| /* |
| * PowerPC64 SLB support. |
| * |
| * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM |
| * Based on earlier code written by: |
| * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com |
| * Copyright (c) 2001 Dave Engebretsen |
| * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/paca.h> |
| #include <asm/cputable.h> |
| #include <asm/cacheflush.h> |
| #include <asm/smp.h> |
| #include <linux/compiler.h> |
| #include <linux/mm_types.h> |
| |
| #include <asm/udbg.h> |
| #include <asm/code-patching.h> |
| |
| enum slb_index { |
| LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */ |
| VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */ |
| KSTACK_INDEX = 2, /* Kernel stack map */ |
| }; |
| |
| extern void slb_allocate(unsigned long ea); |
| |
| #define slb_esid_mask(ssize) \ |
| (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) |
| |
| static inline unsigned long mk_esid_data(unsigned long ea, int ssize, |
| enum slb_index index) |
| { |
| return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; |
| } |
| |
| static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, |
| unsigned long flags) |
| { |
| return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags | |
| ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); |
| } |
| |
| static inline void slb_shadow_update(unsigned long ea, int ssize, |
| unsigned long flags, |
| enum slb_index index) |
| { |
| struct slb_shadow *p = get_slb_shadow(); |
| |
| /* |
| * Clear the ESID first so the entry is not valid while we are |
| * updating it. No write barriers are needed here, provided |
| * we only update the current CPU's SLB shadow buffer. |
| */ |
| p->save_area[index].esid = 0; |
| p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags)); |
| p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index)); |
| } |
| |
| static inline void slb_shadow_clear(enum slb_index index) |
| { |
| get_slb_shadow()->save_area[index].esid = 0; |
| } |
| |
| static inline void create_shadowed_slbe(unsigned long ea, int ssize, |
| unsigned long flags, |
| enum slb_index index) |
| { |
| /* |
| * Updating the shadow buffer before writing the SLB ensures |
| * we don't get a stale entry here if we get preempted by PHYP |
| * between these two statements. |
| */ |
| slb_shadow_update(ea, ssize, flags, index); |
| |
| asm volatile("slbmte %0,%1" : |
| : "r" (mk_vsid_data(ea, ssize, flags)), |
| "r" (mk_esid_data(ea, ssize, index)) |
| : "memory" ); |
| } |
| |
| static void __slb_flush_and_rebolt(void) |
| { |
| /* If you change this make sure you change SLB_NUM_BOLTED |
| * and PR KVM appropriately too. */ |
| unsigned long linear_llp, vmalloc_llp, lflags, vflags; |
| unsigned long ksp_esid_data, ksp_vsid_data; |
| |
| linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; |
| vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; |
| lflags = SLB_VSID_KERNEL | linear_llp; |
| vflags = SLB_VSID_KERNEL | vmalloc_llp; |
| |
| ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX); |
| if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) { |
| ksp_esid_data &= ~SLB_ESID_V; |
| ksp_vsid_data = 0; |
| slb_shadow_clear(KSTACK_INDEX); |
| } else { |
| /* Update stack entry; others don't change */ |
| slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX); |
| ksp_vsid_data = |
| be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid); |
| } |
| |
| /* We need to do this all in asm, so we're sure we don't touch |
| * the stack between the slbia and rebolting it. */ |
| asm volatile("isync\n" |
| "slbia\n" |
| /* Slot 1 - first VMALLOC segment */ |
| "slbmte %0,%1\n" |
| /* Slot 2 - kernel stack */ |
| "slbmte %2,%3\n" |
| "isync" |
| :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)), |
| "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)), |
| "r"(ksp_vsid_data), |
| "r"(ksp_esid_data) |
| : "memory"); |
| } |
| |
| void slb_flush_and_rebolt(void) |
| { |
| |
| WARN_ON(!irqs_disabled()); |
| |
| /* |
| * We can't take a PMU exception in the following code, so hard |
| * disable interrupts. |
| */ |
| hard_irq_disable(); |
| |
| __slb_flush_and_rebolt(); |
| get_paca()->slb_cache_ptr = 0; |
| } |
| |
| void slb_vmalloc_update(void) |
| { |
| unsigned long vflags; |
| |
| vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp; |
| slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX); |
| slb_flush_and_rebolt(); |
| } |
| |
| /* Helper function to compare esids. There are four cases to handle. |
| * 1. The system is not 1T segment size capable. Use the GET_ESID compare. |
| * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare. |
| * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match. |
| * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare. |
| */ |
| static inline int esids_match(unsigned long addr1, unsigned long addr2) |
| { |
| int esid_1t_count; |
| |
| /* System is not 1T segment size capable. */ |
| if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| return (GET_ESID(addr1) == GET_ESID(addr2)); |
| |
| esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) + |
| ((addr2 >> SID_SHIFT_1T) != 0)); |
| |
| /* both addresses are < 1T */ |
| if (esid_1t_count == 0) |
| return (GET_ESID(addr1) == GET_ESID(addr2)); |
| |
| /* One address < 1T, the other > 1T. Not a match */ |
| if (esid_1t_count == 1) |
| return 0; |
| |
| /* Both addresses are > 1T. */ |
| return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2)); |
| } |
| |
| /* Flush all user entries from the segment table of the current processor. */ |
| void switch_slb(struct task_struct *tsk, struct mm_struct *mm) |
| { |
| unsigned long offset; |
| unsigned long slbie_data = 0; |
| unsigned long pc = KSTK_EIP(tsk); |
| unsigned long stack = KSTK_ESP(tsk); |
| unsigned long exec_base; |
| |
| /* |
| * We need interrupts hard-disabled here, not just soft-disabled, |
| * so that a PMU interrupt can't occur, which might try to access |
| * user memory (to get a stack trace) and possible cause an SLB miss |
| * which would update the slb_cache/slb_cache_ptr fields in the PACA. |
| */ |
| hard_irq_disable(); |
| offset = get_paca()->slb_cache_ptr; |
| if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && |
| offset <= SLB_CACHE_ENTRIES) { |
| int i; |
| asm volatile("isync" : : : "memory"); |
| for (i = 0; i < offset; i++) { |
| slbie_data = (unsigned long)get_paca()->slb_cache[i] |
| << SID_SHIFT; /* EA */ |
| slbie_data |= user_segment_size(slbie_data) |
| << SLBIE_SSIZE_SHIFT; |
| slbie_data |= SLBIE_C; /* C set for user addresses */ |
| asm volatile("slbie %0" : : "r" (slbie_data)); |
| } |
| asm volatile("isync" : : : "memory"); |
| } else { |
| __slb_flush_and_rebolt(); |
| } |
| |
| /* Workaround POWER5 < DD2.1 issue */ |
| if (offset == 1 || offset > SLB_CACHE_ENTRIES) |
| asm volatile("slbie %0" : : "r" (slbie_data)); |
| |
| get_paca()->slb_cache_ptr = 0; |
| copy_mm_to_paca(mm); |
| |
| /* |
| * preload some userspace segments into the SLB. |
| * Almost all 32 and 64bit PowerPC executables are linked at |
| * 0x10000000 so it makes sense to preload this segment. |
| */ |
| exec_base = 0x10000000; |
| |
| if (is_kernel_addr(pc) || is_kernel_addr(stack) || |
| is_kernel_addr(exec_base)) |
| return; |
| |
| slb_allocate(pc); |
| |
| if (!esids_match(pc, stack)) |
| slb_allocate(stack); |
| |
| if (!esids_match(pc, exec_base) && |
| !esids_match(stack, exec_base)) |
| slb_allocate(exec_base); |
| } |
| |
| static inline void patch_slb_encoding(unsigned int *insn_addr, |
| unsigned int immed) |
| { |
| |
| /* |
| * This function patches either an li or a cmpldi instruction with |
| * a new immediate value. This relies on the fact that both li |
| * (which is actually addi) and cmpldi both take a 16-bit immediate |
| * value, and it is situated in the same location in the instruction, |
| * ie. bits 16-31 (Big endian bit order) or the lower 16 bits. |
| * The signedness of the immediate operand differs between the two |
| * instructions however this code is only ever patching a small value, |
| * much less than 1 << 15, so we can get away with it. |
| * To patch the value we read the existing instruction, clear the |
| * immediate value, and or in our new value, then write the instruction |
| * back. |
| */ |
| unsigned int insn = (*insn_addr & 0xffff0000) | immed; |
| patch_instruction(insn_addr, insn); |
| } |
| |
| extern u32 slb_miss_kernel_load_linear[]; |
| extern u32 slb_miss_kernel_load_io[]; |
| extern u32 slb_compare_rr_to_size[]; |
| extern u32 slb_miss_kernel_load_vmemmap[]; |
| |
| void slb_set_size(u16 size) |
| { |
| if (mmu_slb_size == size) |
| return; |
| |
| mmu_slb_size = size; |
| patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size); |
| } |
| |
| void slb_initialize(void) |
| { |
| unsigned long linear_llp, vmalloc_llp, io_llp; |
| unsigned long lflags, vflags; |
| static int slb_encoding_inited; |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| unsigned long vmemmap_llp; |
| #endif |
| |
| /* Prepare our SLB miss handler based on our page size */ |
| linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; |
| io_llp = mmu_psize_defs[mmu_io_psize].sllp; |
| vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; |
| get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; |
| #endif |
| if (!slb_encoding_inited) { |
| slb_encoding_inited = 1; |
| patch_slb_encoding(slb_miss_kernel_load_linear, |
| SLB_VSID_KERNEL | linear_llp); |
| patch_slb_encoding(slb_miss_kernel_load_io, |
| SLB_VSID_KERNEL | io_llp); |
| patch_slb_encoding(slb_compare_rr_to_size, |
| mmu_slb_size); |
| |
| pr_devel("SLB: linear LLP = %04lx\n", linear_llp); |
| pr_devel("SLB: io LLP = %04lx\n", io_llp); |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| patch_slb_encoding(slb_miss_kernel_load_vmemmap, |
| SLB_VSID_KERNEL | vmemmap_llp); |
| pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); |
| #endif |
| } |
| |
| get_paca()->stab_rr = SLB_NUM_BOLTED; |
| |
| lflags = SLB_VSID_KERNEL | linear_llp; |
| vflags = SLB_VSID_KERNEL | vmalloc_llp; |
| |
| /* Invalidate the entire SLB (even entry 0) & all the ERATS */ |
| asm volatile("isync":::"memory"); |
| asm volatile("slbmte %0,%0"::"r" (0) : "memory"); |
| asm volatile("isync; slbia; isync":::"memory"); |
| create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); |
| create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX); |
| |
| /* For the boot cpu, we're running on the stack in init_thread_union, |
| * which is in the first segment of the linear mapping, and also |
| * get_paca()->kstack hasn't been initialized yet. |
| * For secondary cpus, we need to bolt the kernel stack entry now. |
| */ |
| slb_shadow_clear(KSTACK_INDEX); |
| if (raw_smp_processor_id() != boot_cpuid && |
| (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) |
| create_shadowed_slbe(get_paca()->kstack, |
| mmu_kernel_ssize, lflags, KSTACK_INDEX); |
| |
| asm volatile("isync":::"memory"); |
| } |