HW crypto available\n"); |
| return ret; |
| } |
| npe_c = npe_request(NPE_ID); |
| if (!npe_c) |
| return ret; |
| |
| if (!npe_running(npe_c)) { |
| ret = npe_load_firmware(npe_c, npe_name(npe_c), dev); |
| if (ret) |
| goto npe_release; |
| if (npe_recv_message(npe_c, msg, "STATUS_MSG")) |
| goto npe_error; |
| } else { |
| if (npe_send_message(npe_c, msg, "STATUS_MSG")) |
| goto npe_error; |
| |
| if (npe_recv_message(npe_c, msg, "STATUS_MSG")) |
| goto npe_error; |
| } |
| |
| switch ((msg[1]>>16) & 0xff) { |
| case 3: |
| printk(KERN_WARNING "Firmware of %s lacks AES support\n", |
| npe_name(npe_c)); |
| support_aes = 0; |
| break; |
| case 4: |
| case 5: |
| support_aes = 1; |
| break; |
| default: |
| printk(KERN_ERR "Firmware of %s lacks crypto support\n", |
| npe_name(npe_c)); |
| ret = -ENODEV; |
| goto npe_release; |
| } |
| /* buffer_pool will also be used to sometimes store the hmac, |
| * so assure it is large enough |
| */ |
| BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc)); |
| buffer_pool = dma_pool_create("buffer", dev, |
| sizeof(struct buffer_desc), 32, 0); |
| ret = -ENOMEM; |
| if (!buffer_pool) { |
| goto err; |
| } |
| ctx_pool = dma_pool_create("context", dev, |
| NPE_CTX_LEN, 16, 0); |
| if (!ctx_pool) { |
| goto err; |
| } |
| ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0, |
| "ixp_crypto:out", NULL); |
| if (ret) |
| goto err; |
| ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0, |
| "ixp_crypto:in", NULL); |
| if (ret) { |
| qmgr_release_queue(SEND_QID); |
| goto err; |
| } |
| qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL); |
| tasklet_init(&crypto_done_tasklet, crypto_done_action, 0); |
| |
| qmgr_enable_irq(RECV_QID); |
| return 0; |
| |
| npe_error: |
| printk(KERN_ERR "%s not responding\n", npe_name(npe_c)); |
| ret = -EIO; |
| err: |
| dma_pool_destroy(ctx_pool); |
| dma_pool_destroy(buffer_pool); |
| npe_release: |
| npe_release(npe_c); |
| return ret; |
| } |
| |
| static void release_ixp_crypto(struct device *dev) |
| { |
| qmgr_disable_irq(RECV_QID); |
| tasklet_kill(&crypto_done_tasklet); |
| |
| qmgr_release_queue(SEND_QID); |
| qmgr_release_queue(RECV_QID); |
| |
| dma_pool_destroy(ctx_pool); |
| dma_pool_destroy(buffer_pool); |
| |
| npe_release(npe_c); |
| |
| if (crypt_virt) { |
| dma_free_coherent(dev, |
| NPE_QLEN_TOTAL * sizeof( struct crypt_ctl), |
| crypt_virt, crypt_phys); |
| } |
| return; |
| } |
| |
| static void reset_sa_dir(struct ix_sa_dir *dir) |
| { |
| memset(dir->npe_ctx, 0, NPE_CTX_LEN); |
| dir->npe_ctx_idx = 0; |
| dir->npe_mode = 0; |
| } |
| |
| static int init_sa_dir(struct ix_sa_dir *dir) |
| { |
| dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys); |
| if (!dir->npe_ctx) { |
| return -ENOMEM; |
| } |
| reset_sa_dir(dir); |
| return 0; |
| } |
| |
| static void free_sa_dir(struct ix_sa_dir *dir) |
| { |
| memset(dir->npe_ctx, 0, NPE_CTX_LEN); |
| dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys); |
| } |
| |
| static int init_tfm(struct crypto_tfm *tfm) |
| { |
| struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| int ret; |
| |
| atomic_set(&ctx->configuring, 0); |
| ret = init_sa_dir(&ctx->encrypt); |
| if (ret) |
| return ret; |
| ret = init_sa_dir(&ctx->decrypt); |
| if (ret) { |
| free_sa_dir(&ctx->encrypt); |
| } |
| return ret; |
| } |
| |
| static int init_tfm_ablk(struct crypto_tfm *tfm) |
| { |
| tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx); |
| return init_tfm(tfm); |
| } |
| |
| static int init_tfm_aead(struct crypto_aead *tfm) |
| { |
| crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx)); |
| return init_tfm(crypto_aead_tfm(tfm)); |
| } |
| |
| static void exit_tfm(struct crypto_tfm *tfm) |
| { |
| struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| free_sa_dir(&ctx->encrypt); |
| free_sa_dir(&ctx->decrypt); |
| } |
| |
| static void exit_tfm_aead(struct crypto_aead *tfm) |
| { |
| exit_tfm(crypto_aead_tfm(tfm)); |
| } |
| |
| static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target, |
| int init_len, u32 ctx_addr, const u8 *key, int key_len) |
| { |
| struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct crypt_ctl *crypt; |
| struct buffer_desc *buf; |
| int i; |
| u8 *pad; |
| u32 pad_phys, buf_phys; |
| |
| BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN); |
| pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys); |
| if (!pad) |
| return -ENOMEM; |
| buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys); |
| if (!buf) { |
| dma_pool_free(ctx_pool, pad, pad_phys); |
| return -ENOMEM; |
| } |
| crypt = get_crypt_desc_emerg(); |
| if (!crypt) { |
| dma_pool_free(ctx_pool, pad, pad_phys); |
| dma_pool_free(buffer_pool, buf, buf_phys); |
| return -EAGAIN; |
| } |
| |
| memcpy(pad, key, key_len); |
| memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len); |
| for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) { |
| pad[i] ^= xpad; |
| } |
| |
| crypt->data.tfm = tfm; |
| crypt->regist_ptr = pad; |
| crypt->regist_buf = buf; |
| |
| crypt->auth_offs = 0; |
| crypt->auth_len = HMAC_PAD_BLOCKLEN; |
| crypt->crypto_ctx = ctx_addr; |
| crypt->src_buf = buf_phys; |
| crypt->icv_rev_aes = target; |
| crypt->mode = NPE_OP_HASH_GEN_ICV; |
| crypt->init_len = init_len; |
| crypt->ctl_flags |= CTL_FLAG_GEN_ICV; |
| |
| buf->next = 0; |
| buf->buf_len = HMAC_PAD_BLOCKLEN; |
| buf->pkt_len = 0; |
| buf->phys_addr = pad_phys; |
| |
| atomic_inc(&ctx->configuring); |
| qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
| BUG_ON(qmgr_stat_overflow(SEND_QID)); |
| return 0; |
| } |
| |
| static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize, |
| const u8 *key, int key_len, unsigned digest_len) |
| { |
| u32 itarget, otarget, npe_ctx_addr; |
| unsigned char *cinfo; |
| int init_len, ret = 0; |
| u32 cfgword; |
| struct ix_sa_dir *dir; |
| struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| const struct ix_hash_algo *algo; |
| |
| dir = encrypt ? &ctx->encrypt : &ctx->decrypt; |
| cinfo = dir->npe_ctx + dir->npe_ctx_idx; |
| algo = ix_hash(tfm); |
| |
| /* write cfg word to cryptinfo */ |
| cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */ |
| #ifndef __ARMEB__ |
| cfgword ^= 0xAA000000; /* change the "byte swap" flags */ |
| #endif |
| *(u32*)cinfo = cpu_to_be32(cfgword); |
| cinfo += sizeof(cfgword); |
| |
| /* write ICV to cryptinfo */ |
| memcpy(cinfo, algo->icv, digest_len); |
| cinfo += digest_len; |
| |
| itarget = dir->npe_ctx_phys + dir->npe_ctx_idx |
| + sizeof(algo->cfgword); |
| otarget = itarget + digest_len; |
| init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx); |
| npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx; |
| |
| dir->npe_ctx_idx += init_len; |
| dir->npe_mode |= NPE_OP_HASH_ENABLE; |
| |
| if (!encrypt) |
| dir->npe_mode |= NPE_OP_HASH_VERIFY; |
| |
| ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget, |
| init_len, npe_ctx_addr, key, key_len); |
| if (ret) |
| return ret; |
| return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget, |
| init_len, npe_ctx_addr, key, key_len); |
| } |
| |
| static int gen_rev_aes_key(struct crypto_tfm *tfm) |
| { |
| struct crypt_ctl *crypt; |
| struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct ix_sa_dir *dir = &ctx->decrypt; |
| |
| crypt = get_crypt_desc_emerg(); |
| if (!crypt) { |
| return -EAGAIN; |
| } |
| *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR); |
| |
| crypt->data.tfm = tfm; |
| crypt->crypt_offs = 0; |
| crypt->crypt_len = AES_BLOCK128; |
| crypt->src_buf = 0; |
| crypt->crypto_ctx = dir->npe_ctx_phys; |
| crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32); |
| crypt->mode = NPE_OP_ENC_GEN_KEY; |
| crypt->init_len = dir->npe_ctx_idx; |
| crypt->ctl_flags |= CTL_FLAG_GEN_REVAES; |
| |
| atomic_inc(&ctx->configuring); |
| qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
| BUG_ON(qmgr_stat_overflow(SEND_QID)); |
| return 0; |
| } |
| |
| static int setup_cipher(struct crypto_tfm *tfm, int encrypt, |
| const u8 *key, int key_len) |
| { |
| u8 *cinfo; |
| u32 cipher_cfg; |
| u32 keylen_cfg = 0; |
| struct ix_sa_dir *dir; |
| struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); |
| u32 *flags = &tfm->crt_flags; |
| |
| dir = encrypt ? &ctx->encrypt : &ctx->decrypt; |
| cinfo = dir->npe_ctx; |
| |
| if (encrypt) { |
| cipher_cfg = cipher_cfg_enc(tfm); |
| dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT; |
| } else { |
| cipher_cfg = cipher_cfg_dec(tfm); |
| } |
| if (cipher_cfg & MOD_AES) { |
| switch (key_len) { |
| case 16: keylen_cfg = MOD_AES128; break; |
| case 24: keylen_cfg = MOD_AES192; break; |
| case 32: keylen_cfg = MOD_AES256; break; |
| default: |
| *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| return -EINVAL; |
| } |
| cipher_cfg |= keylen_cfg; |
| } else if (cipher_cfg & MOD_3DES) { |
| const u32 *K = (const u32 *)key; |
| if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) || |
| !((K[2] ^ K[4]) | (K[3] ^ K[5])))) |
| { |
| *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED; |
| return -EINVAL; |
| } |
| } else { |
| u32 tmp[DES_EXPKEY_WORDS]; |
| if (des_ekey(tmp, key) == 0) { |
| *flags |= CRYPTO_TFM_RES_WEAK_KEY; |
| } |
| } |
| /* write cfg word to cryptinfo */ |
| *(u32*)cinfo = cpu_to_be32(cipher_cfg); |
| cinfo += sizeof(cipher_cfg); |
| |
| /* write cipher key to cryptinfo */ |
| memcpy(cinfo, key, key_len); |
| /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */ |
| if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) { |
| memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len); |
| key_len = DES3_EDE_KEY_SIZE; |
| } |
| dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len; |
| dir->npe_mode |= NPE_OP_CRYPT_ENABLE; |
| if ((cipher_cfg & MOD_AES) && !encrypt) { |
| return gen_rev_aes_key(tfm); |
| } |
| return 0; |
| } |
| |
| static struct buffer_desc *chainup_buffers(struct device *dev, |
| struct scatterlist *sg, unsigned nbytes, |
| struct buffer_desc *buf, gfp_t flags, |
| enum dma_data_direction dir) |
| { |
| for (; nbytes > 0; sg = sg_next(sg)) { |
| unsigned len = min(nbytes, sg->length); |
| struct buffer_desc *next_buf; |
| u32 next_buf_phys; |
| void *ptr; |
| |
| nbytes -= len; |
| ptr = sg_virt(sg); |
| next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys); |
| if (!next_buf) { |
| buf = NULL; |
| break; |
| } |
| sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir); |
| buf->next = next_buf; |
| buf->phys_next = next_buf_phys; |
| buf = next_buf; |
| |
| buf->phys_addr = sg_dma_address(sg); |
| buf->buf_len = len; |
| buf->dir = dir; |
| } |
| buf->next = NULL; |
| buf->phys_next = 0; |
| return buf; |
| } |
| |
| static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key, |
| unsigned int key_len) |
| { |
| struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| u32 *flags = &tfm->base.crt_flags; |
| int ret; |
| |
| init_completion(&ctx->completion); |
| atomic_inc(&ctx->configuring); |
| |
| reset_sa_dir(&ctx->encrypt); |
| reset_sa_dir(&ctx->decrypt); |
| |
| ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE; |
| ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE; |
| |
| ret = setup_cipher(&tfm->base, 0, key, key_len); |
| if (ret) |
| goto out; |
| ret = setup_cipher(&tfm->base, 1, key, key_len); |
| if (ret) |
| goto out; |
| |
| if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { |
| if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { |
| ret = -EINVAL; |
| } else { |
| *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; |
| } |
| } |
| out: |
| if (!atomic_dec_and_test(&ctx->configuring)) |
| wait_for_completion(&ctx->completion); |
| return ret; |
| } |
| |
| static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key, |
| unsigned int key_len) |
| { |
| struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| |
| /* the nonce is stored in bytes at end of key */ |
| if (key_len < CTR_RFC3686_NONCE_SIZE) |
| return -EINVAL; |
| |
| memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE), |
| CTR_RFC3686_NONCE_SIZE); |
| |
| key_len -= CTR_RFC3686_NONCE_SIZE; |
| return ablk_setkey(tfm, key, key_len); |
| } |
| |
| static int ablk_perform(struct ablkcipher_request *req, int encrypt) |
| { |
| struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| unsigned ivsize = crypto_ablkcipher_ivsize(tfm); |
| struct ix_sa_dir *dir; |
| struct crypt_ctl *crypt; |
| unsigned int nbytes = req->nbytes; |
| enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; |
| struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); |
| struct buffer_desc src_hook; |
| struct device *dev = &pdev->dev; |
| gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
| GFP_KERNEL : GFP_ATOMIC; |
| |
| if (qmgr_stat_full(SEND_QID)) |
| return -EAGAIN; |
| if (atomic_read(&ctx->configuring)) |
| return -EAGAIN; |
| |
| dir = encrypt ? &ctx->encrypt : &ctx->decrypt; |
| |
| crypt = get_crypt_desc(); |
| if (!crypt) |
| return -ENOMEM; |
| |
| crypt->data.ablk_req = req; |
| crypt->crypto_ctx = dir->npe_ctx_phys; |
| crypt->mode = dir->npe_mode; |
| crypt->init_len = dir->npe_ctx_idx; |
| |
| crypt->crypt_offs = 0; |
| crypt->crypt_len = nbytes; |
| |
| BUG_ON(ivsize && !req->info); |
| memcpy(crypt->iv, req->info, ivsize); |
| if (req->src != req->dst) { |
| struct buffer_desc dst_hook; |
| crypt->mode |= NPE_OP_NOT_IN_PLACE; |
| /* This was never tested by Intel |
| * for more than one dst buffer, I think. */ |
| req_ctx->dst = NULL; |
| if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook, |
| flags, DMA_FROM_DEVICE)) |
| goto free_buf_dest; |
| src_direction = DMA_TO_DEVICE; |
| req_ctx->dst = dst_hook.next; |
| crypt->dst_buf = dst_hook.phys_next; |
| } else { |
| req_ctx->dst = NULL; |
| } |
| req_ctx->src = NULL; |
| if (!chainup_buffers(dev, req->src, nbytes, &src_hook, |
| flags, src_direction)) |
| goto free_buf_src; |
| |
| req_ctx->src = src_hook.next; |
| crypt->src_buf = src_hook.phys_next; |
| crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK; |
| qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
| BUG_ON(qmgr_stat_overflow(SEND_QID)); |
| return -EINPROGRESS; |
| |
| free_buf_src: |
| free_buf_chain(dev, req_ctx->src, crypt->src_buf); |
| free_buf_dest: |
| if (req->src != req->dst) { |
| free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); |
| } |
| crypt->ctl_flags = CTL_FLAG_UNUSED; |
| return -ENOMEM; |
| } |
| |
| static int ablk_encrypt(struct ablkcipher_request *req) |
| { |
| return ablk_perform(req, 1); |
| } |
| |
| static int ablk_decrypt(struct ablkcipher_request *req) |
| { |
| return ablk_perform(req, 0); |
| } |
| |
| static int ablk_rfc3686_crypt(struct ablkcipher_request *req) |
| { |
| struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| u8 iv[CTR_RFC3686_BLOCK_SIZE]; |
| u8 *info = req->info; |
| int ret; |
| |
| /* set up counter block */ |
| memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); |
| memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE); |
| |
| /* initialize counter portion of counter block */ |
| *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = |
| cpu_to_be32(1); |
| |
| req->info = iv; |
| ret = ablk_perform(req, 1); |
| req->info = info; |
| return ret; |
| } |
| |
| static int aead_perform(struct aead_request *req, int encrypt, |
| int cryptoffset, int eff_cryptlen, u8 *iv) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
| unsigned ivsize = crypto_aead_ivsize(tfm); |
| unsigned authsize = crypto_aead_authsize(tfm); |
| struct ix_sa_dir *dir; |
| struct crypt_ctl *crypt; |
| unsigned int cryptlen; |
| struct buffer_desc *buf, src_hook; |
| struct aead_ctx *req_ctx = aead_request_ctx(req); |
| struct device *dev = &pdev->dev; |
| gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
| GFP_KERNEL : GFP_ATOMIC; |
| enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; |
| unsigned int lastlen; |
| |
| if (qmgr_stat_full(SEND_QID)) |
| return -EAGAIN; |
| if (atomic_read(&ctx->configuring)) |
| return -EAGAIN; |
| |
| if (encrypt) { |
| dir = &ctx->encrypt; |
| cryptlen = req->cryptlen; |
| } else { |
| dir = &ctx->decrypt; |
| /* req->cryptlen includes the authsize when decrypting */ |
| cryptlen = req->cryptlen -authsize; |
| eff_cryptlen -= authsize; |
| } |
| crypt = get_crypt_desc(); |
| if (!crypt) |
| return -ENOMEM; |
| |
| crypt->data.aead_req = req; |
| crypt->crypto_ctx = dir->npe_ctx_phys; |
| crypt->mode = dir->npe_mode; |
| crypt->init_len = dir->npe_ctx_idx; |
| |
| crypt->crypt_offs = cryptoffset; |
| crypt->crypt_len = eff_cryptlen; |
| |
| crypt->auth_offs = 0; |
| crypt->auth_len = req->assoclen + cryptlen; |
| BUG_ON(ivsize && !req->iv); |
| memcpy(crypt->iv, req->iv, ivsize); |
| |
| buf = chainup_buffers(dev, req->src, crypt->auth_len, |
| &src_hook, flags, src_direction); |
| req_ctx->src = src_hook.next; |
| crypt->src_buf = src_hook.phys_next; |
| if (!buf) |
| goto free_buf_src; |
| |
| lastlen = buf->buf_len; |
| if (lastlen >= authsize) |
| crypt->icv_rev_aes = buf->phys_addr + |
| buf->buf_len - authsize; |
| |
| req_ctx->dst = NULL; |
| |
| if (req->src != req->dst) { |
| struct buffer_desc dst_hook; |
| |
| crypt->mode |= NPE_OP_NOT_IN_PLACE; |
| src_direction = DMA_TO_DEVICE; |
| |
| buf = chainup_buffers(dev, req->dst, crypt->auth_len, |
| &dst_hook, flags, DMA_FROM_DEVICE); |
| req_ctx->dst = dst_hook.next; |
| crypt->dst_buf = dst_hook.phys_next; |
| |
| if (!buf) |
| goto free_buf_dst; |
| |
| if (encrypt) { |
| lastlen = buf->buf_len; |
| if (lastlen >= authsize) |
| crypt->icv_rev_aes = buf->phys_addr + |
| buf->buf_len - authsize; |
| } |
| } |
| |
| if (unlikely(lastlen < authsize)) { |
| /* The 12 hmac bytes are scattered, |
| * we need to copy them into a safe buffer */ |
| req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, |
| &crypt->icv_rev_aes); |
| if (unlikely(!req_ctx->hmac_virt)) |
| goto free_buf_src; |
| if (!encrypt) { |
| scatterwalk_map_and_copy(req_ctx->hmac_virt, |
| req->src, cryptlen, authsize, 0); |
| } |
| req_ctx->encrypt = encrypt; |
| } else { |
| req_ctx->hmac_virt = NULL; |
| } |
| |
| crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD; |
| qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); |
| BUG_ON(qmgr_stat_overflow(SEND_QID)); |
| return -EINPROGRESS; |
| |
| free_buf_src: |
| free_buf_chain(dev, req_ctx->src, crypt->src_buf); |
| free_buf_dst: |
| free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); |
| crypt->ctl_flags = CTL_FLAG_UNUSED; |
| return -ENOMEM; |
| } |
| |
| static int aead_setup(struct crypto_aead *tfm, unsigned int authsize) |
| { |
| struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
| u32 *flags = &tfm->base.crt_flags; |
| unsigned digest_len = crypto_aead_maxauthsize(tfm); |
| int ret; |
| |
| if (!ctx->enckey_len && !ctx->authkey_len) |
| return 0; |
| init_completion(&ctx->completion); |
| atomic_inc(&ctx->configuring); |
| |
| reset_sa_dir(&ctx->encrypt); |
| reset_sa_dir(&ctx->decrypt); |
| |
| ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len); |
| if (ret) |
| goto out; |
| ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len); |
| if (ret) |
| goto out; |
| ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey, |
| ctx->authkey_len, digest_len); |
| if (ret) |
| goto out; |
| ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey, |
| ctx->authkey_len, digest_len); |
| if (ret) |
| goto out; |
| |
| if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { |
| if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { |
| ret = -EINVAL; |
| goto out; |
| } else { |
| *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; |
| } |
| } |
| out: |
| if (!atomic_dec_and_test(&ctx->configuring)) |
| wait_for_completion(&ctx->completion); |
| return ret; |
| } |
| |
| static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
| { |
| int max = crypto_aead_maxauthsize(tfm) >> 2; |
| |
| if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3)) |
| return -EINVAL; |
| return aead_setup(tfm, authsize); |
| } |
| |
| static int aead_setkey(struct crypto_aead *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct ixp_ctx *ctx = crypto_aead_ctx(tfm); |
| struct crypto_authenc_keys keys; |
| |
| if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) |
| goto badkey; |
| |
| if (keys.authkeylen > sizeof(ctx->authkey)) |
| goto badkey; |
| |
| if (keys.enckeylen > sizeof(ctx->enckey)) |
| goto badkey; |
| |
| memcpy(ctx->authkey, keys.authkey, keys.authkeylen); |
| memcpy(ctx->enckey, keys.enckey, keys.enckeylen); |
| ctx->authkey_len = keys.authkeylen; |
| ctx->enckey_len = keys.enckeylen; |
| |
| return aead_setup(tfm, crypto_aead_authsize(tfm)); |
| badkey: |
| crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| static int aead_encrypt(struct aead_request *req) |
| { |
| return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv); |
| } |
| |
| static int aead_decrypt(struct aead_request *req) |
| { |
| return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv); |
| } |
| |
| static struct ixp_alg ixp4xx_algos[] = { |
| { |
| .crypto = { |
| .cra_name = "cbc(des)", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_u = { .ablkcipher = { |
| .min_keysize = DES_KEY_SIZE, |
| .max_keysize = DES_KEY_SIZE, |
| .ivsize = DES_BLOCK_SIZE, |
| .geniv = "eseqiv", |
| } |
| } |
| }, |
| .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, |
| .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, |
| |
| }, { |
| .crypto = { |
| .cra_name = "ecb(des)", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_u = { .ablkcipher = { |
| .min_keysize = DES_KEY_SIZE, |
| .max_keysize = DES_KEY_SIZE, |
| } |
| } |
| }, |
| .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192, |
| .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192, |
| }, { |
| .crypto = { |
| .cra_name = "cbc(des3_ede)", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_u = { .ablkcipher = { |
| .min_keysize = DES3_EDE_KEY_SIZE, |
| .max_keysize = DES3_EDE_KEY_SIZE, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .geniv = "eseqiv", |
| } |
| } |
| }, |
| .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, |
| .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, |
| }, { |
| .crypto = { |
| .cra_name = "ecb(des3_ede)", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_u = { .ablkcipher = { |
| .min_keysize = DES3_EDE_KEY_SIZE, |
| .max_keysize = DES3_EDE_KEY_SIZE, |
| } |
| } |
| }, |
| .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192, |
| .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192, |
| }, { |
| .crypto = { |
| .cra_name = "cbc(aes)", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_u = { .ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .geniv = "eseqiv", |
| } |
| } |
| }, |
| .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, |
| .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, |
| }, { |
| .crypto = { |
| .cra_name = "ecb(aes)", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_u = { .ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| } |
| } |
| }, |
| .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB, |
| .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB, |
| }, { |
| .crypto = { |
| .cra_name = "ctr(aes)", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_u = { .ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .geniv = "eseqiv", |
| } |
| } |
| }, |
| .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, |
| .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, |
| }, { |
| .crypto = { |
| .cra_name = "rfc3686(ctr(aes))", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_u = { .ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .geniv = "eseqiv", |
| .setkey = ablk_rfc3686_setkey, |
| .encrypt = ablk_rfc3686_crypt, |
| .decrypt = ablk_rfc3686_crypt } |
| } |
| }, |
| .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, |
| .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, |
| } }; |
| |
| static struct ixp_aead_alg ixp4xx_aeads[] = { |
| { |
| .crypto = { |
| .base = { |
| .cra_name = "authenc(hmac(md5),cbc(des))", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| }, |
| .ivsize = DES_BLOCK_SIZE, |
| .maxauthsize = MD5_DIGEST_SIZE, |
| }, |
| .hash = &hash_alg_md5, |
| .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, |
| .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, |
| }, { |
| .crypto = { |
| .base = { |
| .cra_name = "authenc(hmac(md5),cbc(des3_ede))", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| }, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = MD5_DIGEST_SIZE, |
| }, |
| .hash = &hash_alg_md5, |
| .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, |
| .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, |
| }, { |
| .crypto = { |
| .base = { |
| .cra_name = "authenc(hmac(sha1),cbc(des))", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| }, |
| .ivsize = DES_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, |
| .hash = &hash_alg_sha1, |
| .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, |
| .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, |
| }, { |
| .crypto = { |
| .base = { |
| .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| }, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, |
| .hash = &hash_alg_sha1, |
| .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, |
| .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, |
| }, { |
| .crypto = { |
| .base = { |
| .cra_name = "authenc(hmac(md5),cbc(aes))", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| }, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = MD5_DIGEST_SIZE, |
| }, |
| .hash = &hash_alg_md5, |
| .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, |
| .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, |
| }, { |
| .crypto = { |
| .base = { |
| .cra_name = "authenc(hmac(sha1),cbc(aes))", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| }, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, |
| .hash = &hash_alg_sha1, |
| .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, |
| .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, |
| } }; |
| |
| #define IXP_POSTFIX "-ixp4xx" |
| |
| static const struct platform_device_info ixp_dev_info __initdata = { |
| .name = DRIVER_NAME, |
| .id = 0, |
| .dma_mask = DMA_BIT_MASK(32), |
| }; |
| |
| static int __init ixp_module_init(void) |
| { |
| int num = ARRAY_SIZE(ixp4xx_algos); |
| int i, err; |
| |
| pdev = platform_device_register_full(&ixp_dev_info); |
| if (IS_ERR(pdev)) |
| return PTR_ERR(pdev); |
| |
| spin_lock_init(&desc_lock); |
| spin_lock_init(&emerg_lock); |
| |
| err = init_ixp_crypto(&pdev->dev); |
| if (err) { |
| platform_device_unregister(pdev); |
| return err; |
| } |
| for (i=0; i< num; i++) { |
| struct crypto_alg *cra = &ixp4xx_algos[i].crypto; |
| |
| if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME, |
| "%s"IXP_POSTFIX, cra->cra_name) >= |
| CRYPTO_MAX_ALG_NAME) |
| { |
| continue; |
| } |
| if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) { |
| continue; |
| } |
| |
| /* block ciphers */ |
| cra->cra_type = &crypto_ablkcipher_type; |
| cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC; |
| if (!cra->cra_ablkcipher.setkey) |
| cra->cra_ablkcipher.setkey = ablk_setkey; |
| if (!cra->cra_ablkcipher.encrypt) |
| cra->cra_ablkcipher.encrypt = ablk_encrypt; |
| if (!cra->cra_ablkcipher.decrypt) |
| cra->cra_ablkcipher.decrypt = ablk_decrypt; |
| cra->cra_init = init_tfm_ablk; |
| |
| cra->cra_ctxsize = sizeof(struct ixp_ctx); |
| cra->cra_module = THIS_MODULE; |
| cra->cra_alignmask = 3; |
| cra->cra_priority = 300; |
| cra->cra_exit = exit_tfm; |
| if (crypto_register_alg(cra)) |
| printk(KERN_ERR "Failed to register '%s'\n", |
| cra->cra_name); |
| else |
| ixp4xx_algos[i].registered = 1; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) { |
| struct aead_alg *cra = &ixp4xx_aeads[i].crypto; |
| |
| if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, |
| "%s"IXP_POSTFIX, cra->base.cra_name) >= |
| CRYPTO_MAX_ALG_NAME) |
| continue; |
| if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) |
| continue; |
| |
| /* authenc */ |
| cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC; |
| cra->setkey = aead_setkey; |
| cra->setauthsize = aead_setauthsize; |
| cra->encrypt = aead_encrypt; |
| cra->decrypt = aead_decrypt; |
| cra->init = init_tfm_aead; |
| cra->exit = exit_tfm_aead; |
| |
| cra->base.cra_ctxsize = sizeof(struct ixp_ctx); |
| cra->base.cra_module = THIS_MODULE; |
| cra->base.cra_alignmask = 3; |
| cra->base.cra_priority = 300; |
| |
| if (crypto_register_aead(cra)) |
| printk(KERN_ERR "Failed to register '%s'\n", |
| cra->base.cra_driver_name); |
| else |
| ixp4xx_aeads[i].registered = 1; |
| } |
| return 0; |
| } |
| |
| static void __exit ixp_module_exit(void) |
| { |
| int num = ARRAY_SIZE(ixp4xx_algos); |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) { |
| if (ixp4xx_aeads[i].registered) |
| crypto_unregister_aead(&ixp4xx_aeads[i].crypto); |
| } |
| |
| for (i=0; i< num; i++) { |
| if (ixp4xx_algos[i].registered) |
| crypto_unregister_alg(&ixp4xx_algos[i].crypto); |
| } |
| release_ixp_crypto(&pdev->dev); |
| platform_device_unregister(pdev); |
| } |
| |
| module_init(ixp_module_init); |
| module_exit(ixp_module_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>"); |
| MODULE_DESCRIPTION("IXP4xx hardware crypto"); |
| |