|  | /* | 
|  | * SN Platform GRU Driver | 
|  | * | 
|  | *              FAULT HANDLER FOR GRU DETECTED TLB MISSES | 
|  | * | 
|  | * This file contains code that handles TLB misses within the GRU. | 
|  | * These misses are reported either via interrupts or user polling of | 
|  | * the user CB. | 
|  | * | 
|  | *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved. | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, write to the Free Software | 
|  | *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/security.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include "gru.h" | 
|  | #include "grutables.h" | 
|  | #include "grulib.h" | 
|  | #include "gru_instructions.h" | 
|  | #include <asm/uv/uv_hub.h> | 
|  |  | 
|  | /* | 
|  | * Test if a physical address is a valid GRU GSEG address | 
|  | */ | 
|  | static inline int is_gru_paddr(unsigned long paddr) | 
|  | { | 
|  | return paddr >= gru_start_paddr && paddr < gru_end_paddr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the vma of a GRU segment. Caller must hold mmap_sem. | 
|  | */ | 
|  | struct vm_area_struct *gru_find_vma(unsigned long vaddr) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = find_vma(current->mm, vaddr); | 
|  | if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops) | 
|  | return vma; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find and lock the gts that contains the specified user vaddr. | 
|  | * | 
|  | * Returns: | 
|  | * 	- *gts with the mmap_sem locked for read and the GTS locked. | 
|  | *	- NULL if vaddr invalid OR is not a valid GSEG vaddr. | 
|  | */ | 
|  |  | 
|  | static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | struct gru_thread_state *gts = NULL; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | vma = gru_find_vma(vaddr); | 
|  | if (vma) | 
|  | gts = gru_find_thread_state(vma, TSID(vaddr, vma)); | 
|  | if (gts) | 
|  | mutex_lock(>s->ts_ctxlock); | 
|  | else | 
|  | up_read(&mm->mmap_sem); | 
|  | return gts; | 
|  | } | 
|  |  | 
|  | static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | struct gru_thread_state *gts = NULL; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | vma = gru_find_vma(vaddr); | 
|  | if (vma) | 
|  | gts = gru_alloc_thread_state(vma, TSID(vaddr, vma)); | 
|  | if (gts) { | 
|  | mutex_lock(>s->ts_ctxlock); | 
|  | downgrade_write(&mm->mmap_sem); | 
|  | } else { | 
|  | up_write(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | return gts; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock a GTS that was previously locked with gru_find_lock_gts(). | 
|  | */ | 
|  | static void gru_unlock_gts(struct gru_thread_state *gts) | 
|  | { | 
|  | mutex_unlock(>s->ts_ctxlock); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set a CB.istatus to active using a user virtual address. This must be done | 
|  | * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY. | 
|  | * If the line is evicted, the status may be lost. The in-cache update | 
|  | * is necessary to prevent the user from seeing a stale cb.istatus that will | 
|  | * change as soon as the TFH restart is complete. Races may cause an | 
|  | * occasional failure to clear the cb.istatus, but that is ok. | 
|  | * | 
|  | * If the cb address is not valid (should not happen, but...), nothing | 
|  | * bad will happen.. The get_user()/put_user() will fail but there | 
|  | * are no bad side-effects. | 
|  | */ | 
|  | static void gru_cb_set_istatus_active(unsigned long __user *cb) | 
|  | { | 
|  | union { | 
|  | struct gru_instruction_bits bits; | 
|  | unsigned long dw; | 
|  | } u; | 
|  |  | 
|  | if (cb) { | 
|  | get_user(u.dw, cb); | 
|  | u.bits.istatus = CBS_ACTIVE; | 
|  | put_user(u.dw, cb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a interrupt IRQ to a pointer to the GRU GTS that caused the | 
|  | * interrupt. Interrupts are always sent to a cpu on the blade that contains the | 
|  | * GRU (except for headless blades which are not currently supported). A blade | 
|  | * has N grus; a block of N consecutive IRQs is assigned to the GRUs. The IRQ | 
|  | * number uniquely identifies the GRU chiplet on the local blade that caused the | 
|  | * interrupt. Always called in interrupt context. | 
|  | */ | 
|  | static inline struct gru_state *irq_to_gru(int irq) | 
|  | { | 
|  | return &gru_base[uv_numa_blade_id()]->bs_grus[irq - IRQ_GRU]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read & clear a TFM | 
|  | * | 
|  | * The GRU has an array of fault maps. A map is private to a cpu | 
|  | * Only one cpu will be accessing a cpu's fault map. | 
|  | * | 
|  | * This function scans the cpu-private fault map & clears all bits that | 
|  | * are set. The function returns a bitmap that indicates the bits that | 
|  | * were cleared. Note that sense the maps may be updated asynchronously by | 
|  | * the GRU, atomic operations must be used to clear bits. | 
|  | */ | 
|  | static void get_clear_fault_map(struct gru_state *gru, | 
|  | struct gru_tlb_fault_map *map) | 
|  | { | 
|  | unsigned long i, k; | 
|  | struct gru_tlb_fault_map *tfm; | 
|  |  | 
|  | tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id()); | 
|  | prefetchw(tfm);		/* Helps on hardware, required for emulator */ | 
|  | for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) { | 
|  | k = tfm->fault_bits[i]; | 
|  | if (k) | 
|  | k = xchg(&tfm->fault_bits[i], 0UL); | 
|  | map->fault_bits[i] = k; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not functionally required but helps performance. (Required | 
|  | * on emulator) | 
|  | */ | 
|  | gru_flush_cache(tfm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Atomic (interrupt context) & non-atomic (user context) functions to | 
|  | * convert a vaddr into a physical address. The size of the page | 
|  | * is returned in pageshift. | 
|  | * 	returns: | 
|  | * 		  0 - successful | 
|  | * 		< 0 - error code | 
|  | * 		  1 - (atomic only) try again in non-atomic context | 
|  | */ | 
|  | static int non_atomic_pte_lookup(struct vm_area_struct *vma, | 
|  | unsigned long vaddr, int write, | 
|  | unsigned long *paddr, int *pageshift) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | /* ZZZ Need to handle HUGE pages */ | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | return -EFAULT; | 
|  | *pageshift = PAGE_SHIFT; | 
|  | if (get_user_pages | 
|  | (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0) | 
|  | return -EFAULT; | 
|  | *paddr = page_to_phys(page); | 
|  | put_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * atomic_pte_lookup | 
|  | * | 
|  | * Convert a user virtual address to a physical address | 
|  | * Only supports Intel large pages (2MB only) on x86_64. | 
|  | *	ZZZ - hugepage support is incomplete | 
|  | * | 
|  | * NOTE: mmap_sem is already held on entry to this function. This | 
|  | * guarantees existence of the page tables. | 
|  | */ | 
|  | static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, | 
|  | int write, unsigned long *paddr, int *pageshift) | 
|  | { | 
|  | pgd_t *pgdp; | 
|  | pmd_t *pmdp; | 
|  | pud_t *pudp; | 
|  | pte_t pte; | 
|  |  | 
|  | pgdp = pgd_offset(vma->vm_mm, vaddr); | 
|  | if (unlikely(pgd_none(*pgdp))) | 
|  | goto err; | 
|  |  | 
|  | pudp = pud_offset(pgdp, vaddr); | 
|  | if (unlikely(pud_none(*pudp))) | 
|  | goto err; | 
|  |  | 
|  | pmdp = pmd_offset(pudp, vaddr); | 
|  | if (unlikely(pmd_none(*pmdp))) | 
|  | goto err; | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (unlikely(pmd_large(*pmdp))) | 
|  | pte = *(pte_t *) pmdp; | 
|  | else | 
|  | #endif | 
|  | pte = *pte_offset_kernel(pmdp, vaddr); | 
|  |  | 
|  | if (unlikely(!pte_present(pte) || | 
|  | (write && (!pte_write(pte) || !pte_dirty(pte))))) | 
|  | return 1; | 
|  |  | 
|  | *paddr = pte_pfn(pte) << PAGE_SHIFT; | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; | 
|  | #else | 
|  | *pageshift = PAGE_SHIFT; | 
|  | #endif | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | local_irq_enable(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr, | 
|  | int write, int atomic, unsigned long *gpa, int *pageshift) | 
|  | { | 
|  | struct mm_struct *mm = gts->ts_mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long paddr; | 
|  | int ret, ps; | 
|  |  | 
|  | vma = find_vma(mm, vaddr); | 
|  | if (!vma) | 
|  | goto inval; | 
|  |  | 
|  | /* | 
|  | * Atomic lookup is faster & usually works even if called in non-atomic | 
|  | * context. | 
|  | */ | 
|  | rmb();	/* Must/check ms_range_active before loading PTEs */ | 
|  | ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps); | 
|  | if (ret) { | 
|  | if (atomic) | 
|  | goto upm; | 
|  | if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps)) | 
|  | goto inval; | 
|  | } | 
|  | if (is_gru_paddr(paddr)) | 
|  | goto inval; | 
|  | paddr = paddr & ~((1UL << ps) - 1); | 
|  | *gpa = uv_soc_phys_ram_to_gpa(paddr); | 
|  | *pageshift = ps; | 
|  | return 0; | 
|  |  | 
|  | inval: | 
|  | return -1; | 
|  | upm: | 
|  | return -2; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Drop a TLB entry into the GRU. The fault is described by info in an TFH. | 
|  | *	Input: | 
|  | *		cb    Address of user CBR. Null if not running in user context | 
|  | * 	Return: | 
|  | * 		  0 = dropin, exception, or switch to UPM successful | 
|  | * 		  1 = range invalidate active | 
|  | * 		< 0 = error code | 
|  | * | 
|  | */ | 
|  | static int gru_try_dropin(struct gru_thread_state *gts, | 
|  | struct gru_tlb_fault_handle *tfh, | 
|  | unsigned long __user *cb) | 
|  | { | 
|  | int pageshift = 0, asid, write, ret, atomic = !cb; | 
|  | unsigned long gpa = 0, vaddr = 0; | 
|  |  | 
|  | /* | 
|  | * NOTE: The GRU contains magic hardware that eliminates races between | 
|  | * TLB invalidates and TLB dropins. If an invalidate occurs | 
|  | * in the window between reading the TFH and the subsequent TLB dropin, | 
|  | * the dropin is ignored. This eliminates the need for additional locks. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call. | 
|  | * Might be a hardware race OR a stupid user. Ignore FMM because FMM | 
|  | * is a transient state. | 
|  | */ | 
|  | if (tfh->state == TFHSTATE_IDLE) | 
|  | goto failidle; | 
|  | if (tfh->state == TFHSTATE_MISS_FMM && cb) | 
|  | goto failfmm; | 
|  |  | 
|  | write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0; | 
|  | vaddr = tfh->missvaddr; | 
|  | asid = tfh->missasid; | 
|  | if (asid == 0) | 
|  | goto failnoasid; | 
|  |  | 
|  | rmb();	/* TFH must be cache resident before reading ms_range_active */ | 
|  |  | 
|  | /* | 
|  | * TFH is cache resident - at least briefly. Fail the dropin | 
|  | * if a range invalidate is active. | 
|  | */ | 
|  | if (atomic_read(>s->ts_gms->ms_range_active)) | 
|  | goto failactive; | 
|  |  | 
|  | ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); | 
|  | if (ret == -1) | 
|  | goto failinval; | 
|  | if (ret == -2) | 
|  | goto failupm; | 
|  |  | 
|  | gru_cb_set_istatus_active(cb); | 
|  | tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write, | 
|  | GRU_PAGESIZE(pageshift)); | 
|  | STAT(tlb_dropin); | 
|  | gru_dbg(grudev, | 
|  | "%s: tfh 0x%p, vaddr 0x%lx, asid 0x%x, ps %d, gpa 0x%lx\n", | 
|  | ret ? "non-atomic" : "atomic", tfh, vaddr, asid, | 
|  | pageshift, gpa); | 
|  | return 0; | 
|  |  | 
|  | failnoasid: | 
|  | /* No asid (delayed unload). */ | 
|  | STAT(tlb_dropin_fail_no_asid); | 
|  | gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); | 
|  | if (!cb) | 
|  | tfh_user_polling_mode(tfh); | 
|  | else | 
|  | gru_flush_cache(tfh); | 
|  | return -EAGAIN; | 
|  |  | 
|  | failupm: | 
|  | /* Atomic failure switch CBR to UPM */ | 
|  | tfh_user_polling_mode(tfh); | 
|  | STAT(tlb_dropin_fail_upm); | 
|  | gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); | 
|  | return 1; | 
|  |  | 
|  | failfmm: | 
|  | /* FMM state on UPM call */ | 
|  | gru_flush_cache(tfh); | 
|  | STAT(tlb_dropin_fail_fmm); | 
|  | gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state); | 
|  | return 0; | 
|  |  | 
|  | failidle: | 
|  | /* TFH was idle  - no miss pending */ | 
|  | gru_flush_cache(tfh); | 
|  | if (cb) | 
|  | gru_flush_cache(cb); | 
|  | STAT(tlb_dropin_fail_idle); | 
|  | gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state); | 
|  | return 0; | 
|  |  | 
|  | failinval: | 
|  | /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */ | 
|  | tfh_exception(tfh); | 
|  | STAT(tlb_dropin_fail_invalid); | 
|  | gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); | 
|  | return -EFAULT; | 
|  |  | 
|  | failactive: | 
|  | /* Range invalidate active. Switch to UPM iff atomic */ | 
|  | if (!cb) | 
|  | tfh_user_polling_mode(tfh); | 
|  | else | 
|  | gru_flush_cache(tfh); | 
|  | STAT(tlb_dropin_fail_range_active); | 
|  | gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n", | 
|  | tfh, vaddr); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an external interrupt from the GRU. This interrupt is | 
|  | * caused by a TLB miss. | 
|  | * Note that this is the interrupt handler that is registered with linux | 
|  | * interrupt handlers. | 
|  | */ | 
|  | irqreturn_t gru_intr(int irq, void *dev_id) | 
|  | { | 
|  | struct gru_state *gru; | 
|  | struct gru_tlb_fault_map map; | 
|  | struct gru_thread_state *gts; | 
|  | struct gru_tlb_fault_handle *tfh = NULL; | 
|  | int cbrnum, ctxnum; | 
|  |  | 
|  | STAT(intr); | 
|  |  | 
|  | gru = irq_to_gru(irq); | 
|  | if (!gru) { | 
|  | dev_err(grudev, "GRU: invalid interrupt: cpu %d, irq %d\n", | 
|  | raw_smp_processor_id(), irq); | 
|  | return IRQ_NONE; | 
|  | } | 
|  | get_clear_fault_map(gru, &map); | 
|  | gru_dbg(grudev, "irq %d, gru %x, map 0x%lx\n", irq, gru->gs_gid, | 
|  | map.fault_bits[0]); | 
|  |  | 
|  | for_each_cbr_in_tfm(cbrnum, map.fault_bits) { | 
|  | tfh = get_tfh_by_index(gru, cbrnum); | 
|  | prefetchw(tfh);	/* Helps on hdw, required for emulator */ | 
|  |  | 
|  | /* | 
|  | * When hardware sets a bit in the faultmap, it implicitly | 
|  | * locks the GRU context so that it cannot be unloaded. | 
|  | * The gts cannot change until a TFH start/writestart command | 
|  | * is issued. | 
|  | */ | 
|  | ctxnum = tfh->ctxnum; | 
|  | gts = gru->gs_gts[ctxnum]; | 
|  |  | 
|  | /* | 
|  | * This is running in interrupt context. Trylock the mmap_sem. | 
|  | * If it fails, retry the fault in user context. | 
|  | */ | 
|  | if (down_read_trylock(>s->ts_mm->mmap_sem)) { | 
|  | gru_try_dropin(gts, tfh, NULL); | 
|  | up_read(>s->ts_mm->mmap_sem); | 
|  | } else { | 
|  | tfh_user_polling_mode(tfh); | 
|  | STAT(intr_mm_lock_failed); | 
|  | } | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int gru_user_dropin(struct gru_thread_state *gts, | 
|  | struct gru_tlb_fault_handle *tfh, | 
|  | unsigned long __user *cb) | 
|  | { | 
|  | struct gru_mm_struct *gms = gts->ts_gms; | 
|  | int ret; | 
|  |  | 
|  | while (1) { | 
|  | wait_event(gms->ms_wait_queue, | 
|  | atomic_read(&gms->ms_range_active) == 0); | 
|  | prefetchw(tfh);	/* Helps on hdw, required for emulator */ | 
|  | ret = gru_try_dropin(gts, tfh, cb); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | STAT(call_os_wait_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This interface is called as a result of a user detecting a "call OS" bit | 
|  | * in a user CB. Normally means that a TLB fault has occurred. | 
|  | * 	cb - user virtual address of the CB | 
|  | */ | 
|  | int gru_handle_user_call_os(unsigned long cb) | 
|  | { | 
|  | struct gru_tlb_fault_handle *tfh; | 
|  | struct gru_thread_state *gts; | 
|  | unsigned long __user *cbp; | 
|  | int ucbnum, cbrnum, ret = -EINVAL; | 
|  |  | 
|  | STAT(call_os); | 
|  | gru_dbg(grudev, "address 0x%lx\n", cb); | 
|  |  | 
|  | /* sanity check the cb pointer */ | 
|  | ucbnum = get_cb_number((void *)cb); | 
|  | if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB) | 
|  | return -EINVAL; | 
|  | cbp = (unsigned long *)cb; | 
|  |  | 
|  | gts = gru_find_lock_gts(cb); | 
|  | if (!gts) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * If force_unload is set, the UPM TLB fault is phony. The task | 
|  | * has migrated to another node and the GSEG must be moved. Just | 
|  | * unload the context. The task will page fault and assign a new | 
|  | * context. | 
|  | */ | 
|  | if (gts->ts_tgid_owner == current->tgid && gts->ts_blade >= 0 && | 
|  | gts->ts_blade != uv_numa_blade_id()) { | 
|  | STAT(call_os_offnode_reference); | 
|  | gts->ts_force_unload = 1; | 
|  | } | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | cbrnum = thread_cbr_number(gts, ucbnum); | 
|  | if (gts->ts_force_unload) { | 
|  | gru_unload_context(gts, 1); | 
|  | } else if (gts->ts_gru) { | 
|  | tfh = get_tfh_by_index(gts->ts_gru, cbrnum); | 
|  | ret = gru_user_dropin(gts, tfh, cbp); | 
|  | } | 
|  | exit: | 
|  | gru_unlock_gts(gts); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch the exception detail information for a CB that terminated with | 
|  | * an exception. | 
|  | */ | 
|  | int gru_get_exception_detail(unsigned long arg) | 
|  | { | 
|  | struct control_block_extended_exc_detail excdet; | 
|  | struct gru_control_block_extended *cbe; | 
|  | struct gru_thread_state *gts; | 
|  | int ucbnum, cbrnum, ret; | 
|  |  | 
|  | STAT(user_exception); | 
|  | if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet))) | 
|  | return -EFAULT; | 
|  |  | 
|  | gru_dbg(grudev, "address 0x%lx\n", excdet.cb); | 
|  | gts = gru_find_lock_gts(excdet.cb); | 
|  | if (!gts) | 
|  | return -EINVAL; | 
|  |  | 
|  | ucbnum = get_cb_number((void *)excdet.cb); | 
|  | if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) { | 
|  | ret = -EINVAL; | 
|  | } else if (gts->ts_gru) { | 
|  | cbrnum = thread_cbr_number(gts, ucbnum); | 
|  | cbe = get_cbe_by_index(gts->ts_gru, cbrnum); | 
|  | prefetchw(cbe);/* Harmless on hardware, required for emulator */ | 
|  | excdet.opc = cbe->opccpy; | 
|  | excdet.exopc = cbe->exopccpy; | 
|  | excdet.ecause = cbe->ecause; | 
|  | excdet.exceptdet0 = cbe->idef1upd; | 
|  | excdet.exceptdet1 = cbe->idef3upd; | 
|  | ret = 0; | 
|  | } else { | 
|  | ret = -EAGAIN; | 
|  | } | 
|  | gru_unlock_gts(gts); | 
|  |  | 
|  | gru_dbg(grudev, "address 0x%lx, ecause 0x%x\n", excdet.cb, | 
|  | excdet.ecause); | 
|  | if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet))) | 
|  | ret = -EFAULT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * User request to unload a context. Content is saved for possible reload. | 
|  | */ | 
|  | static int gru_unload_all_contexts(void) | 
|  | { | 
|  | struct gru_thread_state *gts; | 
|  | struct gru_state *gru; | 
|  | int maxgid, gid, ctxnum; | 
|  | int nodesperblade; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (num_online_nodes() > 1 && | 
|  | (uv_node_to_blade_id(1) == uv_node_to_blade_id(0))) | 
|  | nodesperblade = 2; | 
|  | else | 
|  | nodesperblade = 1; | 
|  | maxgid = GRU_CHIPLETS_PER_BLADE * num_online_nodes() / nodesperblade; | 
|  | for (gid = 0; gid < maxgid; gid++) { | 
|  | gru = GID_TO_GRU(gid); | 
|  | spin_lock(&gru->gs_lock); | 
|  | for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) { | 
|  | gts = gru->gs_gts[ctxnum]; | 
|  | if (gts && mutex_trylock(>s->ts_ctxlock)) { | 
|  | spin_unlock(&gru->gs_lock); | 
|  | gru_unload_context(gts, 1); | 
|  | gru_unlock_gts(gts); | 
|  | spin_lock(&gru->gs_lock); | 
|  | } | 
|  | } | 
|  | spin_unlock(&gru->gs_lock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int gru_user_unload_context(unsigned long arg) | 
|  | { | 
|  | struct gru_thread_state *gts; | 
|  | struct gru_unload_context_req req; | 
|  |  | 
|  | STAT(user_unload_context); | 
|  | if (copy_from_user(&req, (void __user *)arg, sizeof(req))) | 
|  | return -EFAULT; | 
|  |  | 
|  | gru_dbg(grudev, "gseg 0x%lx\n", req.gseg); | 
|  |  | 
|  | if (!req.gseg) | 
|  | return gru_unload_all_contexts(); | 
|  |  | 
|  | gts = gru_find_lock_gts(req.gseg); | 
|  | if (!gts) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (gts->ts_gru) | 
|  | gru_unload_context(gts, 1); | 
|  | gru_unlock_gts(gts); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * User request to flush a range of virtual addresses from the GRU TLB | 
|  | * (Mainly for testing). | 
|  | */ | 
|  | int gru_user_flush_tlb(unsigned long arg) | 
|  | { | 
|  | struct gru_thread_state *gts; | 
|  | struct gru_flush_tlb_req req; | 
|  |  | 
|  | STAT(user_flush_tlb); | 
|  | if (copy_from_user(&req, (void __user *)arg, sizeof(req))) | 
|  | return -EFAULT; | 
|  |  | 
|  | gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg, | 
|  | req.vaddr, req.len); | 
|  |  | 
|  | gts = gru_find_lock_gts(req.gseg); | 
|  | if (!gts) | 
|  | return -EINVAL; | 
|  |  | 
|  | gru_flush_tlb_range(gts->ts_gms, req.vaddr, req.len); | 
|  | gru_unlock_gts(gts); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register the current task as the user of the GSEG slice. | 
|  | * Needed for TLB fault interrupt targeting. | 
|  | */ | 
|  | int gru_set_task_slice(long address) | 
|  | { | 
|  | struct gru_thread_state *gts; | 
|  |  | 
|  | STAT(set_task_slice); | 
|  | gru_dbg(grudev, "address 0x%lx\n", address); | 
|  | gts = gru_alloc_locked_gts(address); | 
|  | if (!gts) | 
|  | return -EINVAL; | 
|  |  | 
|  | gts->ts_tgid_owner = current->tgid; | 
|  | gru_unlock_gts(gts); | 
|  |  | 
|  | return 0; | 
|  | } |