| /* |
| * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved. |
| * |
| * Authors: |
| * Alexander Graf <agraf@suse.de> |
| * Kevin Wolf <mail@kevin-wolf.de> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| |
| #include <linux/kvm_host.h> |
| |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/book3s/64/mmu-hash.h> |
| #include <asm/machdep.h> |
| #include <asm/mmu_context.h> |
| #include <asm/hw_irq.h> |
| #include "trace_pr.h" |
| #include "book3s.h" |
| |
| #define PTE_SIZE 12 |
| |
| void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) |
| { |
| mmu_hash_ops.hpte_invalidate(pte->slot, pte->host_vpn, |
| pte->pagesize, pte->pagesize, |
| MMU_SEGSIZE_256M, false); |
| } |
| |
| /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using |
| * a hash, so we don't waste cycles on looping */ |
| static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) |
| { |
| return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); |
| } |
| |
| |
| static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) |
| { |
| struct kvmppc_sid_map *map; |
| u16 sid_map_mask; |
| |
| if (kvmppc_get_msr(vcpu) & MSR_PR) |
| gvsid |= VSID_PR; |
| |
| sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); |
| map = &to_book3s(vcpu)->sid_map[sid_map_mask]; |
| if (map->valid && (map->guest_vsid == gvsid)) { |
| trace_kvm_book3s_slb_found(gvsid, map->host_vsid); |
| return map; |
| } |
| |
| map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; |
| if (map->valid && (map->guest_vsid == gvsid)) { |
| trace_kvm_book3s_slb_found(gvsid, map->host_vsid); |
| return map; |
| } |
| |
| trace_kvm_book3s_slb_fail(sid_map_mask, gvsid); |
| return NULL; |
| } |
| |
| int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte, |
| bool iswrite) |
| { |
| unsigned long vpn; |
| kvm_pfn_t hpaddr; |
| ulong hash, hpteg; |
| u64 vsid; |
| int ret; |
| int rflags = 0x192; |
| int vflags = 0; |
| int attempt = 0; |
| struct kvmppc_sid_map *map; |
| int r = 0; |
| int hpsize = MMU_PAGE_4K; |
| bool writable; |
| unsigned long mmu_seq; |
| struct kvm *kvm = vcpu->kvm; |
| struct hpte_cache *cpte; |
| unsigned long gfn = orig_pte->raddr >> PAGE_SHIFT; |
| unsigned long pfn; |
| |
| /* used to check for invalidations in progress */ |
| mmu_seq = kvm->mmu_notifier_seq; |
| smp_rmb(); |
| |
| /* Get host physical address for gpa */ |
| pfn = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable); |
| if (is_error_noslot_pfn(pfn)) { |
| printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n", |
| orig_pte->raddr); |
| r = -EINVAL; |
| goto out; |
| } |
| hpaddr = pfn << PAGE_SHIFT; |
| |
| /* and write the mapping ea -> hpa into the pt */ |
| vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); |
| map = find_sid_vsid(vcpu, vsid); |
| if (!map) { |
| ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr); |
| WARN_ON(ret < 0); |
| map = find_sid_vsid(vcpu, vsid); |
| } |
| if (!map) { |
| printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n", |
| vsid, orig_pte->eaddr); |
| WARN_ON(true); |
| r = -EINVAL; |
| goto out; |
| } |
| |
| vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M); |
| |
| kvm_set_pfn_accessed(pfn); |
| if (!orig_pte->may_write || !writable) |
| rflags |= PP_RXRX; |
| else { |
| mark_page_dirty(vcpu->kvm, gfn); |
| kvm_set_pfn_dirty(pfn); |
| } |
| |
| if (!orig_pte->may_execute) |
| rflags |= HPTE_R_N; |
| else |
| kvmppc_mmu_flush_icache(pfn); |
| |
| rflags = (rflags & ~HPTE_R_WIMG) | orig_pte->wimg; |
| |
| /* |
| * Use 64K pages if possible; otherwise, on 64K page kernels, |
| * we need to transfer 4 more bits from guest real to host real addr. |
| */ |
| if (vsid & VSID_64K) |
| hpsize = MMU_PAGE_64K; |
| else |
| hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK); |
| |
| hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M); |
| |
| cpte = kvmppc_mmu_hpte_cache_next(vcpu); |
| |
| spin_lock(&kvm->mmu_lock); |
| if (!cpte || mmu_notifier_retry(kvm, mmu_seq)) { |
| r = -EAGAIN; |
| goto out_unlock; |
| } |
| |
| map_again: |
| hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); |
| |
| /* In case we tried normal mapping already, let's nuke old entries */ |
| if (attempt > 1) |
| if (mmu_hash_ops.hpte_remove(hpteg) < 0) { |
| r = -1; |
| goto out_unlock; |
| } |
| |
| ret = mmu_hash_ops.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags, |
| hpsize, hpsize, MMU_SEGSIZE_256M); |
| |
| if (ret == -1) { |
| /* If we couldn't map a primary PTE, try a secondary */ |
| hash = ~hash; |
| vflags ^= HPTE_V_SECONDARY; |
| attempt++; |
| goto map_again; |
| } else if (ret < 0) { |
| r = -EIO; |
| goto out_unlock; |
| } else { |
| trace_kvm_book3s_64_mmu_map(rflags, hpteg, |
| vpn, hpaddr, orig_pte); |
| |
| /* |
| * The mmu_hash_ops code may give us a secondary entry even |
| * though we asked for a primary. Fix up. |
| */ |
| if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) { |
| hash = ~hash; |
| hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); |
| } |
| |
| cpte->slot = hpteg + (ret & 7); |
| cpte->host_vpn = vpn; |
| cpte->pte = *orig_pte; |
| cpte->pfn = pfn; |
| cpte->pagesize = hpsize; |
| |
| kvmppc_mmu_hpte_cache_map(vcpu, cpte); |
| cpte = NULL; |
| } |
| |
| out_unlock: |
| spin_unlock(&kvm->mmu_lock); |
| kvm_release_pfn_clean(pfn); |
| if (cpte) |
| kvmppc_mmu_hpte_cache_free(cpte); |
| |
| out: |
| return r; |
| } |
| |
| void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) |
| { |
| u64 mask = 0xfffffffffULL; |
| u64 vsid; |
| |
| vcpu->arch.mmu.esid_to_vsid(vcpu, pte->eaddr >> SID_SHIFT, &vsid); |
| if (vsid & VSID_64K) |
| mask = 0xffffffff0ULL; |
| kvmppc_mmu_pte_vflush(vcpu, pte->vpage, mask); |
| } |
| |
| static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) |
| { |
| unsigned long vsid_bits = VSID_BITS_65_256M; |
| struct kvmppc_sid_map *map; |
| struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); |
| u16 sid_map_mask; |
| static int backwards_map = 0; |
| |
| if (kvmppc_get_msr(vcpu) & MSR_PR) |
| gvsid |= VSID_PR; |
| |
| /* We might get collisions that trap in preceding order, so let's |
| map them differently */ |
| |
| sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); |
| if (backwards_map) |
| sid_map_mask = SID_MAP_MASK - sid_map_mask; |
| |
| map = &to_book3s(vcpu)->sid_map[sid_map_mask]; |
| |
| /* Make sure we're taking the other map next time */ |
| backwards_map = !backwards_map; |
| |
| /* Uh-oh ... out of mappings. Let's flush! */ |
| if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) { |
| vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first; |
| memset(vcpu_book3s->sid_map, 0, |
| sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); |
| kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| kvmppc_mmu_flush_segments(vcpu); |
| } |
| |
| if (mmu_has_feature(MMU_FTR_68_BIT_VA)) |
| vsid_bits = VSID_BITS_256M; |
| |
| map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, |
| VSID_MULTIPLIER_256M, vsid_bits); |
| |
| map->guest_vsid = gvsid; |
| map->valid = true; |
| |
| trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid); |
| |
| return map; |
| } |
| |
| static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid) |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| int i; |
| int max_slb_size = 64; |
| int found_inval = -1; |
| int r; |
| |
| /* Are we overwriting? */ |
| for (i = 0; i < svcpu->slb_max; i++) { |
| if (!(svcpu->slb[i].esid & SLB_ESID_V)) |
| found_inval = i; |
| else if ((svcpu->slb[i].esid & ESID_MASK) == esid) { |
| r = i; |
| goto out; |
| } |
| } |
| |
| /* Found a spare entry that was invalidated before */ |
| if (found_inval >= 0) { |
| r = found_inval; |
| goto out; |
| } |
| |
| /* No spare invalid entry, so create one */ |
| |
| if (mmu_slb_size < 64) |
| max_slb_size = mmu_slb_size; |
| |
| /* Overflowing -> purge */ |
| if ((svcpu->slb_max) == max_slb_size) |
| kvmppc_mmu_flush_segments(vcpu); |
| |
| r = svcpu->slb_max; |
| svcpu->slb_max++; |
| |
| out: |
| svcpu_put(svcpu); |
| return r; |
| } |
| |
| int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| u64 esid = eaddr >> SID_SHIFT; |
| u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V; |
| u64 slb_vsid = SLB_VSID_USER; |
| u64 gvsid; |
| int slb_index; |
| struct kvmppc_sid_map *map; |
| int r = 0; |
| |
| slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK); |
| |
| if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { |
| /* Invalidate an entry */ |
| svcpu->slb[slb_index].esid = 0; |
| r = -ENOENT; |
| goto out; |
| } |
| |
| map = find_sid_vsid(vcpu, gvsid); |
| if (!map) |
| map = create_sid_map(vcpu, gvsid); |
| |
| map->guest_esid = esid; |
| |
| slb_vsid |= (map->host_vsid << 12); |
| slb_vsid &= ~SLB_VSID_KP; |
| slb_esid |= slb_index; |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* Set host segment base page size to 64K if possible */ |
| if (gvsid & VSID_64K) |
| slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp; |
| #endif |
| |
| svcpu->slb[slb_index].esid = slb_esid; |
| svcpu->slb[slb_index].vsid = slb_vsid; |
| |
| trace_kvm_book3s_slbmte(slb_vsid, slb_esid); |
| |
| out: |
| svcpu_put(svcpu); |
| return r; |
| } |
| |
| void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size) |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| ulong seg_mask = -seg_size; |
| int i; |
| |
| for (i = 0; i < svcpu->slb_max; i++) { |
| if ((svcpu->slb[i].esid & SLB_ESID_V) && |
| (svcpu->slb[i].esid & seg_mask) == ea) { |
| /* Invalidate this entry */ |
| svcpu->slb[i].esid = 0; |
| } |
| } |
| |
| svcpu_put(svcpu); |
| } |
| |
| void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| svcpu->slb_max = 0; |
| svcpu->slb[0].esid = 0; |
| svcpu_put(svcpu); |
| } |
| |
| void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu) |
| { |
| kvmppc_mmu_hpte_destroy(vcpu); |
| __destroy_context(to_book3s(vcpu)->context_id[0]); |
| } |
| |
| int kvmppc_mmu_init(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); |
| int err; |
| |
| err = hash__alloc_context_id(); |
| if (err < 0) |
| return -1; |
| vcpu3s->context_id[0] = err; |
| |
| vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1) |
| << ESID_BITS) - 1; |
| vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS; |
| vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first; |
| |
| kvmppc_mmu_hpte_init(vcpu); |
| |
| return 0; |
| } |