|  | /* -*- mode: c; c-basic-offset: 8; -*- | 
|  | * vim: noexpandtab sw=8 ts=8 sts=0: | 
|  | * | 
|  | * Copyright (C) 2002, 2004 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/pipe_fs_i.h> | 
|  | #include <linux/mpage.h> | 
|  |  | 
|  | #define MLOG_MASK_PREFIX ML_FILE_IO | 
|  | #include <cluster/masklog.h> | 
|  |  | 
|  | #include "ocfs2.h" | 
|  |  | 
|  | #include "alloc.h" | 
|  | #include "aops.h" | 
|  | #include "dlmglue.h" | 
|  | #include "extent_map.h" | 
|  | #include "file.h" | 
|  | #include "inode.h" | 
|  | #include "journal.h" | 
|  | #include "suballoc.h" | 
|  | #include "super.h" | 
|  | #include "symlink.h" | 
|  |  | 
|  | #include "buffer_head_io.h" | 
|  |  | 
|  | static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh_result, int create) | 
|  | { | 
|  | int err = -EIO; | 
|  | int status; | 
|  | struct ocfs2_dinode *fe = NULL; | 
|  | struct buffer_head *bh = NULL; | 
|  | struct buffer_head *buffer_cache_bh = NULL; | 
|  | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | 
|  | void *kaddr; | 
|  |  | 
|  | mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, | 
|  | (unsigned long long)iblock, bh_result, create); | 
|  |  | 
|  | BUG_ON(ocfs2_inode_is_fast_symlink(inode)); | 
|  |  | 
|  | if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { | 
|  | mlog(ML_ERROR, "block offset > PATH_MAX: %llu", | 
|  | (unsigned long long)iblock); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | status = ocfs2_read_block(OCFS2_SB(inode->i_sb), | 
|  | OCFS2_I(inode)->ip_blkno, | 
|  | &bh, OCFS2_BH_CACHED, inode); | 
|  | if (status < 0) { | 
|  | mlog_errno(status); | 
|  | goto bail; | 
|  | } | 
|  | fe = (struct ocfs2_dinode *) bh->b_data; | 
|  |  | 
|  | if (!OCFS2_IS_VALID_DINODE(fe)) { | 
|  | mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n", | 
|  | (unsigned long long)le64_to_cpu(fe->i_blkno), 7, | 
|  | fe->i_signature); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, | 
|  | le32_to_cpu(fe->i_clusters))) { | 
|  | mlog(ML_ERROR, "block offset is outside the allocated size: " | 
|  | "%llu\n", (unsigned long long)iblock); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* We don't use the page cache to create symlink data, so if | 
|  | * need be, copy it over from the buffer cache. */ | 
|  | if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { | 
|  | u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + | 
|  | iblock; | 
|  | buffer_cache_bh = sb_getblk(osb->sb, blkno); | 
|  | if (!buffer_cache_bh) { | 
|  | mlog(ML_ERROR, "couldn't getblock for symlink!\n"); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* we haven't locked out transactions, so a commit | 
|  | * could've happened. Since we've got a reference on | 
|  | * the bh, even if it commits while we're doing the | 
|  | * copy, the data is still good. */ | 
|  | if (buffer_jbd(buffer_cache_bh) | 
|  | && ocfs2_inode_is_new(inode)) { | 
|  | kaddr = kmap_atomic(bh_result->b_page, KM_USER0); | 
|  | if (!kaddr) { | 
|  | mlog(ML_ERROR, "couldn't kmap!\n"); | 
|  | goto bail; | 
|  | } | 
|  | memcpy(kaddr + (bh_result->b_size * iblock), | 
|  | buffer_cache_bh->b_data, | 
|  | bh_result->b_size); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | set_buffer_uptodate(bh_result); | 
|  | } | 
|  | brelse(buffer_cache_bh); | 
|  | } | 
|  |  | 
|  | map_bh(bh_result, inode->i_sb, | 
|  | le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | bail: | 
|  | if (bh) | 
|  | brelse(bh); | 
|  |  | 
|  | mlog_exit(err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ocfs2_get_block(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh_result, int create) | 
|  | { | 
|  | int err = 0; | 
|  | unsigned int ext_flags; | 
|  | u64 max_blocks = bh_result->b_size >> inode->i_blkbits; | 
|  | u64 p_blkno, count, past_eof; | 
|  | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | 
|  |  | 
|  | mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, | 
|  | (unsigned long long)iblock, bh_result, create); | 
|  |  | 
|  | if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) | 
|  | mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", | 
|  | inode, inode->i_ino); | 
|  |  | 
|  | if (S_ISLNK(inode->i_mode)) { | 
|  | /* this always does I/O for some reason. */ | 
|  | err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, | 
|  | &ext_flags); | 
|  | if (err) { | 
|  | mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " | 
|  | "%llu, NULL)\n", err, inode, (unsigned long long)iblock, | 
|  | (unsigned long long)p_blkno); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | if (max_blocks < count) | 
|  | count = max_blocks; | 
|  |  | 
|  | /* | 
|  | * ocfs2 never allocates in this function - the only time we | 
|  | * need to use BH_New is when we're extending i_size on a file | 
|  | * system which doesn't support holes, in which case BH_New | 
|  | * allows block_prepare_write() to zero. | 
|  | * | 
|  | * If we see this on a sparse file system, then a truncate has | 
|  | * raced us and removed the cluster. In this case, we clear | 
|  | * the buffers dirty and uptodate bits and let the buffer code | 
|  | * ignore it as a hole. | 
|  | */ | 
|  | if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { | 
|  | clear_buffer_dirty(bh_result); | 
|  | clear_buffer_uptodate(bh_result); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* Treat the unwritten extent as a hole for zeroing purposes. */ | 
|  | if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) | 
|  | map_bh(bh_result, inode->i_sb, p_blkno); | 
|  |  | 
|  | bh_result->b_size = count << inode->i_blkbits; | 
|  |  | 
|  | if (!ocfs2_sparse_alloc(osb)) { | 
|  | if (p_blkno == 0) { | 
|  | err = -EIO; | 
|  | mlog(ML_ERROR, | 
|  | "iblock = %llu p_blkno = %llu blkno=(%llu)\n", | 
|  | (unsigned long long)iblock, | 
|  | (unsigned long long)p_blkno, | 
|  | (unsigned long long)OCFS2_I(inode)->ip_blkno); | 
|  | mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); | 
|  | mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, | 
|  | (unsigned long long)past_eof); | 
|  |  | 
|  | if (create && (iblock >= past_eof)) | 
|  | set_buffer_new(bh_result); | 
|  | } | 
|  |  | 
|  | bail: | 
|  | if (err < 0) | 
|  | err = -EIO; | 
|  |  | 
|  | mlog_exit(err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ocfs2_read_inline_data(struct inode *inode, struct page *page, | 
|  | struct buffer_head *di_bh) | 
|  | { | 
|  | void *kaddr; | 
|  | loff_t size; | 
|  | struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; | 
|  |  | 
|  | if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { | 
|  | ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", | 
|  | (unsigned long long)OCFS2_I(inode)->ip_blkno); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | size = i_size_read(inode); | 
|  |  | 
|  | if (size > PAGE_CACHE_SIZE || | 
|  | size > ocfs2_max_inline_data(inode->i_sb)) { | 
|  | ocfs2_error(inode->i_sb, | 
|  | "Inode %llu has with inline data has bad size: %Lu", | 
|  | (unsigned long long)OCFS2_I(inode)->ip_blkno, | 
|  | (unsigned long long)size); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | if (size) | 
|  | memcpy(kaddr, di->id2.i_data.id_data, size); | 
|  | /* Clear the remaining part of the page */ | 
|  | memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  |  | 
|  | SetPageUptodate(page); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ocfs2_readpage_inline(struct inode *inode, struct page *page) | 
|  | { | 
|  | int ret; | 
|  | struct buffer_head *di_bh = NULL; | 
|  | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); | 
|  |  | 
|  | ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh, | 
|  | OCFS2_BH_CACHED, inode); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = ocfs2_read_inline_data(inode, page, di_bh); | 
|  | out: | 
|  | unlock_page(page); | 
|  |  | 
|  | brelse(di_bh); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ocfs2_readpage(struct file *file, struct page *page) | 
|  | { | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct ocfs2_inode_info *oi = OCFS2_I(inode); | 
|  | loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; | 
|  | int ret, unlock = 1; | 
|  |  | 
|  | mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); | 
|  |  | 
|  | ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); | 
|  | if (ret != 0) { | 
|  | if (ret == AOP_TRUNCATED_PAGE) | 
|  | unlock = 0; | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (down_read_trylock(&oi->ip_alloc_sem) == 0) { | 
|  | ret = AOP_TRUNCATED_PAGE; | 
|  | goto out_inode_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * i_size might have just been updated as we grabed the meta lock.  We | 
|  | * might now be discovering a truncate that hit on another node. | 
|  | * block_read_full_page->get_block freaks out if it is asked to read | 
|  | * beyond the end of a file, so we check here.  Callers | 
|  | * (generic_file_read, vm_ops->fault) are clever enough to check i_size | 
|  | * and notice that the page they just read isn't needed. | 
|  | * | 
|  | * XXX sys_readahead() seems to get that wrong? | 
|  | */ | 
|  | if (start >= i_size_read(inode)) { | 
|  | zero_user(page, 0, PAGE_SIZE); | 
|  | SetPageUptodate(page); | 
|  | ret = 0; | 
|  | goto out_alloc; | 
|  | } | 
|  |  | 
|  | if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) | 
|  | ret = ocfs2_readpage_inline(inode, page); | 
|  | else | 
|  | ret = block_read_full_page(page, ocfs2_get_block); | 
|  | unlock = 0; | 
|  |  | 
|  | out_alloc: | 
|  | up_read(&OCFS2_I(inode)->ip_alloc_sem); | 
|  | out_inode_unlock: | 
|  | ocfs2_inode_unlock(inode, 0); | 
|  | out: | 
|  | if (unlock) | 
|  | unlock_page(page); | 
|  | mlog_exit(ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is used only for read-ahead. Failures or difficult to handle | 
|  | * situations are safe to ignore. | 
|  | * | 
|  | * Right now, we don't bother with BH_Boundary - in-inode extent lists | 
|  | * are quite large (243 extents on 4k blocks), so most inodes don't | 
|  | * grow out to a tree. If need be, detecting boundary extents could | 
|  | * trivially be added in a future version of ocfs2_get_block(). | 
|  | */ | 
|  | static int ocfs2_readpages(struct file *filp, struct address_space *mapping, | 
|  | struct list_head *pages, unsigned nr_pages) | 
|  | { | 
|  | int ret, err = -EIO; | 
|  | struct inode *inode = mapping->host; | 
|  | struct ocfs2_inode_info *oi = OCFS2_I(inode); | 
|  | loff_t start; | 
|  | struct page *last; | 
|  |  | 
|  | /* | 
|  | * Use the nonblocking flag for the dlm code to avoid page | 
|  | * lock inversion, but don't bother with retrying. | 
|  | */ | 
|  | ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); | 
|  | if (ret) | 
|  | return err; | 
|  |  | 
|  | if (down_read_trylock(&oi->ip_alloc_sem) == 0) { | 
|  | ocfs2_inode_unlock(inode, 0); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't bother with inline-data. There isn't anything | 
|  | * to read-ahead in that case anyway... | 
|  | */ | 
|  | if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Check whether a remote node truncated this file - we just | 
|  | * drop out in that case as it's not worth handling here. | 
|  | */ | 
|  | last = list_entry(pages->prev, struct page, lru); | 
|  | start = (loff_t)last->index << PAGE_CACHE_SHIFT; | 
|  | if (start >= i_size_read(inode)) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); | 
|  |  | 
|  | out_unlock: | 
|  | up_read(&oi->ip_alloc_sem); | 
|  | ocfs2_inode_unlock(inode, 0); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Note: Because we don't support holes, our allocation has | 
|  | * already happened (allocation writes zeros to the file data) | 
|  | * so we don't have to worry about ordered writes in | 
|  | * ocfs2_writepage. | 
|  | * | 
|  | * ->writepage is called during the process of invalidating the page cache | 
|  | * during blocked lock processing.  It can't block on any cluster locks | 
|  | * to during block mapping.  It's relying on the fact that the block | 
|  | * mapping can't have disappeared under the dirty pages that it is | 
|  | * being asked to write back. | 
|  | */ | 
|  | static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mlog_entry("(0x%p)\n", page); | 
|  |  | 
|  | ret = block_write_full_page(page, ocfs2_get_block, wbc); | 
|  |  | 
|  | mlog_exit(ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called from ocfs2_write_zero_page() which has handled it's | 
|  | * own cluster locking and has ensured allocation exists for those | 
|  | * blocks to be written. | 
|  | */ | 
|  | int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, | 
|  | unsigned from, unsigned to) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = block_prepare_write(page, from, to, ocfs2_get_block); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Taken from ext3. We don't necessarily need the full blown | 
|  | * functionality yet, but IMHO it's better to cut and paste the whole | 
|  | * thing so we can avoid introducing our own bugs (and easily pick up | 
|  | * their fixes when they happen) --Mark */ | 
|  | int walk_page_buffers(	handle_t *handle, | 
|  | struct buffer_head *head, | 
|  | unsigned from, | 
|  | unsigned to, | 
|  | int *partial, | 
|  | int (*fn)(	handle_t *handle, | 
|  | struct buffer_head *bh)) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | unsigned block_start, block_end; | 
|  | unsigned blocksize = head->b_size; | 
|  | int err, ret = 0; | 
|  | struct buffer_head *next; | 
|  |  | 
|  | for (	bh = head, block_start = 0; | 
|  | ret == 0 && (bh != head || !block_start); | 
|  | block_start = block_end, bh = next) | 
|  | { | 
|  | next = bh->b_this_page; | 
|  | block_end = block_start + blocksize; | 
|  | if (block_end <= from || block_start >= to) { | 
|  | if (partial && !buffer_uptodate(bh)) | 
|  | *partial = 1; | 
|  | continue; | 
|  | } | 
|  | err = (*fn)(handle, bh); | 
|  | if (!ret) | 
|  | ret = err; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | handle_t *ocfs2_start_walk_page_trans(struct inode *inode, | 
|  | struct page *page, | 
|  | unsigned from, | 
|  | unsigned to) | 
|  | { | 
|  | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | 
|  | handle_t *handle; | 
|  | int ret = 0; | 
|  |  | 
|  | handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = -ENOMEM; | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ocfs2_should_order_data(inode)) { | 
|  | ret = walk_page_buffers(handle, | 
|  | page_buffers(page), | 
|  | from, to, NULL, | 
|  | ocfs2_journal_dirty_data); | 
|  | if (ret < 0) | 
|  | mlog_errno(ret); | 
|  | } | 
|  | out: | 
|  | if (ret) { | 
|  | if (!IS_ERR(handle)) | 
|  | ocfs2_commit_trans(osb, handle); | 
|  | handle = ERR_PTR(ret); | 
|  | } | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) | 
|  | { | 
|  | sector_t status; | 
|  | u64 p_blkno = 0; | 
|  | int err = 0; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | mlog_entry("(block = %llu)\n", (unsigned long long)block); | 
|  |  | 
|  | /* We don't need to lock journal system files, since they aren't | 
|  | * accessed concurrently from multiple nodes. | 
|  | */ | 
|  | if (!INODE_JOURNAL(inode)) { | 
|  | err = ocfs2_inode_lock(inode, NULL, 0); | 
|  | if (err) { | 
|  | if (err != -ENOENT) | 
|  | mlog_errno(err); | 
|  | goto bail; | 
|  | } | 
|  | down_read(&OCFS2_I(inode)->ip_alloc_sem); | 
|  | } | 
|  |  | 
|  | if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) | 
|  | err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, | 
|  | NULL); | 
|  |  | 
|  | if (!INODE_JOURNAL(inode)) { | 
|  | up_read(&OCFS2_I(inode)->ip_alloc_sem); | 
|  | ocfs2_inode_unlock(inode, 0); | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", | 
|  | (unsigned long long)block); | 
|  | mlog_errno(err); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | bail: | 
|  | status = err ? 0 : p_blkno; | 
|  |  | 
|  | mlog_exit((int)status); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: Make this into a generic get_blocks function. | 
|  | * | 
|  | * From do_direct_io in direct-io.c: | 
|  | *  "So what we do is to permit the ->get_blocks function to populate | 
|  | *   bh.b_size with the size of IO which is permitted at this offset and | 
|  | *   this i_blkbits." | 
|  | * | 
|  | * This function is called directly from get_more_blocks in direct-io.c. | 
|  | * | 
|  | * called like this: dio->get_blocks(dio->inode, fs_startblk, | 
|  | * 					fs_count, map_bh, dio->rw == WRITE); | 
|  | */ | 
|  | static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh_result, int create) | 
|  | { | 
|  | int ret; | 
|  | u64 p_blkno, inode_blocks, contig_blocks; | 
|  | unsigned int ext_flags; | 
|  | unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; | 
|  | unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; | 
|  |  | 
|  | /* This function won't even be called if the request isn't all | 
|  | * nicely aligned and of the right size, so there's no need | 
|  | * for us to check any of that. */ | 
|  |  | 
|  | inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); | 
|  |  | 
|  | /* | 
|  | * Any write past EOF is not allowed because we'd be extending. | 
|  | */ | 
|  | if (create && (iblock + max_blocks) > inode_blocks) { | 
|  | ret = -EIO; | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* This figures out the size of the next contiguous block, and | 
|  | * our logical offset */ | 
|  | ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, | 
|  | &contig_blocks, &ext_flags); | 
|  | if (ret) { | 
|  | mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", | 
|  | (unsigned long long)iblock); | 
|  | ret = -EIO; | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) { | 
|  | ocfs2_error(inode->i_sb, | 
|  | "Inode %llu has a hole at block %llu\n", | 
|  | (unsigned long long)OCFS2_I(inode)->ip_blkno, | 
|  | (unsigned long long)iblock); | 
|  | ret = -EROFS; | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_more_blocks() expects us to describe a hole by clearing | 
|  | * the mapped bit on bh_result(). | 
|  | * | 
|  | * Consider an unwritten extent as a hole. | 
|  | */ | 
|  | if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) | 
|  | map_bh(bh_result, inode->i_sb, p_blkno); | 
|  | else { | 
|  | /* | 
|  | * ocfs2_prepare_inode_for_write() should have caught | 
|  | * the case where we'd be filling a hole and triggered | 
|  | * a buffered write instead. | 
|  | */ | 
|  | if (create) { | 
|  | ret = -EIO; | 
|  | mlog_errno(ret); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | clear_buffer_mapped(bh_result); | 
|  | } | 
|  |  | 
|  | /* make sure we don't map more than max_blocks blocks here as | 
|  | that's all the kernel will handle at this point. */ | 
|  | if (max_blocks < contig_blocks) | 
|  | contig_blocks = max_blocks; | 
|  | bh_result->b_size = contig_blocks << blocksize_bits; | 
|  | bail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're | 
|  | * particularly interested in the aio/dio case.  Like the core uses | 
|  | * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from | 
|  | * truncation on another. | 
|  | */ | 
|  | static void ocfs2_dio_end_io(struct kiocb *iocb, | 
|  | loff_t offset, | 
|  | ssize_t bytes, | 
|  | void *private) | 
|  | { | 
|  | struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; | 
|  | int level; | 
|  |  | 
|  | /* this io's submitter should not have unlocked this before we could */ | 
|  | BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); | 
|  |  | 
|  | ocfs2_iocb_clear_rw_locked(iocb); | 
|  |  | 
|  | level = ocfs2_iocb_rw_locked_level(iocb); | 
|  | if (!level) | 
|  | up_read(&inode->i_alloc_sem); | 
|  | ocfs2_rw_unlock(inode, level); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen | 
|  | * from ext3.  PageChecked() bits have been removed as OCFS2 does not | 
|  | * do journalled data. | 
|  | */ | 
|  | static void ocfs2_invalidatepage(struct page *page, unsigned long offset) | 
|  | { | 
|  | journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; | 
|  |  | 
|  | journal_invalidatepage(journal, page, offset); | 
|  | } | 
|  |  | 
|  | static int ocfs2_releasepage(struct page *page, gfp_t wait) | 
|  | { | 
|  | journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; | 
|  |  | 
|  | if (!page_has_buffers(page)) | 
|  | return 0; | 
|  | return journal_try_to_free_buffers(journal, page, wait); | 
|  | } | 
|  |  | 
|  | static ssize_t ocfs2_direct_IO(int rw, | 
|  | struct kiocb *iocb, | 
|  | const struct iovec *iov, | 
|  | loff_t offset, | 
|  | unsigned long nr_segs) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; | 
|  | int ret; | 
|  |  | 
|  | mlog_entry_void(); | 
|  |  | 
|  | /* | 
|  | * Fallback to buffered I/O if we see an inode without | 
|  | * extents. | 
|  | */ | 
|  | if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) | 
|  | return 0; | 
|  |  | 
|  | ret = blockdev_direct_IO_no_locking(rw, iocb, inode, | 
|  | inode->i_sb->s_bdev, iov, offset, | 
|  | nr_segs, | 
|  | ocfs2_direct_IO_get_blocks, | 
|  | ocfs2_dio_end_io); | 
|  |  | 
|  | mlog_exit(ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, | 
|  | u32 cpos, | 
|  | unsigned int *start, | 
|  | unsigned int *end) | 
|  | { | 
|  | unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; | 
|  |  | 
|  | if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { | 
|  | unsigned int cpp; | 
|  |  | 
|  | cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); | 
|  |  | 
|  | cluster_start = cpos % cpp; | 
|  | cluster_start = cluster_start << osb->s_clustersize_bits; | 
|  |  | 
|  | cluster_end = cluster_start + osb->s_clustersize; | 
|  | } | 
|  |  | 
|  | BUG_ON(cluster_start > PAGE_SIZE); | 
|  | BUG_ON(cluster_end > PAGE_SIZE); | 
|  |  | 
|  | if (start) | 
|  | *start = cluster_start; | 
|  | if (end) | 
|  | *end = cluster_end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'from' and 'to' are the region in the page to avoid zeroing. | 
|  | * | 
|  | * If pagesize > clustersize, this function will avoid zeroing outside | 
|  | * of the cluster boundary. | 
|  | * | 
|  | * from == to == 0 is code for "zero the entire cluster region" | 
|  | */ | 
|  | static void ocfs2_clear_page_regions(struct page *page, | 
|  | struct ocfs2_super *osb, u32 cpos, | 
|  | unsigned from, unsigned to) | 
|  | { | 
|  | void *kaddr; | 
|  | unsigned int cluster_start, cluster_end; | 
|  |  | 
|  | ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); | 
|  |  | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  |  | 
|  | if (from || to) { | 
|  | if (from > cluster_start) | 
|  | memset(kaddr + cluster_start, 0, from - cluster_start); | 
|  | if (to < cluster_end) | 
|  | memset(kaddr + to, 0, cluster_end - to); | 
|  | } else { | 
|  | memset(kaddr + cluster_start, 0, cluster_end - cluster_start); | 
|  | } | 
|  |  | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Nonsparse file systems fully allocate before we get to the write | 
|  | * code. This prevents ocfs2_write() from tagging the write as an | 
|  | * allocating one, which means ocfs2_map_page_blocks() might try to | 
|  | * read-in the blocks at the tail of our file. Avoid reading them by | 
|  | * testing i_size against each block offset. | 
|  | */ | 
|  | static int ocfs2_should_read_blk(struct inode *inode, struct page *page, | 
|  | unsigned int block_start) | 
|  | { | 
|  | u64 offset = page_offset(page) + block_start; | 
|  |  | 
|  | if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) | 
|  | return 1; | 
|  |  | 
|  | if (i_size_read(inode) > offset) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some of this taken from block_prepare_write(). We already have our | 
|  | * mapping by now though, and the entire write will be allocating or | 
|  | * it won't, so not much need to use BH_New. | 
|  | * | 
|  | * This will also skip zeroing, which is handled externally. | 
|  | */ | 
|  | int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, | 
|  | struct inode *inode, unsigned int from, | 
|  | unsigned int to, int new) | 
|  | { | 
|  | int ret = 0; | 
|  | struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; | 
|  | unsigned int block_end, block_start; | 
|  | unsigned int bsize = 1 << inode->i_blkbits; | 
|  |  | 
|  | if (!page_has_buffers(page)) | 
|  | create_empty_buffers(page, bsize, 0); | 
|  |  | 
|  | head = page_buffers(page); | 
|  | for (bh = head, block_start = 0; bh != head || !block_start; | 
|  | bh = bh->b_this_page, block_start += bsize) { | 
|  | block_end = block_start + bsize; | 
|  |  | 
|  | clear_buffer_new(bh); | 
|  |  | 
|  | /* | 
|  | * Ignore blocks outside of our i/o range - | 
|  | * they may belong to unallocated clusters. | 
|  | */ | 
|  | if (block_start >= to || block_end <= from) { | 
|  | if (PageUptodate(page)) | 
|  | set_buffer_uptodate(bh); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For an allocating write with cluster size >= page | 
|  | * size, we always write the entire page. | 
|  | */ | 
|  | if (new) | 
|  | set_buffer_new(bh); | 
|  |  | 
|  | if (!buffer_mapped(bh)) { | 
|  | map_bh(bh, inode->i_sb, *p_blkno); | 
|  | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | 
|  | } | 
|  |  | 
|  | if (PageUptodate(page)) { | 
|  | if (!buffer_uptodate(bh)) | 
|  | set_buffer_uptodate(bh); | 
|  | } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && | 
|  | !buffer_new(bh) && | 
|  | ocfs2_should_read_blk(inode, page, block_start) && | 
|  | (block_start < from || block_end > to)) { | 
|  | ll_rw_block(READ, 1, &bh); | 
|  | *wait_bh++=bh; | 
|  | } | 
|  |  | 
|  | *p_blkno = *p_blkno + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we issued read requests - let them complete. | 
|  | */ | 
|  | while(wait_bh > wait) { | 
|  | wait_on_buffer(*--wait_bh); | 
|  | if (!buffer_uptodate(*wait_bh)) | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | if (ret == 0 || !new) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If we get -EIO above, zero out any newly allocated blocks | 
|  | * to avoid exposing stale data. | 
|  | */ | 
|  | bh = head; | 
|  | block_start = 0; | 
|  | do { | 
|  | block_end = block_start + bsize; | 
|  | if (block_end <= from) | 
|  | goto next_bh; | 
|  | if (block_start >= to) | 
|  | break; | 
|  |  | 
|  | zero_user(page, block_start, bh->b_size); | 
|  | set_buffer_uptodate(bh); | 
|  | mark_buffer_dirty(bh); | 
|  |  | 
|  | next_bh: | 
|  | block_start = block_end; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) | 
|  | #define OCFS2_MAX_CTXT_PAGES	1 | 
|  | #else | 
|  | #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) | 
|  | #endif | 
|  |  | 
|  | #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) | 
|  |  | 
|  | /* | 
|  | * Describe the state of a single cluster to be written to. | 
|  | */ | 
|  | struct ocfs2_write_cluster_desc { | 
|  | u32		c_cpos; | 
|  | u32		c_phys; | 
|  | /* | 
|  | * Give this a unique field because c_phys eventually gets | 
|  | * filled. | 
|  | */ | 
|  | unsigned	c_new; | 
|  | unsigned	c_unwritten; | 
|  | }; | 
|  |  | 
|  | static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d) | 
|  | { | 
|  | return d->c_new || d->c_unwritten; | 
|  | } | 
|  |  | 
|  | struct ocfs2_write_ctxt { | 
|  | /* Logical cluster position / len of write */ | 
|  | u32				w_cpos; | 
|  | u32				w_clen; | 
|  |  | 
|  | struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; | 
|  |  | 
|  | /* | 
|  | * This is true if page_size > cluster_size. | 
|  | * | 
|  | * It triggers a set of special cases during write which might | 
|  | * have to deal with allocating writes to partial pages. | 
|  | */ | 
|  | unsigned int			w_large_pages; | 
|  |  | 
|  | /* | 
|  | * Pages involved in this write. | 
|  | * | 
|  | * w_target_page is the page being written to by the user. | 
|  | * | 
|  | * w_pages is an array of pages which always contains | 
|  | * w_target_page, and in the case of an allocating write with | 
|  | * page_size < cluster size, it will contain zero'd and mapped | 
|  | * pages adjacent to w_target_page which need to be written | 
|  | * out in so that future reads from that region will get | 
|  | * zero's. | 
|  | */ | 
|  | struct page			*w_pages[OCFS2_MAX_CTXT_PAGES]; | 
|  | unsigned int			w_num_pages; | 
|  | struct page			*w_target_page; | 
|  |  | 
|  | /* | 
|  | * ocfs2_write_end() uses this to know what the real range to | 
|  | * write in the target should be. | 
|  | */ | 
|  | unsigned int			w_target_from; | 
|  | unsigned int			w_target_to; | 
|  |  | 
|  | /* | 
|  | * We could use journal_current_handle() but this is cleaner, | 
|  | * IMHO -Mark | 
|  | */ | 
|  | handle_t			*w_handle; | 
|  |  | 
|  | struct buffer_head		*w_di_bh; | 
|  |  | 
|  | struct ocfs2_cached_dealloc_ctxt w_dealloc; | 
|  | }; | 
|  |  | 
|  | void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for(i = 0; i < num_pages; i++) { | 
|  | if (pages[i]) { | 
|  | unlock_page(pages[i]); | 
|  | mark_page_accessed(pages[i]); | 
|  | page_cache_release(pages[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) | 
|  | { | 
|  | ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); | 
|  |  | 
|  | brelse(wc->w_di_bh); | 
|  | kfree(wc); | 
|  | } | 
|  |  | 
|  | static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, | 
|  | struct ocfs2_super *osb, loff_t pos, | 
|  | unsigned len, struct buffer_head *di_bh) | 
|  | { | 
|  | u32 cend; | 
|  | struct ocfs2_write_ctxt *wc; | 
|  |  | 
|  | wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); | 
|  | if (!wc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | wc->w_cpos = pos >> osb->s_clustersize_bits; | 
|  | cend = (pos + len - 1) >> osb->s_clustersize_bits; | 
|  | wc->w_clen = cend - wc->w_cpos + 1; | 
|  | get_bh(di_bh); | 
|  | wc->w_di_bh = di_bh; | 
|  |  | 
|  | if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) | 
|  | wc->w_large_pages = 1; | 
|  | else | 
|  | wc->w_large_pages = 0; | 
|  |  | 
|  | ocfs2_init_dealloc_ctxt(&wc->w_dealloc); | 
|  |  | 
|  | *wcp = wc; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a page has any new buffers, zero them out here, and mark them uptodate | 
|  | * and dirty so they'll be written out (in order to prevent uninitialised | 
|  | * block data from leaking). And clear the new bit. | 
|  | */ | 
|  | static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) | 
|  | { | 
|  | unsigned int block_start, block_end; | 
|  | struct buffer_head *head, *bh; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | if (!page_has_buffers(page)) | 
|  | return; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | block_start = 0; | 
|  | do { | 
|  | block_end = block_start + bh->b_size; | 
|  |  | 
|  | if (buffer_new(bh)) { | 
|  | if (block_end > from && block_start < to) { | 
|  | if (!PageUptodate(page)) { | 
|  | unsigned start, end; | 
|  |  | 
|  | start = max(from, block_start); | 
|  | end = min(to, block_end); | 
|  |  | 
|  | zero_user_segment(page, start, end); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  |  | 
|  | clear_buffer_new(bh); | 
|  | mark_buffer_dirty(bh); | 
|  | } | 
|  | } | 
|  |  | 
|  | block_start = block_end; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only called when we have a failure during allocating write to write | 
|  | * zero's to the newly allocated region. | 
|  | */ | 
|  | static void ocfs2_write_failure(struct inode *inode, | 
|  | struct ocfs2_write_ctxt *wc, | 
|  | loff_t user_pos, unsigned user_len) | 
|  | { | 
|  | int i; | 
|  | unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), | 
|  | to = user_pos + user_len; | 
|  | struct page *tmppage; | 
|  |  | 
|  | ocfs2_zero_new_buffers(wc->w_target_page, from, to); | 
|  |  | 
|  | for(i = 0; i < wc->w_num_pages; i++) { | 
|  | tmppage = wc->w_pages[i]; | 
|  |  | 
|  | if (page_has_buffers(tmppage)) { | 
|  | if (ocfs2_should_order_data(inode)) | 
|  | walk_page_buffers(wc->w_handle, | 
|  | page_buffers(tmppage), | 
|  | from, to, NULL, | 
|  | ocfs2_journal_dirty_data); | 
|  |  | 
|  | block_commit_write(tmppage, from, to); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, | 
|  | struct ocfs2_write_ctxt *wc, | 
|  | struct page *page, u32 cpos, | 
|  | loff_t user_pos, unsigned user_len, | 
|  | int new) | 
|  | { | 
|  | int ret; | 
|  | unsigned int map_from = 0, map_to = 0; | 
|  | unsigned int cluster_start, cluster_end; | 
|  | unsigned int user_data_from = 0, user_data_to = 0; | 
|  |  | 
|  | ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, | 
|  | &cluster_start, &cluster_end); | 
|  |  | 
|  | if (page == wc->w_target_page) { | 
|  | map_from = user_pos & (PAGE_CACHE_SIZE - 1); | 
|  | map_to = map_from + user_len; | 
|  |  | 
|  | if (new) | 
|  | ret = ocfs2_map_page_blocks(page, p_blkno, inode, | 
|  | cluster_start, cluster_end, | 
|  | new); | 
|  | else | 
|  | ret = ocfs2_map_page_blocks(page, p_blkno, inode, | 
|  | map_from, map_to, new); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | user_data_from = map_from; | 
|  | user_data_to = map_to; | 
|  | if (new) { | 
|  | map_from = cluster_start; | 
|  | map_to = cluster_end; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * If we haven't allocated the new page yet, we | 
|  | * shouldn't be writing it out without copying user | 
|  | * data. This is likely a math error from the caller. | 
|  | */ | 
|  | BUG_ON(!new); | 
|  |  | 
|  | map_from = cluster_start; | 
|  | map_to = cluster_end; | 
|  |  | 
|  | ret = ocfs2_map_page_blocks(page, p_blkno, inode, | 
|  | cluster_start, cluster_end, new); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parts of newly allocated pages need to be zero'd. | 
|  | * | 
|  | * Above, we have also rewritten 'to' and 'from' - as far as | 
|  | * the rest of the function is concerned, the entire cluster | 
|  | * range inside of a page needs to be written. | 
|  | * | 
|  | * We can skip this if the page is up to date - it's already | 
|  | * been zero'd from being read in as a hole. | 
|  | */ | 
|  | if (new && !PageUptodate(page)) | 
|  | ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), | 
|  | cpos, user_data_from, user_data_to); | 
|  |  | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function will only grab one clusters worth of pages. | 
|  | */ | 
|  | static int ocfs2_grab_pages_for_write(struct address_space *mapping, | 
|  | struct ocfs2_write_ctxt *wc, | 
|  | u32 cpos, loff_t user_pos, int new, | 
|  | struct page *mmap_page) | 
|  | { | 
|  | int ret = 0, i; | 
|  | unsigned long start, target_index, index; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | target_index = user_pos >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Figure out how many pages we'll be manipulating here. For | 
|  | * non allocating write, we just change the one | 
|  | * page. Otherwise, we'll need a whole clusters worth. | 
|  | */ | 
|  | if (new) { | 
|  | wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); | 
|  | start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); | 
|  | } else { | 
|  | wc->w_num_pages = 1; | 
|  | start = target_index; | 
|  | } | 
|  |  | 
|  | for(i = 0; i < wc->w_num_pages; i++) { | 
|  | index = start + i; | 
|  |  | 
|  | if (index == target_index && mmap_page) { | 
|  | /* | 
|  | * ocfs2_pagemkwrite() is a little different | 
|  | * and wants us to directly use the page | 
|  | * passed in. | 
|  | */ | 
|  | lock_page(mmap_page); | 
|  |  | 
|  | if (mmap_page->mapping != mapping) { | 
|  | unlock_page(mmap_page); | 
|  | /* | 
|  | * Sanity check - the locking in | 
|  | * ocfs2_pagemkwrite() should ensure | 
|  | * that this code doesn't trigger. | 
|  | */ | 
|  | ret = -EINVAL; | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | page_cache_get(mmap_page); | 
|  | wc->w_pages[i] = mmap_page; | 
|  | } else { | 
|  | wc->w_pages[i] = find_or_create_page(mapping, index, | 
|  | GFP_NOFS); | 
|  | if (!wc->w_pages[i]) { | 
|  | ret = -ENOMEM; | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (index == target_index) | 
|  | wc->w_target_page = wc->w_pages[i]; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare a single cluster for write one cluster into the file. | 
|  | */ | 
|  | static int ocfs2_write_cluster(struct address_space *mapping, | 
|  | u32 phys, unsigned int unwritten, | 
|  | struct ocfs2_alloc_context *data_ac, | 
|  | struct ocfs2_alloc_context *meta_ac, | 
|  | struct ocfs2_write_ctxt *wc, u32 cpos, | 
|  | loff_t user_pos, unsigned user_len) | 
|  | { | 
|  | int ret, i, new, should_zero = 0; | 
|  | u64 v_blkno, p_blkno; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | new = phys == 0 ? 1 : 0; | 
|  | if (new || unwritten) | 
|  | should_zero = 1; | 
|  |  | 
|  | if (new) { | 
|  | u32 tmp_pos; | 
|  |  | 
|  | /* | 
|  | * This is safe to call with the page locks - it won't take | 
|  | * any additional semaphores or cluster locks. | 
|  | */ | 
|  | tmp_pos = cpos; | 
|  | ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode, | 
|  | &tmp_pos, 1, 0, wc->w_di_bh, | 
|  | wc->w_handle, data_ac, | 
|  | meta_ac, NULL); | 
|  | /* | 
|  | * This shouldn't happen because we must have already | 
|  | * calculated the correct meta data allocation required. The | 
|  | * internal tree allocation code should know how to increase | 
|  | * transaction credits itself. | 
|  | * | 
|  | * If need be, we could handle -EAGAIN for a | 
|  | * RESTART_TRANS here. | 
|  | */ | 
|  | mlog_bug_on_msg(ret == -EAGAIN, | 
|  | "Inode %llu: EAGAIN return during allocation.\n", | 
|  | (unsigned long long)OCFS2_I(inode)->ip_blkno); | 
|  | if (ret < 0) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  | } else if (unwritten) { | 
|  | ret = ocfs2_mark_extent_written(inode, wc->w_di_bh, | 
|  | wc->w_handle, cpos, 1, phys, | 
|  | meta_ac, &wc->w_dealloc); | 
|  | if (ret < 0) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (should_zero) | 
|  | v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); | 
|  | else | 
|  | v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; | 
|  |  | 
|  | /* | 
|  | * The only reason this should fail is due to an inability to | 
|  | * find the extent added. | 
|  | */ | 
|  | ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, | 
|  | NULL); | 
|  | if (ret < 0) { | 
|  | ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " | 
|  | "at logical block %llu", | 
|  | (unsigned long long)OCFS2_I(inode)->ip_blkno, | 
|  | (unsigned long long)v_blkno); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | BUG_ON(p_blkno == 0); | 
|  |  | 
|  | for(i = 0; i < wc->w_num_pages; i++) { | 
|  | int tmpret; | 
|  |  | 
|  | tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, | 
|  | wc->w_pages[i], cpos, | 
|  | user_pos, user_len, | 
|  | should_zero); | 
|  | if (tmpret) { | 
|  | mlog_errno(tmpret); | 
|  | if (ret == 0) | 
|  | tmpret = ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We only have cleanup to do in case of allocating write. | 
|  | */ | 
|  | if (ret && new) | 
|  | ocfs2_write_failure(inode, wc, user_pos, user_len); | 
|  |  | 
|  | out: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ocfs2_write_cluster_by_desc(struct address_space *mapping, | 
|  | struct ocfs2_alloc_context *data_ac, | 
|  | struct ocfs2_alloc_context *meta_ac, | 
|  | struct ocfs2_write_ctxt *wc, | 
|  | loff_t pos, unsigned len) | 
|  | { | 
|  | int ret, i; | 
|  | loff_t cluster_off; | 
|  | unsigned int local_len = len; | 
|  | struct ocfs2_write_cluster_desc *desc; | 
|  | struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); | 
|  |  | 
|  | for (i = 0; i < wc->w_clen; i++) { | 
|  | desc = &wc->w_desc[i]; | 
|  |  | 
|  | /* | 
|  | * We have to make sure that the total write passed in | 
|  | * doesn't extend past a single cluster. | 
|  | */ | 
|  | local_len = len; | 
|  | cluster_off = pos & (osb->s_clustersize - 1); | 
|  | if ((cluster_off + local_len) > osb->s_clustersize) | 
|  | local_len = osb->s_clustersize - cluster_off; | 
|  |  | 
|  | ret = ocfs2_write_cluster(mapping, desc->c_phys, | 
|  | desc->c_unwritten, data_ac, meta_ac, | 
|  | wc, desc->c_cpos, pos, local_len); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | len -= local_len; | 
|  | pos += local_len; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ocfs2_write_end() wants to know which parts of the target page it | 
|  | * should complete the write on. It's easiest to compute them ahead of | 
|  | * time when a more complete view of the write is available. | 
|  | */ | 
|  | static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, | 
|  | struct ocfs2_write_ctxt *wc, | 
|  | loff_t pos, unsigned len, int alloc) | 
|  | { | 
|  | struct ocfs2_write_cluster_desc *desc; | 
|  |  | 
|  | wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); | 
|  | wc->w_target_to = wc->w_target_from + len; | 
|  |  | 
|  | if (alloc == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Allocating write - we may have different boundaries based | 
|  | * on page size and cluster size. | 
|  | * | 
|  | * NOTE: We can no longer compute one value from the other as | 
|  | * the actual write length and user provided length may be | 
|  | * different. | 
|  | */ | 
|  |  | 
|  | if (wc->w_large_pages) { | 
|  | /* | 
|  | * We only care about the 1st and last cluster within | 
|  | * our range and whether they should be zero'd or not. Either | 
|  | * value may be extended out to the start/end of a | 
|  | * newly allocated cluster. | 
|  | */ | 
|  | desc = &wc->w_desc[0]; | 
|  | if (ocfs2_should_zero_cluster(desc)) | 
|  | ocfs2_figure_cluster_boundaries(osb, | 
|  | desc->c_cpos, | 
|  | &wc->w_target_from, | 
|  | NULL); | 
|  |  | 
|  | desc = &wc->w_desc[wc->w_clen - 1]; | 
|  | if (ocfs2_should_zero_cluster(desc)) | 
|  | ocfs2_figure_cluster_boundaries(osb, | 
|  | desc->c_cpos, | 
|  | NULL, | 
|  | &wc->w_target_to); | 
|  | } else { | 
|  | wc->w_target_from = 0; | 
|  | wc->w_target_to = PAGE_CACHE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Populate each single-cluster write descriptor in the write context | 
|  | * with information about the i/o to be done. | 
|  | * | 
|  | * Returns the number of clusters that will have to be allocated, as | 
|  | * well as a worst case estimate of the number of extent records that | 
|  | * would have to be created during a write to an unwritten region. | 
|  | */ | 
|  | static int ocfs2_populate_write_desc(struct inode *inode, | 
|  | struct ocfs2_write_ctxt *wc, | 
|  | unsigned int *clusters_to_alloc, | 
|  | unsigned int *extents_to_split) | 
|  | { | 
|  | int ret; | 
|  | struct ocfs2_write_cluster_desc *desc; | 
|  | unsigned int num_clusters = 0; | 
|  | unsigned int ext_flags = 0; | 
|  | u32 phys = 0; | 
|  | int i; | 
|  |  | 
|  | *clusters_to_alloc = 0; | 
|  | *extents_to_split = 0; | 
|  |  | 
|  | for (i = 0; i < wc->w_clen; i++) { | 
|  | desc = &wc->w_desc[i]; | 
|  | desc->c_cpos = wc->w_cpos + i; | 
|  |  | 
|  | if (num_clusters == 0) { | 
|  | /* | 
|  | * Need to look up the next extent record. | 
|  | */ | 
|  | ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, | 
|  | &num_clusters, &ext_flags); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assume worst case - that we're writing in | 
|  | * the middle of the extent. | 
|  | * | 
|  | * We can assume that the write proceeds from | 
|  | * left to right, in which case the extent | 
|  | * insert code is smart enough to coalesce the | 
|  | * next splits into the previous records created. | 
|  | */ | 
|  | if (ext_flags & OCFS2_EXT_UNWRITTEN) | 
|  | *extents_to_split = *extents_to_split + 2; | 
|  | } else if (phys) { | 
|  | /* | 
|  | * Only increment phys if it doesn't describe | 
|  | * a hole. | 
|  | */ | 
|  | phys++; | 
|  | } | 
|  |  | 
|  | desc->c_phys = phys; | 
|  | if (phys == 0) { | 
|  | desc->c_new = 1; | 
|  | *clusters_to_alloc = *clusters_to_alloc + 1; | 
|  | } | 
|  | if (ext_flags & OCFS2_EXT_UNWRITTEN) | 
|  | desc->c_unwritten = 1; | 
|  |  | 
|  | num_clusters--; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ocfs2_write_begin_inline(struct address_space *mapping, | 
|  | struct inode *inode, | 
|  | struct ocfs2_write_ctxt *wc) | 
|  | { | 
|  | int ret; | 
|  | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | 
|  | struct page *page; | 
|  | handle_t *handle; | 
|  | struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; | 
|  |  | 
|  | page = find_or_create_page(mapping, 0, GFP_NOFS); | 
|  | if (!page) { | 
|  | ret = -ENOMEM; | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * If we don't set w_num_pages then this page won't get unlocked | 
|  | * and freed on cleanup of the write context. | 
|  | */ | 
|  | wc->w_pages[0] = wc->w_target_page = page; | 
|  | wc->w_num_pages = 1; | 
|  |  | 
|  | handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, | 
|  | OCFS2_JOURNAL_ACCESS_WRITE); | 
|  | if (ret) { | 
|  | ocfs2_commit_trans(osb, handle); | 
|  |  | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) | 
|  | ocfs2_set_inode_data_inline(inode, di); | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); | 
|  | if (ret) { | 
|  | ocfs2_commit_trans(osb, handle); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | wc->w_handle = handle; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) | 
|  | { | 
|  | struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; | 
|  |  | 
|  | if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ocfs2_try_to_write_inline_data(struct address_space *mapping, | 
|  | struct inode *inode, loff_t pos, | 
|  | unsigned len, struct page *mmap_page, | 
|  | struct ocfs2_write_ctxt *wc) | 
|  | { | 
|  | int ret, written = 0; | 
|  | loff_t end = pos + len; | 
|  | struct ocfs2_inode_info *oi = OCFS2_I(inode); | 
|  |  | 
|  | mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n", | 
|  | (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, | 
|  | oi->ip_dyn_features); | 
|  |  | 
|  | /* | 
|  | * Handle inodes which already have inline data 1st. | 
|  | */ | 
|  | if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { | 
|  | if (mmap_page == NULL && | 
|  | ocfs2_size_fits_inline_data(wc->w_di_bh, end)) | 
|  | goto do_inline_write; | 
|  |  | 
|  | /* | 
|  | * The write won't fit - we have to give this inode an | 
|  | * inline extent list now. | 
|  | */ | 
|  | ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); | 
|  | if (ret) | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether the inode can accept inline data. | 
|  | */ | 
|  | if (oi->ip_clusters != 0 || i_size_read(inode) != 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Check whether the write can fit. | 
|  | */ | 
|  | if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb)) | 
|  | return 0; | 
|  |  | 
|  | do_inline_write: | 
|  | ret = ocfs2_write_begin_inline(mapping, inode, wc); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This signals to the caller that the data can be written | 
|  | * inline. | 
|  | */ | 
|  | written = 1; | 
|  | out: | 
|  | return written ? written : ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function only does anything for file systems which can't | 
|  | * handle sparse files. | 
|  | * | 
|  | * What we want to do here is fill in any hole between the current end | 
|  | * of allocation and the end of our write. That way the rest of the | 
|  | * write path can treat it as an non-allocating write, which has no | 
|  | * special case code for sparse/nonsparse files. | 
|  | */ | 
|  | static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos, | 
|  | unsigned len, | 
|  | struct ocfs2_write_ctxt *wc) | 
|  | { | 
|  | int ret; | 
|  | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | 
|  | loff_t newsize = pos + len; | 
|  |  | 
|  | if (ocfs2_sparse_alloc(osb)) | 
|  | return 0; | 
|  |  | 
|  | if (newsize <= i_size_read(inode)) | 
|  | return 0; | 
|  |  | 
|  | ret = ocfs2_extend_no_holes(inode, newsize, newsize - len); | 
|  | if (ret) | 
|  | mlog_errno(ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ocfs2_write_begin_nolock(struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata, | 
|  | struct buffer_head *di_bh, struct page *mmap_page) | 
|  | { | 
|  | int ret, credits = OCFS2_INODE_UPDATE_CREDITS; | 
|  | unsigned int clusters_to_alloc, extents_to_split; | 
|  | struct ocfs2_write_ctxt *wc; | 
|  | struct inode *inode = mapping->host; | 
|  | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | 
|  | struct ocfs2_dinode *di; | 
|  | struct ocfs2_alloc_context *data_ac = NULL; | 
|  | struct ocfs2_alloc_context *meta_ac = NULL; | 
|  | handle_t *handle; | 
|  |  | 
|  | ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (ocfs2_supports_inline_data(osb)) { | 
|  | ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, | 
|  | mmap_page, wc); | 
|  | if (ret == 1) { | 
|  | ret = 0; | 
|  | goto success; | 
|  | } | 
|  | if (ret < 0) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, | 
|  | &extents_to_split); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; | 
|  |  | 
|  | /* | 
|  | * We set w_target_from, w_target_to here so that | 
|  | * ocfs2_write_end() knows which range in the target page to | 
|  | * write out. An allocation requires that we write the entire | 
|  | * cluster range. | 
|  | */ | 
|  | if (clusters_to_alloc || extents_to_split) { | 
|  | /* | 
|  | * XXX: We are stretching the limits of | 
|  | * ocfs2_lock_allocators(). It greatly over-estimates | 
|  | * the work to be done. | 
|  | */ | 
|  | ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc, | 
|  | extents_to_split, &data_ac, &meta_ac); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | credits = ocfs2_calc_extend_credits(inode->i_sb, di, | 
|  | clusters_to_alloc); | 
|  |  | 
|  | } | 
|  |  | 
|  | ocfs2_set_target_boundaries(osb, wc, pos, len, | 
|  | clusters_to_alloc + extents_to_split); | 
|  |  | 
|  | handle = ocfs2_start_trans(osb, credits); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | mlog_errno(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | wc->w_handle = handle; | 
|  |  | 
|  | /* | 
|  | * We don't want this to fail in ocfs2_write_end(), so do it | 
|  | * here. | 
|  | */ | 
|  | ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, | 
|  | OCFS2_JOURNAL_ACCESS_WRITE); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out_commit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill our page array first. That way we've grabbed enough so | 
|  | * that we can zero and flush if we error after adding the | 
|  | * extent. | 
|  | */ | 
|  | ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, | 
|  | clusters_to_alloc + extents_to_split, | 
|  | mmap_page); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out_commit; | 
|  | } | 
|  |  | 
|  | ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, | 
|  | len); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out_commit; | 
|  | } | 
|  |  | 
|  | if (data_ac) | 
|  | ocfs2_free_alloc_context(data_ac); | 
|  | if (meta_ac) | 
|  | ocfs2_free_alloc_context(meta_ac); | 
|  |  | 
|  | success: | 
|  | *pagep = wc->w_target_page; | 
|  | *fsdata = wc; | 
|  | return 0; | 
|  | out_commit: | 
|  | ocfs2_commit_trans(osb, handle); | 
|  |  | 
|  | out: | 
|  | ocfs2_free_write_ctxt(wc); | 
|  |  | 
|  | if (data_ac) | 
|  | ocfs2_free_alloc_context(data_ac); | 
|  | if (meta_ac) | 
|  | ocfs2_free_alloc_context(meta_ac); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ocfs2_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | int ret; | 
|  | struct buffer_head *di_bh = NULL; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | ret = ocfs2_inode_lock(inode, &di_bh, 1); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take alloc sem here to prevent concurrent lookups. That way | 
|  | * the mapping, zeroing and tree manipulation within | 
|  | * ocfs2_write() will be safe against ->readpage(). This | 
|  | * should also serve to lock out allocation from a shared | 
|  | * writeable region. | 
|  | */ | 
|  | down_write(&OCFS2_I(inode)->ip_alloc_sem); | 
|  |  | 
|  | ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep, | 
|  | fsdata, di_bh, NULL); | 
|  | if (ret) { | 
|  | mlog_errno(ret); | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | brelse(di_bh); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_fail: | 
|  | up_write(&OCFS2_I(inode)->ip_alloc_sem); | 
|  |  | 
|  | brelse(di_bh); | 
|  | ocfs2_inode_unlock(inode, 1); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, | 
|  | unsigned len, unsigned *copied, | 
|  | struct ocfs2_dinode *di, | 
|  | struct ocfs2_write_ctxt *wc) | 
|  | { | 
|  | void *kaddr; | 
|  |  | 
|  | if (unlikely(*copied < len)) { | 
|  | if (!PageUptodate(wc->w_target_page)) { | 
|  | *copied = 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | kaddr = kmap_atomic(wc->w_target_page, KM_USER0); | 
|  | memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  |  | 
|  | mlog(0, "Data written to inode at offset %llu. " | 
|  | "id_count = %u, copied = %u, i_dyn_features = 0x%x\n", | 
|  | (unsigned long long)pos, *copied, | 
|  | le16_to_cpu(di->id2.i_data.id_count), | 
|  | le16_to_cpu(di->i_dyn_features)); | 
|  | } | 
|  |  | 
|  | int ocfs2_write_end_nolock(struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | int i; | 
|  | unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); | 
|  | struct inode *inode = mapping->host; | 
|  | struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); | 
|  | struct ocfs2_write_ctxt *wc = fsdata; | 
|  | struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; | 
|  | handle_t *handle = wc->w_handle; | 
|  | struct page *tmppage; | 
|  |  | 
|  | if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { | 
|  | ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); | 
|  | goto out_write_size; | 
|  | } | 
|  |  | 
|  | if (unlikely(copied < len)) { | 
|  | if (!PageUptodate(wc->w_target_page)) | 
|  | copied = 0; | 
|  |  | 
|  | ocfs2_zero_new_buffers(wc->w_target_page, start+copied, | 
|  | start+len); | 
|  | } | 
|  | flush_dcache_page(wc->w_target_page); | 
|  |  | 
|  | for(i = 0; i < wc->w_num_pages; i++) { | 
|  | tmppage = wc->w_pages[i]; | 
|  |  | 
|  | if (tmppage == wc->w_target_page) { | 
|  | from = wc->w_target_from; | 
|  | to = wc->w_target_to; | 
|  |  | 
|  | BUG_ON(from > PAGE_CACHE_SIZE || | 
|  | to > PAGE_CACHE_SIZE || | 
|  | to < from); | 
|  | } else { | 
|  | /* | 
|  | * Pages adjacent to the target (if any) imply | 
|  | * a hole-filling write in which case we want | 
|  | * to flush their entire range. | 
|  | */ | 
|  | from = 0; | 
|  | to = PAGE_CACHE_SIZE; | 
|  | } | 
|  |  | 
|  | if (page_has_buffers(tmppage)) { | 
|  | if (ocfs2_should_order_data(inode)) | 
|  | walk_page_buffers(wc->w_handle, | 
|  | page_buffers(tmppage), | 
|  | from, to, NULL, | 
|  | ocfs2_journal_dirty_data); | 
|  | block_commit_write(tmppage, from, to); | 
|  | } | 
|  | } | 
|  |  | 
|  | out_write_size: | 
|  | pos += copied; | 
|  | if (pos > inode->i_size) { | 
|  | i_size_write(inode, pos); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  | inode->i_blocks = ocfs2_inode_sector_count(inode); | 
|  | di->i_size = cpu_to_le64((u64)i_size_read(inode)); | 
|  | inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
|  | di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); | 
|  | di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); | 
|  | ocfs2_journal_dirty(handle, wc->w_di_bh); | 
|  |  | 
|  | ocfs2_commit_trans(osb, handle); | 
|  |  | 
|  | ocfs2_run_deallocs(osb, &wc->w_dealloc); | 
|  |  | 
|  | ocfs2_free_write_ctxt(wc); | 
|  |  | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | static int ocfs2_write_end(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | int ret; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); | 
|  |  | 
|  | up_write(&OCFS2_I(inode)->ip_alloc_sem); | 
|  | ocfs2_inode_unlock(inode, 1); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | const struct address_space_operations ocfs2_aops = { | 
|  | .readpage	= ocfs2_readpage, | 
|  | .readpages	= ocfs2_readpages, | 
|  | .writepage	= ocfs2_writepage, | 
|  | .write_begin	= ocfs2_write_begin, | 
|  | .write_end	= ocfs2_write_end, | 
|  | .bmap		= ocfs2_bmap, | 
|  | .sync_page	= block_sync_page, | 
|  | .direct_IO	= ocfs2_direct_IO, | 
|  | .invalidatepage	= ocfs2_invalidatepage, | 
|  | .releasepage	= ocfs2_releasepage, | 
|  | .migratepage	= buffer_migrate_page, | 
|  | }; |