| /* | 
 |  *  libata-sff.c - helper library for PCI IDE BMDMA | 
 |  * | 
 |  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com> | 
 |  *    		    Please ALWAYS copy linux-ide@vger.kernel.org | 
 |  *		    on emails. | 
 |  * | 
 |  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved. | 
 |  *  Copyright 2003-2006 Jeff Garzik | 
 |  * | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify | 
 |  *  it under the terms of the GNU General Public License as published by | 
 |  *  the Free Software Foundation; either version 2, or (at your option) | 
 |  *  any later version. | 
 |  * | 
 |  *  This program is distributed in the hope that it will be useful, | 
 |  *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  *  GNU General Public License for more details. | 
 |  * | 
 |  *  You should have received a copy of the GNU General Public License | 
 |  *  along with this program; see the file COPYING.  If not, write to | 
 |  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  * | 
 |  *  libata documentation is available via 'make {ps|pdf}docs', | 
 |  *  as Documentation/DocBook/libata.* | 
 |  * | 
 |  *  Hardware documentation available from http://www.t13.org/ and | 
 |  *  http://www.sata-io.org/ | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/libata.h> | 
 | #include <linux/highmem.h> | 
 |  | 
 | #include "libata.h" | 
 |  | 
 | const struct ata_port_operations ata_sff_port_ops = { | 
 | 	.inherits		= &ata_base_port_ops, | 
 |  | 
 | 	.qc_prep		= ata_sff_qc_prep, | 
 | 	.qc_issue		= ata_sff_qc_issue, | 
 | 	.qc_fill_rtf		= ata_sff_qc_fill_rtf, | 
 |  | 
 | 	.freeze			= ata_sff_freeze, | 
 | 	.thaw			= ata_sff_thaw, | 
 | 	.prereset		= ata_sff_prereset, | 
 | 	.softreset		= ata_sff_softreset, | 
 | 	.hardreset		= sata_sff_hardreset, | 
 | 	.postreset		= ata_sff_postreset, | 
 | 	.drain_fifo		= ata_sff_drain_fifo, | 
 | 	.error_handler		= ata_sff_error_handler, | 
 | 	.post_internal_cmd	= ata_sff_post_internal_cmd, | 
 |  | 
 | 	.sff_dev_select		= ata_sff_dev_select, | 
 | 	.sff_check_status	= ata_sff_check_status, | 
 | 	.sff_tf_load		= ata_sff_tf_load, | 
 | 	.sff_tf_read		= ata_sff_tf_read, | 
 | 	.sff_exec_command	= ata_sff_exec_command, | 
 | 	.sff_data_xfer		= ata_sff_data_xfer, | 
 | 	.sff_irq_on		= ata_sff_irq_on, | 
 | 	.sff_irq_clear		= ata_sff_irq_clear, | 
 |  | 
 | 	.lost_interrupt		= ata_sff_lost_interrupt, | 
 |  | 
 | 	.port_start		= ata_sff_port_start, | 
 | }; | 
 | EXPORT_SYMBOL_GPL(ata_sff_port_ops); | 
 |  | 
 | const struct ata_port_operations ata_bmdma_port_ops = { | 
 | 	.inherits		= &ata_sff_port_ops, | 
 |  | 
 | 	.mode_filter		= ata_bmdma_mode_filter, | 
 |  | 
 | 	.bmdma_setup		= ata_bmdma_setup, | 
 | 	.bmdma_start		= ata_bmdma_start, | 
 | 	.bmdma_stop		= ata_bmdma_stop, | 
 | 	.bmdma_status		= ata_bmdma_status, | 
 | }; | 
 | EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); | 
 |  | 
 | const struct ata_port_operations ata_bmdma32_port_ops = { | 
 | 	.inherits		= &ata_bmdma_port_ops, | 
 |  | 
 | 	.sff_data_xfer		= ata_sff_data_xfer32, | 
 | 	.port_start		= ata_sff_port_start32, | 
 | }; | 
 | EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); | 
 |  | 
 | /** | 
 |  *	ata_fill_sg - Fill PCI IDE PRD table | 
 |  *	@qc: Metadata associated with taskfile to be transferred | 
 |  * | 
 |  *	Fill PCI IDE PRD (scatter-gather) table with segments | 
 |  *	associated with the current disk command. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  * | 
 |  */ | 
 | static void ata_fill_sg(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	struct scatterlist *sg; | 
 | 	unsigned int si, pi; | 
 |  | 
 | 	pi = 0; | 
 | 	for_each_sg(qc->sg, sg, qc->n_elem, si) { | 
 | 		u32 addr, offset; | 
 | 		u32 sg_len, len; | 
 |  | 
 | 		/* determine if physical DMA addr spans 64K boundary. | 
 | 		 * Note h/w doesn't support 64-bit, so we unconditionally | 
 | 		 * truncate dma_addr_t to u32. | 
 | 		 */ | 
 | 		addr = (u32) sg_dma_address(sg); | 
 | 		sg_len = sg_dma_len(sg); | 
 |  | 
 | 		while (sg_len) { | 
 | 			offset = addr & 0xffff; | 
 | 			len = sg_len; | 
 | 			if ((offset + sg_len) > 0x10000) | 
 | 				len = 0x10000 - offset; | 
 |  | 
 | 			ap->prd[pi].addr = cpu_to_le32(addr); | 
 | 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff); | 
 | 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); | 
 |  | 
 | 			pi++; | 
 | 			sg_len -= len; | 
 | 			addr += len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_fill_sg_dumb - Fill PCI IDE PRD table | 
 |  *	@qc: Metadata associated with taskfile to be transferred | 
 |  * | 
 |  *	Fill PCI IDE PRD (scatter-gather) table with segments | 
 |  *	associated with the current disk command. Perform the fill | 
 |  *	so that we avoid writing any length 64K records for | 
 |  *	controllers that don't follow the spec. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  * | 
 |  */ | 
 | static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	struct scatterlist *sg; | 
 | 	unsigned int si, pi; | 
 |  | 
 | 	pi = 0; | 
 | 	for_each_sg(qc->sg, sg, qc->n_elem, si) { | 
 | 		u32 addr, offset; | 
 | 		u32 sg_len, len, blen; | 
 |  | 
 | 		/* determine if physical DMA addr spans 64K boundary. | 
 | 		 * Note h/w doesn't support 64-bit, so we unconditionally | 
 | 		 * truncate dma_addr_t to u32. | 
 | 		 */ | 
 | 		addr = (u32) sg_dma_address(sg); | 
 | 		sg_len = sg_dma_len(sg); | 
 |  | 
 | 		while (sg_len) { | 
 | 			offset = addr & 0xffff; | 
 | 			len = sg_len; | 
 | 			if ((offset + sg_len) > 0x10000) | 
 | 				len = 0x10000 - offset; | 
 |  | 
 | 			blen = len & 0xffff; | 
 | 			ap->prd[pi].addr = cpu_to_le32(addr); | 
 | 			if (blen == 0) { | 
 | 				/* Some PATA chipsets like the CS5530 can't | 
 | 				   cope with 0x0000 meaning 64K as the spec | 
 | 				   says */ | 
 | 				ap->prd[pi].flags_len = cpu_to_le32(0x8000); | 
 | 				blen = 0x8000; | 
 | 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000); | 
 | 			} | 
 | 			ap->prd[pi].flags_len = cpu_to_le32(blen); | 
 | 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); | 
 |  | 
 | 			pi++; | 
 | 			sg_len -= len; | 
 | 			addr += len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_qc_prep - Prepare taskfile for submission | 
 |  *	@qc: Metadata associated with taskfile to be prepared | 
 |  * | 
 |  *	Prepare ATA taskfile for submission. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_sff_qc_prep(struct ata_queued_cmd *qc) | 
 | { | 
 | 	if (!(qc->flags & ATA_QCFLAG_DMAMAP)) | 
 | 		return; | 
 |  | 
 | 	ata_fill_sg(qc); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_qc_prep); | 
 |  | 
 | /** | 
 |  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission | 
 |  *	@qc: Metadata associated with taskfile to be prepared | 
 |  * | 
 |  *	Prepare ATA taskfile for submission. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc) | 
 | { | 
 | 	if (!(qc->flags & ATA_QCFLAG_DMAMAP)) | 
 | 		return; | 
 |  | 
 | 	ata_fill_sg_dumb(qc); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep); | 
 |  | 
 | /** | 
 |  *	ata_sff_check_status - Read device status reg & clear interrupt | 
 |  *	@ap: port where the device is | 
 |  * | 
 |  *	Reads ATA taskfile status register for currently-selected device | 
 |  *	and return its value. This also clears pending interrupts | 
 |  *      from this device | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | u8 ata_sff_check_status(struct ata_port *ap) | 
 | { | 
 | 	return ioread8(ap->ioaddr.status_addr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_check_status); | 
 |  | 
 | /** | 
 |  *	ata_sff_altstatus - Read device alternate status reg | 
 |  *	@ap: port where the device is | 
 |  * | 
 |  *	Reads ATA taskfile alternate status register for | 
 |  *	currently-selected device and return its value. | 
 |  * | 
 |  *	Note: may NOT be used as the check_altstatus() entry in | 
 |  *	ata_port_operations. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | static u8 ata_sff_altstatus(struct ata_port *ap) | 
 | { | 
 | 	if (ap->ops->sff_check_altstatus) | 
 | 		return ap->ops->sff_check_altstatus(ap); | 
 |  | 
 | 	return ioread8(ap->ioaddr.altstatus_addr); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_irq_status - Check if the device is busy | 
 |  *	@ap: port where the device is | 
 |  * | 
 |  *	Determine if the port is currently busy. Uses altstatus | 
 |  *	if available in order to avoid clearing shared IRQ status | 
 |  *	when finding an IRQ source. Non ctl capable devices don't | 
 |  *	share interrupt lines fortunately for us. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | static u8 ata_sff_irq_status(struct ata_port *ap) | 
 | { | 
 | 	u8 status; | 
 |  | 
 | 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { | 
 | 		status = ata_sff_altstatus(ap); | 
 | 		/* Not us: We are busy */ | 
 | 		if (status & ATA_BUSY) | 
 | 			return status; | 
 | 	} | 
 | 	/* Clear INTRQ latch */ | 
 | 	status = ap->ops->sff_check_status(ap); | 
 | 	return status; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_sync - Flush writes | 
 |  *	@ap: Port to wait for. | 
 |  * | 
 |  *	CAUTION: | 
 |  *	If we have an mmio device with no ctl and no altstatus | 
 |  *	method this will fail. No such devices are known to exist. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 |  | 
 | static void ata_sff_sync(struct ata_port *ap) | 
 | { | 
 | 	if (ap->ops->sff_check_altstatus) | 
 | 		ap->ops->sff_check_altstatus(ap); | 
 | 	else if (ap->ioaddr.altstatus_addr) | 
 | 		ioread8(ap->ioaddr.altstatus_addr); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_pause		-	Flush writes and wait 400nS | 
 |  *	@ap: Port to pause for. | 
 |  * | 
 |  *	CAUTION: | 
 |  *	If we have an mmio device with no ctl and no altstatus | 
 |  *	method this will fail. No such devices are known to exist. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 |  | 
 | void ata_sff_pause(struct ata_port *ap) | 
 | { | 
 | 	ata_sff_sync(ap); | 
 | 	ndelay(400); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_pause); | 
 |  | 
 | /** | 
 |  *	ata_sff_dma_pause	-	Pause before commencing DMA | 
 |  *	@ap: Port to pause for. | 
 |  * | 
 |  *	Perform I/O fencing and ensure sufficient cycle delays occur | 
 |  *	for the HDMA1:0 transition | 
 |  */ | 
 |  | 
 | void ata_sff_dma_pause(struct ata_port *ap) | 
 | { | 
 | 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { | 
 | 		/* An altstatus read will cause the needed delay without | 
 | 		   messing up the IRQ status */ | 
 | 		ata_sff_altstatus(ap); | 
 | 		return; | 
 | 	} | 
 | 	/* There are no DMA controllers without ctl. BUG here to ensure | 
 | 	   we never violate the HDMA1:0 transition timing and risk | 
 | 	   corruption. */ | 
 | 	BUG(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_dma_pause); | 
 |  | 
 | /** | 
 |  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout | 
 |  *	@ap: port containing status register to be polled | 
 |  *	@tmout_pat: impatience timeout in msecs | 
 |  *	@tmout: overall timeout in msecs | 
 |  * | 
 |  *	Sleep until ATA Status register bit BSY clears, | 
 |  *	or a timeout occurs. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_sff_busy_sleep(struct ata_port *ap, | 
 | 		       unsigned long tmout_pat, unsigned long tmout) | 
 | { | 
 | 	unsigned long timer_start, timeout; | 
 | 	u8 status; | 
 |  | 
 | 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300); | 
 | 	timer_start = jiffies; | 
 | 	timeout = ata_deadline(timer_start, tmout_pat); | 
 | 	while (status != 0xff && (status & ATA_BUSY) && | 
 | 	       time_before(jiffies, timeout)) { | 
 | 		msleep(50); | 
 | 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3); | 
 | 	} | 
 |  | 
 | 	if (status != 0xff && (status & ATA_BUSY)) | 
 | 		ata_port_printk(ap, KERN_WARNING, | 
 | 				"port is slow to respond, please be patient " | 
 | 				"(Status 0x%x)\n", status); | 
 |  | 
 | 	timeout = ata_deadline(timer_start, tmout); | 
 | 	while (status != 0xff && (status & ATA_BUSY) && | 
 | 	       time_before(jiffies, timeout)) { | 
 | 		msleep(50); | 
 | 		status = ap->ops->sff_check_status(ap); | 
 | 	} | 
 |  | 
 | 	if (status == 0xff) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (status & ATA_BUSY) { | 
 | 		ata_port_printk(ap, KERN_ERR, "port failed to respond " | 
 | 				"(%lu secs, Status 0x%x)\n", | 
 | 				DIV_ROUND_UP(tmout, 1000), status); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); | 
 |  | 
 | static int ata_sff_check_ready(struct ata_link *link) | 
 | { | 
 | 	u8 status = link->ap->ops->sff_check_status(link->ap); | 
 |  | 
 | 	return ata_check_ready(status); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_wait_ready - sleep until BSY clears, or timeout | 
 |  *	@link: SFF link to wait ready status for | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  * | 
 |  *	Sleep until ATA Status register bit BSY clears, or timeout | 
 |  *	occurs. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) | 
 | { | 
 | 	return ata_wait_ready(link, deadline, ata_sff_check_ready); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_wait_ready); | 
 |  | 
 | /** | 
 |  *	ata_sff_dev_select - Select device 0/1 on ATA bus | 
 |  *	@ap: ATA channel to manipulate | 
 |  *	@device: ATA device (numbered from zero) to select | 
 |  * | 
 |  *	Use the method defined in the ATA specification to | 
 |  *	make either device 0, or device 1, active on the | 
 |  *	ATA channel.  Works with both PIO and MMIO. | 
 |  * | 
 |  *	May be used as the dev_select() entry in ata_port_operations. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	caller. | 
 |  */ | 
 | void ata_sff_dev_select(struct ata_port *ap, unsigned int device) | 
 | { | 
 | 	u8 tmp; | 
 |  | 
 | 	if (device == 0) | 
 | 		tmp = ATA_DEVICE_OBS; | 
 | 	else | 
 | 		tmp = ATA_DEVICE_OBS | ATA_DEV1; | 
 |  | 
 | 	iowrite8(tmp, ap->ioaddr.device_addr); | 
 | 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */ | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_dev_select); | 
 |  | 
 | /** | 
 |  *	ata_dev_select - Select device 0/1 on ATA bus | 
 |  *	@ap: ATA channel to manipulate | 
 |  *	@device: ATA device (numbered from zero) to select | 
 |  *	@wait: non-zero to wait for Status register BSY bit to clear | 
 |  *	@can_sleep: non-zero if context allows sleeping | 
 |  * | 
 |  *	Use the method defined in the ATA specification to | 
 |  *	make either device 0, or device 1, active on the | 
 |  *	ATA channel. | 
 |  * | 
 |  *	This is a high-level version of ata_sff_dev_select(), which | 
 |  *	additionally provides the services of inserting the proper | 
 |  *	pauses and status polling, where needed. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	caller. | 
 |  */ | 
 | void ata_dev_select(struct ata_port *ap, unsigned int device, | 
 | 			   unsigned int wait, unsigned int can_sleep) | 
 | { | 
 | 	if (ata_msg_probe(ap)) | 
 | 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " | 
 | 				"device %u, wait %u\n", device, wait); | 
 |  | 
 | 	if (wait) | 
 | 		ata_wait_idle(ap); | 
 |  | 
 | 	ap->ops->sff_dev_select(ap, device); | 
 |  | 
 | 	if (wait) { | 
 | 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) | 
 | 			msleep(150); | 
 | 		ata_wait_idle(ap); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_irq_on - Enable interrupts on a port. | 
 |  *	@ap: Port on which interrupts are enabled. | 
 |  * | 
 |  *	Enable interrupts on a legacy IDE device using MMIO or PIO, | 
 |  *	wait for idle, clear any pending interrupts. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | u8 ata_sff_irq_on(struct ata_port *ap) | 
 | { | 
 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 	u8 tmp; | 
 |  | 
 | 	ap->ctl &= ~ATA_NIEN; | 
 | 	ap->last_ctl = ap->ctl; | 
 |  | 
 | 	if (ioaddr->ctl_addr) | 
 | 		iowrite8(ap->ctl, ioaddr->ctl_addr); | 
 | 	tmp = ata_wait_idle(ap); | 
 |  | 
 | 	ap->ops->sff_irq_clear(ap); | 
 |  | 
 | 	return tmp; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_irq_on); | 
 |  | 
 | /** | 
 |  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. | 
 |  *	@ap: Port associated with this ATA transaction. | 
 |  * | 
 |  *	Clear interrupt and error flags in DMA status register. | 
 |  * | 
 |  *	May be used as the irq_clear() entry in ata_port_operations. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_sff_irq_clear(struct ata_port *ap) | 
 | { | 
 | 	void __iomem *mmio = ap->ioaddr.bmdma_addr; | 
 |  | 
 | 	if (!mmio) | 
 | 		return; | 
 |  | 
 | 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_irq_clear); | 
 |  | 
 | /** | 
 |  *	ata_sff_tf_load - send taskfile registers to host controller | 
 |  *	@ap: Port to which output is sent | 
 |  *	@tf: ATA taskfile register set | 
 |  * | 
 |  *	Outputs ATA taskfile to standard ATA host controller. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) | 
 | { | 
 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; | 
 |  | 
 | 	if (tf->ctl != ap->last_ctl) { | 
 | 		if (ioaddr->ctl_addr) | 
 | 			iowrite8(tf->ctl, ioaddr->ctl_addr); | 
 | 		ap->last_ctl = tf->ctl; | 
 | 		ata_wait_idle(ap); | 
 | 	} | 
 |  | 
 | 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { | 
 | 		WARN_ON_ONCE(!ioaddr->ctl_addr); | 
 | 		iowrite8(tf->hob_feature, ioaddr->feature_addr); | 
 | 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr); | 
 | 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr); | 
 | 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr); | 
 | 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr); | 
 | 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", | 
 | 			tf->hob_feature, | 
 | 			tf->hob_nsect, | 
 | 			tf->hob_lbal, | 
 | 			tf->hob_lbam, | 
 | 			tf->hob_lbah); | 
 | 	} | 
 |  | 
 | 	if (is_addr) { | 
 | 		iowrite8(tf->feature, ioaddr->feature_addr); | 
 | 		iowrite8(tf->nsect, ioaddr->nsect_addr); | 
 | 		iowrite8(tf->lbal, ioaddr->lbal_addr); | 
 | 		iowrite8(tf->lbam, ioaddr->lbam_addr); | 
 | 		iowrite8(tf->lbah, ioaddr->lbah_addr); | 
 | 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", | 
 | 			tf->feature, | 
 | 			tf->nsect, | 
 | 			tf->lbal, | 
 | 			tf->lbam, | 
 | 			tf->lbah); | 
 | 	} | 
 |  | 
 | 	if (tf->flags & ATA_TFLAG_DEVICE) { | 
 | 		iowrite8(tf->device, ioaddr->device_addr); | 
 | 		VPRINTK("device 0x%X\n", tf->device); | 
 | 	} | 
 |  | 
 | 	ata_wait_idle(ap); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_tf_load); | 
 |  | 
 | /** | 
 |  *	ata_sff_tf_read - input device's ATA taskfile shadow registers | 
 |  *	@ap: Port from which input is read | 
 |  *	@tf: ATA taskfile register set for storing input | 
 |  * | 
 |  *	Reads ATA taskfile registers for currently-selected device | 
 |  *	into @tf. Assumes the device has a fully SFF compliant task file | 
 |  *	layout and behaviour. If you device does not (eg has a different | 
 |  *	status method) then you will need to provide a replacement tf_read | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) | 
 | { | 
 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 |  | 
 | 	tf->command = ata_sff_check_status(ap); | 
 | 	tf->feature = ioread8(ioaddr->error_addr); | 
 | 	tf->nsect = ioread8(ioaddr->nsect_addr); | 
 | 	tf->lbal = ioread8(ioaddr->lbal_addr); | 
 | 	tf->lbam = ioread8(ioaddr->lbam_addr); | 
 | 	tf->lbah = ioread8(ioaddr->lbah_addr); | 
 | 	tf->device = ioread8(ioaddr->device_addr); | 
 |  | 
 | 	if (tf->flags & ATA_TFLAG_LBA48) { | 
 | 		if (likely(ioaddr->ctl_addr)) { | 
 | 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); | 
 | 			tf->hob_feature = ioread8(ioaddr->error_addr); | 
 | 			tf->hob_nsect = ioread8(ioaddr->nsect_addr); | 
 | 			tf->hob_lbal = ioread8(ioaddr->lbal_addr); | 
 | 			tf->hob_lbam = ioread8(ioaddr->lbam_addr); | 
 | 			tf->hob_lbah = ioread8(ioaddr->lbah_addr); | 
 | 			iowrite8(tf->ctl, ioaddr->ctl_addr); | 
 | 			ap->last_ctl = tf->ctl; | 
 | 		} else | 
 | 			WARN_ON_ONCE(1); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_tf_read); | 
 |  | 
 | /** | 
 |  *	ata_sff_exec_command - issue ATA command to host controller | 
 |  *	@ap: port to which command is being issued | 
 |  *	@tf: ATA taskfile register set | 
 |  * | 
 |  *	Issues ATA command, with proper synchronization with interrupt | 
 |  *	handler / other threads. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) | 
 | { | 
 | 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); | 
 |  | 
 | 	iowrite8(tf->command, ap->ioaddr.command_addr); | 
 | 	ata_sff_pause(ap); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_exec_command); | 
 |  | 
 | /** | 
 |  *	ata_tf_to_host - issue ATA taskfile to host controller | 
 |  *	@ap: port to which command is being issued | 
 |  *	@tf: ATA taskfile register set | 
 |  * | 
 |  *	Issues ATA taskfile register set to ATA host controller, | 
 |  *	with proper synchronization with interrupt handler and | 
 |  *	other threads. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | static inline void ata_tf_to_host(struct ata_port *ap, | 
 | 				  const struct ata_taskfile *tf) | 
 | { | 
 | 	ap->ops->sff_tf_load(ap, tf); | 
 | 	ap->ops->sff_exec_command(ap, tf); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_data_xfer - Transfer data by PIO | 
 |  *	@dev: device to target | 
 |  *	@buf: data buffer | 
 |  *	@buflen: buffer length | 
 |  *	@rw: read/write | 
 |  * | 
 |  *	Transfer data from/to the device data register by PIO. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Bytes consumed. | 
 |  */ | 
 | unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, | 
 | 			       unsigned int buflen, int rw) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	void __iomem *data_addr = ap->ioaddr.data_addr; | 
 | 	unsigned int words = buflen >> 1; | 
 |  | 
 | 	/* Transfer multiple of 2 bytes */ | 
 | 	if (rw == READ) | 
 | 		ioread16_rep(data_addr, buf, words); | 
 | 	else | 
 | 		iowrite16_rep(data_addr, buf, words); | 
 |  | 
 | 	/* Transfer trailing byte, if any. */ | 
 | 	if (unlikely(buflen & 0x01)) { | 
 | 		unsigned char pad[2]; | 
 |  | 
 | 		/* Point buf to the tail of buffer */ | 
 | 		buf += buflen - 1; | 
 |  | 
 | 		/* | 
 | 		 * Use io*16_rep() accessors here as well to avoid pointlessly | 
 | 		 * swapping bytes to and from on the big endian machines... | 
 | 		 */ | 
 | 		if (rw == READ) { | 
 | 			ioread16_rep(data_addr, pad, 1); | 
 | 			*buf = pad[0]; | 
 | 		} else { | 
 | 			pad[0] = *buf; | 
 | 			iowrite16_rep(data_addr, pad, 1); | 
 | 		} | 
 | 		words++; | 
 | 	} | 
 |  | 
 | 	return words << 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_data_xfer); | 
 |  | 
 | /** | 
 |  *	ata_sff_data_xfer32 - Transfer data by PIO | 
 |  *	@dev: device to target | 
 |  *	@buf: data buffer | 
 |  *	@buflen: buffer length | 
 |  *	@rw: read/write | 
 |  * | 
 |  *	Transfer data from/to the device data register by PIO using 32bit | 
 |  *	I/O operations. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Bytes consumed. | 
 |  */ | 
 |  | 
 | unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, | 
 | 			       unsigned int buflen, int rw) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	void __iomem *data_addr = ap->ioaddr.data_addr; | 
 | 	unsigned int words = buflen >> 2; | 
 | 	int slop = buflen & 3; | 
 |  | 
 | 	if (!(ap->pflags & ATA_PFLAG_PIO32)) | 
 | 		return ata_sff_data_xfer(dev, buf, buflen, rw); | 
 |  | 
 | 	/* Transfer multiple of 4 bytes */ | 
 | 	if (rw == READ) | 
 | 		ioread32_rep(data_addr, buf, words); | 
 | 	else | 
 | 		iowrite32_rep(data_addr, buf, words); | 
 |  | 
 | 	/* Transfer trailing bytes, if any */ | 
 | 	if (unlikely(slop)) { | 
 | 		unsigned char pad[4]; | 
 |  | 
 | 		/* Point buf to the tail of buffer */ | 
 | 		buf += buflen - slop; | 
 |  | 
 | 		/* | 
 | 		 * Use io*_rep() accessors here as well to avoid pointlessly | 
 | 		 * swapping bytes to and from on the big endian machines... | 
 | 		 */ | 
 | 		if (rw == READ) { | 
 | 			if (slop < 3) | 
 | 				ioread16_rep(data_addr, pad, 1); | 
 | 			else | 
 | 				ioread32_rep(data_addr, pad, 1); | 
 | 			memcpy(buf, pad, slop); | 
 | 		} else { | 
 | 			memcpy(pad, buf, slop); | 
 | 			if (slop < 3) | 
 | 				iowrite16_rep(data_addr, pad, 1); | 
 | 			else | 
 | 				iowrite32_rep(data_addr, pad, 1); | 
 | 		} | 
 | 	} | 
 | 	return (buflen + 1) & ~1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); | 
 |  | 
 | /** | 
 |  *	ata_sff_data_xfer_noirq - Transfer data by PIO | 
 |  *	@dev: device to target | 
 |  *	@buf: data buffer | 
 |  *	@buflen: buffer length | 
 |  *	@rw: read/write | 
 |  * | 
 |  *	Transfer data from/to the device data register by PIO. Do the | 
 |  *	transfer with interrupts disabled. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Bytes consumed. | 
 |  */ | 
 | unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, | 
 | 				     unsigned int buflen, int rw) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned int consumed; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return consumed; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); | 
 |  | 
 | /** | 
 |  *	ata_pio_sector - Transfer a sector of data. | 
 |  *	@qc: Command on going | 
 |  * | 
 |  *	Transfer qc->sect_size bytes of data from/to the ATA device. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | static void ata_pio_sector(struct ata_queued_cmd *qc) | 
 | { | 
 | 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	struct page *page; | 
 | 	unsigned int offset; | 
 | 	unsigned char *buf; | 
 |  | 
 | 	if (qc->curbytes == qc->nbytes - qc->sect_size) | 
 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 |  | 
 | 	page = sg_page(qc->cursg); | 
 | 	offset = qc->cursg->offset + qc->cursg_ofs; | 
 |  | 
 | 	/* get the current page and offset */ | 
 | 	page = nth_page(page, (offset >> PAGE_SHIFT)); | 
 | 	offset %= PAGE_SIZE; | 
 |  | 
 | 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); | 
 |  | 
 | 	if (PageHighMem(page)) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* FIXME: use a bounce buffer */ | 
 | 		local_irq_save(flags); | 
 | 		buf = kmap_atomic(page, KM_IRQ0); | 
 |  | 
 | 		/* do the actual data transfer */ | 
 | 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, | 
 | 				       do_write); | 
 |  | 
 | 		kunmap_atomic(buf, KM_IRQ0); | 
 | 		local_irq_restore(flags); | 
 | 	} else { | 
 | 		buf = page_address(page); | 
 | 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, | 
 | 				       do_write); | 
 | 	} | 
 |  | 
 | 	if (!do_write) | 
 | 		flush_dcache_page(page); | 
 |  | 
 | 	qc->curbytes += qc->sect_size; | 
 | 	qc->cursg_ofs += qc->sect_size; | 
 |  | 
 | 	if (qc->cursg_ofs == qc->cursg->length) { | 
 | 		qc->cursg = sg_next(qc->cursg); | 
 | 		qc->cursg_ofs = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_pio_sectors - Transfer one or many sectors. | 
 |  *	@qc: Command on going | 
 |  * | 
 |  *	Transfer one or many sectors of data from/to the | 
 |  *	ATA device for the DRQ request. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | static void ata_pio_sectors(struct ata_queued_cmd *qc) | 
 | { | 
 | 	if (is_multi_taskfile(&qc->tf)) { | 
 | 		/* READ/WRITE MULTIPLE */ | 
 | 		unsigned int nsect; | 
 |  | 
 | 		WARN_ON_ONCE(qc->dev->multi_count == 0); | 
 |  | 
 | 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, | 
 | 			    qc->dev->multi_count); | 
 | 		while (nsect--) | 
 | 			ata_pio_sector(qc); | 
 | 	} else | 
 | 		ata_pio_sector(qc); | 
 |  | 
 | 	ata_sff_sync(qc->ap); /* flush */ | 
 | } | 
 |  | 
 | /** | 
 |  *	atapi_send_cdb - Write CDB bytes to hardware | 
 |  *	@ap: Port to which ATAPI device is attached. | 
 |  *	@qc: Taskfile currently active | 
 |  * | 
 |  *	When device has indicated its readiness to accept | 
 |  *	a CDB, this function is called.  Send the CDB. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	caller. | 
 |  */ | 
 | static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) | 
 | { | 
 | 	/* send SCSI cdb */ | 
 | 	DPRINTK("send cdb\n"); | 
 | 	WARN_ON_ONCE(qc->dev->cdb_len < 12); | 
 |  | 
 | 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); | 
 | 	ata_sff_sync(ap); | 
 | 	/* FIXME: If the CDB is for DMA do we need to do the transition delay | 
 | 	   or is bmdma_start guaranteed to do it ? */ | 
 | 	switch (qc->tf.protocol) { | 
 | 	case ATAPI_PROT_PIO: | 
 | 		ap->hsm_task_state = HSM_ST; | 
 | 		break; | 
 | 	case ATAPI_PROT_NODATA: | 
 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 | 		break; | 
 | 	case ATAPI_PROT_DMA: | 
 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 | 		/* initiate bmdma */ | 
 | 		ap->ops->bmdma_start(qc); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device. | 
 |  *	@qc: Command on going | 
 |  *	@bytes: number of bytes | 
 |  * | 
 |  *	Transfer Transfer data from/to the ATAPI device. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  * | 
 |  */ | 
 | static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) | 
 | { | 
 | 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	struct ata_device *dev = qc->dev; | 
 | 	struct ata_eh_info *ehi = &dev->link->eh_info; | 
 | 	struct scatterlist *sg; | 
 | 	struct page *page; | 
 | 	unsigned char *buf; | 
 | 	unsigned int offset, count, consumed; | 
 |  | 
 | next_sg: | 
 | 	sg = qc->cursg; | 
 | 	if (unlikely(!sg)) { | 
 | 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data " | 
 | 				  "buf=%u cur=%u bytes=%u", | 
 | 				  qc->nbytes, qc->curbytes, bytes); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	page = sg_page(sg); | 
 | 	offset = sg->offset + qc->cursg_ofs; | 
 |  | 
 | 	/* get the current page and offset */ | 
 | 	page = nth_page(page, (offset >> PAGE_SHIFT)); | 
 | 	offset %= PAGE_SIZE; | 
 |  | 
 | 	/* don't overrun current sg */ | 
 | 	count = min(sg->length - qc->cursg_ofs, bytes); | 
 |  | 
 | 	/* don't cross page boundaries */ | 
 | 	count = min(count, (unsigned int)PAGE_SIZE - offset); | 
 |  | 
 | 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); | 
 |  | 
 | 	if (PageHighMem(page)) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* FIXME: use bounce buffer */ | 
 | 		local_irq_save(flags); | 
 | 		buf = kmap_atomic(page, KM_IRQ0); | 
 |  | 
 | 		/* do the actual data transfer */ | 
 | 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset, | 
 | 								count, rw); | 
 |  | 
 | 		kunmap_atomic(buf, KM_IRQ0); | 
 | 		local_irq_restore(flags); | 
 | 	} else { | 
 | 		buf = page_address(page); | 
 | 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset, | 
 | 								count, rw); | 
 | 	} | 
 |  | 
 | 	bytes -= min(bytes, consumed); | 
 | 	qc->curbytes += count; | 
 | 	qc->cursg_ofs += count; | 
 |  | 
 | 	if (qc->cursg_ofs == sg->length) { | 
 | 		qc->cursg = sg_next(qc->cursg); | 
 | 		qc->cursg_ofs = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed); | 
 | 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN | 
 | 	 * check correctly as it doesn't know if it is the last request being | 
 | 	 * made. Somebody should implement a proper sanity check. | 
 | 	 */ | 
 | 	if (bytes) | 
 | 		goto next_sg; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	atapi_pio_bytes - Transfer data from/to the ATAPI device. | 
 |  *	@qc: Command on going | 
 |  * | 
 |  *	Transfer Transfer data from/to the ATAPI device. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | static void atapi_pio_bytes(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	struct ata_device *dev = qc->dev; | 
 | 	struct ata_eh_info *ehi = &dev->link->eh_info; | 
 | 	unsigned int ireason, bc_lo, bc_hi, bytes; | 
 | 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; | 
 |  | 
 | 	/* Abuse qc->result_tf for temp storage of intermediate TF | 
 | 	 * here to save some kernel stack usage. | 
 | 	 * For normal completion, qc->result_tf is not relevant. For | 
 | 	 * error, qc->result_tf is later overwritten by ata_qc_complete(). | 
 | 	 * So, the correctness of qc->result_tf is not affected. | 
 | 	 */ | 
 | 	ap->ops->sff_tf_read(ap, &qc->result_tf); | 
 | 	ireason = qc->result_tf.nsect; | 
 | 	bc_lo = qc->result_tf.lbam; | 
 | 	bc_hi = qc->result_tf.lbah; | 
 | 	bytes = (bc_hi << 8) | bc_lo; | 
 |  | 
 | 	/* shall be cleared to zero, indicating xfer of data */ | 
 | 	if (unlikely(ireason & (1 << 0))) | 
 | 		goto atapi_check; | 
 |  | 
 | 	/* make sure transfer direction matches expected */ | 
 | 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; | 
 | 	if (unlikely(do_write != i_write)) | 
 | 		goto atapi_check; | 
 |  | 
 | 	if (unlikely(!bytes)) | 
 | 		goto atapi_check; | 
 |  | 
 | 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); | 
 |  | 
 | 	if (unlikely(__atapi_pio_bytes(qc, bytes))) | 
 | 		goto err_out; | 
 | 	ata_sff_sync(ap); /* flush */ | 
 |  | 
 | 	return; | 
 |  | 
 |  atapi_check: | 
 | 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", | 
 | 			  ireason, bytes); | 
 |  err_out: | 
 | 	qc->err_mask |= AC_ERR_HSM; | 
 | 	ap->hsm_task_state = HSM_ST_ERR; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. | 
 |  *	@ap: the target ata_port | 
 |  *	@qc: qc on going | 
 |  * | 
 |  *	RETURNS: | 
 |  *	1 if ok in workqueue, 0 otherwise. | 
 |  */ | 
 | static inline int ata_hsm_ok_in_wq(struct ata_port *ap, | 
 | 						struct ata_queued_cmd *qc) | 
 | { | 
 | 	if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 		return 1; | 
 |  | 
 | 	if (ap->hsm_task_state == HSM_ST_FIRST) { | 
 | 		if (qc->tf.protocol == ATA_PROT_PIO && | 
 | 		   (qc->tf.flags & ATA_TFLAG_WRITE)) | 
 | 		    return 1; | 
 |  | 
 | 		if (ata_is_atapi(qc->tf.protocol) && | 
 | 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_hsm_qc_complete - finish a qc running on standard HSM | 
 |  *	@qc: Command to complete | 
 |  *	@in_wq: 1 if called from workqueue, 0 otherwise | 
 |  * | 
 |  *	Finish @qc which is running on standard HSM. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	If @in_wq is zero, spin_lock_irqsave(host lock). | 
 |  *	Otherwise, none on entry and grabs host lock. | 
 |  */ | 
 | static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (ap->ops->error_handler) { | 
 | 		if (in_wq) { | 
 | 			spin_lock_irqsave(ap->lock, flags); | 
 |  | 
 | 			/* EH might have kicked in while host lock is | 
 | 			 * released. | 
 | 			 */ | 
 | 			qc = ata_qc_from_tag(ap, qc->tag); | 
 | 			if (qc) { | 
 | 				if (likely(!(qc->err_mask & AC_ERR_HSM))) { | 
 | 					ap->ops->sff_irq_on(ap); | 
 | 					ata_qc_complete(qc); | 
 | 				} else | 
 | 					ata_port_freeze(ap); | 
 | 			} | 
 |  | 
 | 			spin_unlock_irqrestore(ap->lock, flags); | 
 | 		} else { | 
 | 			if (likely(!(qc->err_mask & AC_ERR_HSM))) | 
 | 				ata_qc_complete(qc); | 
 | 			else | 
 | 				ata_port_freeze(ap); | 
 | 		} | 
 | 	} else { | 
 | 		if (in_wq) { | 
 | 			spin_lock_irqsave(ap->lock, flags); | 
 | 			ap->ops->sff_irq_on(ap); | 
 | 			ata_qc_complete(qc); | 
 | 			spin_unlock_irqrestore(ap->lock, flags); | 
 | 		} else | 
 | 			ata_qc_complete(qc); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_hsm_move - move the HSM to the next state. | 
 |  *	@ap: the target ata_port | 
 |  *	@qc: qc on going | 
 |  *	@status: current device status | 
 |  *	@in_wq: 1 if called from workqueue, 0 otherwise | 
 |  * | 
 |  *	RETURNS: | 
 |  *	1 when poll next status needed, 0 otherwise. | 
 |  */ | 
 | int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, | 
 | 		     u8 status, int in_wq) | 
 | { | 
 | 	struct ata_eh_info *ehi = &ap->link.eh_info; | 
 | 	unsigned long flags = 0; | 
 | 	int poll_next; | 
 |  | 
 | 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); | 
 |  | 
 | 	/* Make sure ata_sff_qc_issue() does not throw things | 
 | 	 * like DMA polling into the workqueue. Notice that | 
 | 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). | 
 | 	 */ | 
 | 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); | 
 |  | 
 | fsm_start: | 
 | 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", | 
 | 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); | 
 |  | 
 | 	switch (ap->hsm_task_state) { | 
 | 	case HSM_ST_FIRST: | 
 | 		/* Send first data block or PACKET CDB */ | 
 |  | 
 | 		/* If polling, we will stay in the work queue after | 
 | 		 * sending the data. Otherwise, interrupt handler | 
 | 		 * takes over after sending the data. | 
 | 		 */ | 
 | 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); | 
 |  | 
 | 		/* check device status */ | 
 | 		if (unlikely((status & ATA_DRQ) == 0)) { | 
 | 			/* handle BSY=0, DRQ=0 as error */ | 
 | 			if (likely(status & (ATA_ERR | ATA_DF))) | 
 | 				/* device stops HSM for abort/error */ | 
 | 				qc->err_mask |= AC_ERR_DEV; | 
 | 			else { | 
 | 				/* HSM violation. Let EH handle this */ | 
 | 				ata_ehi_push_desc(ehi, | 
 | 					"ST_FIRST: !(DRQ|ERR|DF)"); | 
 | 				qc->err_mask |= AC_ERR_HSM; | 
 | 			} | 
 |  | 
 | 			ap->hsm_task_state = HSM_ST_ERR; | 
 | 			goto fsm_start; | 
 | 		} | 
 |  | 
 | 		/* Device should not ask for data transfer (DRQ=1) | 
 | 		 * when it finds something wrong. | 
 | 		 * We ignore DRQ here and stop the HSM by | 
 | 		 * changing hsm_task_state to HSM_ST_ERR and | 
 | 		 * let the EH abort the command or reset the device. | 
 | 		 */ | 
 | 		if (unlikely(status & (ATA_ERR | ATA_DF))) { | 
 | 			/* Some ATAPI tape drives forget to clear the ERR bit | 
 | 			 * when doing the next command (mostly request sense). | 
 | 			 * We ignore ERR here to workaround and proceed sending | 
 | 			 * the CDB. | 
 | 			 */ | 
 | 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { | 
 | 				ata_ehi_push_desc(ehi, "ST_FIRST: " | 
 | 					"DRQ=1 with device error, " | 
 | 					"dev_stat 0x%X", status); | 
 | 				qc->err_mask |= AC_ERR_HSM; | 
 | 				ap->hsm_task_state = HSM_ST_ERR; | 
 | 				goto fsm_start; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Send the CDB (atapi) or the first data block (ata pio out). | 
 | 		 * During the state transition, interrupt handler shouldn't | 
 | 		 * be invoked before the data transfer is complete and | 
 | 		 * hsm_task_state is changed. Hence, the following locking. | 
 | 		 */ | 
 | 		if (in_wq) | 
 | 			spin_lock_irqsave(ap->lock, flags); | 
 |  | 
 | 		if (qc->tf.protocol == ATA_PROT_PIO) { | 
 | 			/* PIO data out protocol. | 
 | 			 * send first data block. | 
 | 			 */ | 
 |  | 
 | 			/* ata_pio_sectors() might change the state | 
 | 			 * to HSM_ST_LAST. so, the state is changed here | 
 | 			 * before ata_pio_sectors(). | 
 | 			 */ | 
 | 			ap->hsm_task_state = HSM_ST; | 
 | 			ata_pio_sectors(qc); | 
 | 		} else | 
 | 			/* send CDB */ | 
 | 			atapi_send_cdb(ap, qc); | 
 |  | 
 | 		if (in_wq) | 
 | 			spin_unlock_irqrestore(ap->lock, flags); | 
 |  | 
 | 		/* if polling, ata_pio_task() handles the rest. | 
 | 		 * otherwise, interrupt handler takes over from here. | 
 | 		 */ | 
 | 		break; | 
 |  | 
 | 	case HSM_ST: | 
 | 		/* complete command or read/write the data register */ | 
 | 		if (qc->tf.protocol == ATAPI_PROT_PIO) { | 
 | 			/* ATAPI PIO protocol */ | 
 | 			if ((status & ATA_DRQ) == 0) { | 
 | 				/* No more data to transfer or device error. | 
 | 				 * Device error will be tagged in HSM_ST_LAST. | 
 | 				 */ | 
 | 				ap->hsm_task_state = HSM_ST_LAST; | 
 | 				goto fsm_start; | 
 | 			} | 
 |  | 
 | 			/* Device should not ask for data transfer (DRQ=1) | 
 | 			 * when it finds something wrong. | 
 | 			 * We ignore DRQ here and stop the HSM by | 
 | 			 * changing hsm_task_state to HSM_ST_ERR and | 
 | 			 * let the EH abort the command or reset the device. | 
 | 			 */ | 
 | 			if (unlikely(status & (ATA_ERR | ATA_DF))) { | 
 | 				ata_ehi_push_desc(ehi, "ST-ATAPI: " | 
 | 					"DRQ=1 with device error, " | 
 | 					"dev_stat 0x%X", status); | 
 | 				qc->err_mask |= AC_ERR_HSM; | 
 | 				ap->hsm_task_state = HSM_ST_ERR; | 
 | 				goto fsm_start; | 
 | 			} | 
 |  | 
 | 			atapi_pio_bytes(qc); | 
 |  | 
 | 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) | 
 | 				/* bad ireason reported by device */ | 
 | 				goto fsm_start; | 
 |  | 
 | 		} else { | 
 | 			/* ATA PIO protocol */ | 
 | 			if (unlikely((status & ATA_DRQ) == 0)) { | 
 | 				/* handle BSY=0, DRQ=0 as error */ | 
 | 				if (likely(status & (ATA_ERR | ATA_DF))) { | 
 | 					/* device stops HSM for abort/error */ | 
 | 					qc->err_mask |= AC_ERR_DEV; | 
 |  | 
 | 					/* If diagnostic failed and this is | 
 | 					 * IDENTIFY, it's likely a phantom | 
 | 					 * device.  Mark hint. | 
 | 					 */ | 
 | 					if (qc->dev->horkage & | 
 | 					    ATA_HORKAGE_DIAGNOSTIC) | 
 | 						qc->err_mask |= | 
 | 							AC_ERR_NODEV_HINT; | 
 | 				} else { | 
 | 					/* HSM violation. Let EH handle this. | 
 | 					 * Phantom devices also trigger this | 
 | 					 * condition.  Mark hint. | 
 | 					 */ | 
 | 					ata_ehi_push_desc(ehi, "ST-ATA: " | 
 | 						"DRQ=0 without device error, " | 
 | 						"dev_stat 0x%X", status); | 
 | 					qc->err_mask |= AC_ERR_HSM | | 
 | 							AC_ERR_NODEV_HINT; | 
 | 				} | 
 |  | 
 | 				ap->hsm_task_state = HSM_ST_ERR; | 
 | 				goto fsm_start; | 
 | 			} | 
 |  | 
 | 			/* For PIO reads, some devices may ask for | 
 | 			 * data transfer (DRQ=1) alone with ERR=1. | 
 | 			 * We respect DRQ here and transfer one | 
 | 			 * block of junk data before changing the | 
 | 			 * hsm_task_state to HSM_ST_ERR. | 
 | 			 * | 
 | 			 * For PIO writes, ERR=1 DRQ=1 doesn't make | 
 | 			 * sense since the data block has been | 
 | 			 * transferred to the device. | 
 | 			 */ | 
 | 			if (unlikely(status & (ATA_ERR | ATA_DF))) { | 
 | 				/* data might be corrputed */ | 
 | 				qc->err_mask |= AC_ERR_DEV; | 
 |  | 
 | 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { | 
 | 					ata_pio_sectors(qc); | 
 | 					status = ata_wait_idle(ap); | 
 | 				} | 
 |  | 
 | 				if (status & (ATA_BUSY | ATA_DRQ)) { | 
 | 					ata_ehi_push_desc(ehi, "ST-ATA: " | 
 | 						"BUSY|DRQ persists on ERR|DF, " | 
 | 						"dev_stat 0x%X", status); | 
 | 					qc->err_mask |= AC_ERR_HSM; | 
 | 				} | 
 |  | 
 | 				/* There are oddball controllers with | 
 | 				 * status register stuck at 0x7f and | 
 | 				 * lbal/m/h at zero which makes it | 
 | 				 * pass all other presence detection | 
 | 				 * mechanisms we have.  Set NODEV_HINT | 
 | 				 * for it.  Kernel bz#7241. | 
 | 				 */ | 
 | 				if (status == 0x7f) | 
 | 					qc->err_mask |= AC_ERR_NODEV_HINT; | 
 |  | 
 | 				/* ata_pio_sectors() might change the | 
 | 				 * state to HSM_ST_LAST. so, the state | 
 | 				 * is changed after ata_pio_sectors(). | 
 | 				 */ | 
 | 				ap->hsm_task_state = HSM_ST_ERR; | 
 | 				goto fsm_start; | 
 | 			} | 
 |  | 
 | 			ata_pio_sectors(qc); | 
 |  | 
 | 			if (ap->hsm_task_state == HSM_ST_LAST && | 
 | 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) { | 
 | 				/* all data read */ | 
 | 				status = ata_wait_idle(ap); | 
 | 				goto fsm_start; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		poll_next = 1; | 
 | 		break; | 
 |  | 
 | 	case HSM_ST_LAST: | 
 | 		if (unlikely(!ata_ok(status))) { | 
 | 			qc->err_mask |= __ac_err_mask(status); | 
 | 			ap->hsm_task_state = HSM_ST_ERR; | 
 | 			goto fsm_start; | 
 | 		} | 
 |  | 
 | 		/* no more data to transfer */ | 
 | 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", | 
 | 			ap->print_id, qc->dev->devno, status); | 
 |  | 
 | 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); | 
 |  | 
 | 		ap->hsm_task_state = HSM_ST_IDLE; | 
 |  | 
 | 		/* complete taskfile transaction */ | 
 | 		ata_hsm_qc_complete(qc, in_wq); | 
 |  | 
 | 		poll_next = 0; | 
 | 		break; | 
 |  | 
 | 	case HSM_ST_ERR: | 
 | 		ap->hsm_task_state = HSM_ST_IDLE; | 
 |  | 
 | 		/* complete taskfile transaction */ | 
 | 		ata_hsm_qc_complete(qc, in_wq); | 
 |  | 
 | 		poll_next = 0; | 
 | 		break; | 
 | 	default: | 
 | 		poll_next = 0; | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	return poll_next; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_hsm_move); | 
 |  | 
 | void ata_pio_task(struct work_struct *work) | 
 | { | 
 | 	struct ata_port *ap = | 
 | 		container_of(work, struct ata_port, port_task.work); | 
 | 	struct ata_queued_cmd *qc = ap->port_task_data; | 
 | 	u8 status; | 
 | 	int poll_next; | 
 |  | 
 | fsm_start: | 
 | 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); | 
 |  | 
 | 	/* | 
 | 	 * This is purely heuristic.  This is a fast path. | 
 | 	 * Sometimes when we enter, BSY will be cleared in | 
 | 	 * a chk-status or two.  If not, the drive is probably seeking | 
 | 	 * or something.  Snooze for a couple msecs, then | 
 | 	 * chk-status again.  If still busy, queue delayed work. | 
 | 	 */ | 
 | 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5); | 
 | 	if (status & ATA_BUSY) { | 
 | 		msleep(2); | 
 | 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10); | 
 | 		if (status & ATA_BUSY) { | 
 | 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* move the HSM */ | 
 | 	poll_next = ata_sff_hsm_move(ap, qc, status, 1); | 
 |  | 
 | 	/* another command or interrupt handler | 
 | 	 * may be running at this point. | 
 | 	 */ | 
 | 	if (poll_next) | 
 | 		goto fsm_start; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner | 
 |  *	@qc: command to issue to device | 
 |  * | 
 |  *	Using various libata functions and hooks, this function | 
 |  *	starts an ATA command.  ATA commands are grouped into | 
 |  *	classes called "protocols", and issuing each type of protocol | 
 |  *	is slightly different. | 
 |  * | 
 |  *	May be used as the qc_issue() entry in ata_port_operations. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Zero on success, AC_ERR_* mask on failure | 
 |  */ | 
 | unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 |  | 
 | 	/* Use polling pio if the LLD doesn't handle | 
 | 	 * interrupt driven pio and atapi CDB interrupt. | 
 | 	 */ | 
 | 	if (ap->flags & ATA_FLAG_PIO_POLLING) { | 
 | 		switch (qc->tf.protocol) { | 
 | 		case ATA_PROT_PIO: | 
 | 		case ATA_PROT_NODATA: | 
 | 		case ATAPI_PROT_PIO: | 
 | 		case ATAPI_PROT_NODATA: | 
 | 			qc->tf.flags |= ATA_TFLAG_POLLING; | 
 | 			break; | 
 | 		case ATAPI_PROT_DMA: | 
 | 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR) | 
 | 				/* see ata_dma_blacklisted() */ | 
 | 				BUG(); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* select the device */ | 
 | 	ata_dev_select(ap, qc->dev->devno, 1, 0); | 
 |  | 
 | 	/* start the command */ | 
 | 	switch (qc->tf.protocol) { | 
 | 	case ATA_PROT_NODATA: | 
 | 		if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 			ata_qc_set_polling(qc); | 
 |  | 
 | 		ata_tf_to_host(ap, &qc->tf); | 
 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 |  | 
 | 		if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 			ata_pio_queue_task(ap, qc, 0); | 
 |  | 
 | 		break; | 
 |  | 
 | 	case ATA_PROT_DMA: | 
 | 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); | 
 |  | 
 | 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */ | 
 | 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */ | 
 | 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */ | 
 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 | 		break; | 
 |  | 
 | 	case ATA_PROT_PIO: | 
 | 		if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 			ata_qc_set_polling(qc); | 
 |  | 
 | 		ata_tf_to_host(ap, &qc->tf); | 
 |  | 
 | 		if (qc->tf.flags & ATA_TFLAG_WRITE) { | 
 | 			/* PIO data out protocol */ | 
 | 			ap->hsm_task_state = HSM_ST_FIRST; | 
 | 			ata_pio_queue_task(ap, qc, 0); | 
 |  | 
 | 			/* always send first data block using | 
 | 			 * the ata_pio_task() codepath. | 
 | 			 */ | 
 | 		} else { | 
 | 			/* PIO data in protocol */ | 
 | 			ap->hsm_task_state = HSM_ST; | 
 |  | 
 | 			if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 				ata_pio_queue_task(ap, qc, 0); | 
 |  | 
 | 			/* if polling, ata_pio_task() handles the rest. | 
 | 			 * otherwise, interrupt handler takes over from here. | 
 | 			 */ | 
 | 		} | 
 |  | 
 | 		break; | 
 |  | 
 | 	case ATAPI_PROT_PIO: | 
 | 	case ATAPI_PROT_NODATA: | 
 | 		if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 			ata_qc_set_polling(qc); | 
 |  | 
 | 		ata_tf_to_host(ap, &qc->tf); | 
 |  | 
 | 		ap->hsm_task_state = HSM_ST_FIRST; | 
 |  | 
 | 		/* send cdb by polling if no cdb interrupt */ | 
 | 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || | 
 | 		    (qc->tf.flags & ATA_TFLAG_POLLING)) | 
 | 			ata_pio_queue_task(ap, qc, 0); | 
 | 		break; | 
 |  | 
 | 	case ATAPI_PROT_DMA: | 
 | 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); | 
 |  | 
 | 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */ | 
 | 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */ | 
 | 		ap->hsm_task_state = HSM_ST_FIRST; | 
 |  | 
 | 		/* send cdb by polling if no cdb interrupt */ | 
 | 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) | 
 | 			ata_pio_queue_task(ap, qc, 0); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		WARN_ON_ONCE(1); | 
 | 		return AC_ERR_SYSTEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_qc_issue); | 
 |  | 
 | /** | 
 |  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read | 
 |  *	@qc: qc to fill result TF for | 
 |  * | 
 |  *	@qc is finished and result TF needs to be filled.  Fill it | 
 |  *	using ->sff_tf_read. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	true indicating that result TF is successfully filled. | 
 |  */ | 
 | bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) | 
 | { | 
 | 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); | 
 | 	return true; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); | 
 |  | 
 | /** | 
 |  *	ata_sff_host_intr - Handle host interrupt for given (port, task) | 
 |  *	@ap: Port on which interrupt arrived (possibly...) | 
 |  *	@qc: Taskfile currently active in engine | 
 |  * | 
 |  *	Handle host interrupt for given queued command.  Currently, | 
 |  *	only DMA interrupts are handled.  All other commands are | 
 |  *	handled via polling with interrupts disabled (nIEN bit). | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	One if interrupt was handled, zero if not (shared irq). | 
 |  */ | 
 | unsigned int ata_sff_host_intr(struct ata_port *ap, | 
 | 				      struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_eh_info *ehi = &ap->link.eh_info; | 
 | 	u8 status, host_stat = 0; | 
 |  | 
 | 	VPRINTK("ata%u: protocol %d task_state %d\n", | 
 | 		ap->print_id, qc->tf.protocol, ap->hsm_task_state); | 
 |  | 
 | 	/* Check whether we are expecting interrupt in this state */ | 
 | 	switch (ap->hsm_task_state) { | 
 | 	case HSM_ST_FIRST: | 
 | 		/* Some pre-ATAPI-4 devices assert INTRQ | 
 | 		 * at this state when ready to receive CDB. | 
 | 		 */ | 
 |  | 
 | 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here. | 
 | 		 * The flag was turned on only for atapi devices.  No | 
 | 		 * need to check ata_is_atapi(qc->tf.protocol) again. | 
 | 		 */ | 
 | 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) | 
 | 			goto idle_irq; | 
 | 		break; | 
 | 	case HSM_ST_LAST: | 
 | 		if (qc->tf.protocol == ATA_PROT_DMA || | 
 | 		    qc->tf.protocol == ATAPI_PROT_DMA) { | 
 | 			/* check status of DMA engine */ | 
 | 			host_stat = ap->ops->bmdma_status(ap); | 
 | 			VPRINTK("ata%u: host_stat 0x%X\n", | 
 | 				ap->print_id, host_stat); | 
 |  | 
 | 			/* if it's not our irq... */ | 
 | 			if (!(host_stat & ATA_DMA_INTR)) | 
 | 				goto idle_irq; | 
 |  | 
 | 			/* before we do anything else, clear DMA-Start bit */ | 
 | 			ap->ops->bmdma_stop(qc); | 
 |  | 
 | 			if (unlikely(host_stat & ATA_DMA_ERR)) { | 
 | 				/* error when transfering data to/from memory */ | 
 | 				qc->err_mask |= AC_ERR_HOST_BUS; | 
 | 				ap->hsm_task_state = HSM_ST_ERR; | 
 | 			} | 
 | 		} | 
 | 		break; | 
 | 	case HSM_ST: | 
 | 		break; | 
 | 	default: | 
 | 		goto idle_irq; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* check main status, clearing INTRQ if needed */ | 
 | 	status = ata_sff_irq_status(ap); | 
 | 	if (status & ATA_BUSY) | 
 | 		goto idle_irq; | 
 |  | 
 | 	/* ack bmdma irq events */ | 
 | 	ap->ops->sff_irq_clear(ap); | 
 |  | 
 | 	ata_sff_hsm_move(ap, qc, status, 0); | 
 |  | 
 | 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || | 
 | 				       qc->tf.protocol == ATAPI_PROT_DMA)) | 
 | 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); | 
 |  | 
 | 	return 1;	/* irq handled */ | 
 |  | 
 | idle_irq: | 
 | 	ap->stats.idle_irq++; | 
 |  | 
 | #ifdef ATA_IRQ_TRAP | 
 | 	if ((ap->stats.idle_irq % 1000) == 0) { | 
 | 		ap->ops->sff_check_status(ap); | 
 | 		ap->ops->sff_irq_clear(ap); | 
 | 		ata_port_printk(ap, KERN_WARNING, "irq trap\n"); | 
 | 		return 1; | 
 | 	} | 
 | #endif | 
 | 	return 0;	/* irq not handled */ | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_host_intr); | 
 |  | 
 | /** | 
 |  *	ata_sff_interrupt - Default ATA host interrupt handler | 
 |  *	@irq: irq line (unused) | 
 |  *	@dev_instance: pointer to our ata_host information structure | 
 |  * | 
 |  *	Default interrupt handler for PCI IDE devices.  Calls | 
 |  *	ata_sff_host_intr() for each port that is not disabled. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Obtains host lock during operation. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	IRQ_NONE or IRQ_HANDLED. | 
 |  */ | 
 | irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) | 
 | { | 
 | 	struct ata_host *host = dev_instance; | 
 | 	unsigned int i; | 
 | 	unsigned int handled = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ | 
 | 	spin_lock_irqsave(&host->lock, flags); | 
 |  | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap; | 
 |  | 
 | 		ap = host->ports[i]; | 
 | 		if (ap && | 
 | 		    !(ap->flags & ATA_FLAG_DISABLED)) { | 
 | 			struct ata_queued_cmd *qc; | 
 |  | 
 | 			qc = ata_qc_from_tag(ap, ap->link.active_tag); | 
 | 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && | 
 | 			    (qc->flags & ATA_QCFLAG_ACTIVE)) | 
 | 				handled |= ata_sff_host_intr(ap, qc); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&host->lock, flags); | 
 |  | 
 | 	return IRQ_RETVAL(handled); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_interrupt); | 
 |  | 
 | /** | 
 |  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt | 
 |  *	@ap: port that appears to have timed out | 
 |  * | 
 |  *	Called from the libata error handlers when the core code suspects | 
 |  *	an interrupt has been lost. If it has complete anything we can and | 
 |  *	then return. Interface must support altstatus for this faster | 
 |  *	recovery to occur. | 
 |  * | 
 |  *	Locking: | 
 |  *	Caller holds host lock | 
 |  */ | 
 |  | 
 | void ata_sff_lost_interrupt(struct ata_port *ap) | 
 | { | 
 | 	u8 status; | 
 | 	struct ata_queued_cmd *qc; | 
 |  | 
 | 	/* Only one outstanding command per SFF channel */ | 
 | 	qc = ata_qc_from_tag(ap, ap->link.active_tag); | 
 | 	/* Check we have a live one.. */ | 
 | 	if (qc == NULL ||  !(qc->flags & ATA_QCFLAG_ACTIVE)) | 
 | 		return; | 
 | 	/* We cannot lose an interrupt on a polled command */ | 
 | 	if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 		return; | 
 | 	/* See if the controller thinks it is still busy - if so the command | 
 | 	   isn't a lost IRQ but is still in progress */ | 
 | 	status = ata_sff_altstatus(ap); | 
 | 	if (status & ATA_BUSY) | 
 | 		return; | 
 |  | 
 | 	/* There was a command running, we are no longer busy and we have | 
 | 	   no interrupt. */ | 
 | 	ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n", | 
 | 								status); | 
 | 	/* Run the host interrupt logic as if the interrupt had not been | 
 | 	   lost */ | 
 | 	ata_sff_host_intr(ap, qc); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); | 
 |  | 
 | /** | 
 |  *	ata_sff_freeze - Freeze SFF controller port | 
 |  *	@ap: port to freeze | 
 |  * | 
 |  *	Freeze BMDMA controller port. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | void ata_sff_freeze(struct ata_port *ap) | 
 | { | 
 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 |  | 
 | 	ap->ctl |= ATA_NIEN; | 
 | 	ap->last_ctl = ap->ctl; | 
 |  | 
 | 	if (ioaddr->ctl_addr) | 
 | 		iowrite8(ap->ctl, ioaddr->ctl_addr); | 
 |  | 
 | 	/* Under certain circumstances, some controllers raise IRQ on | 
 | 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask | 
 | 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it. | 
 | 	 */ | 
 | 	ap->ops->sff_check_status(ap); | 
 |  | 
 | 	ap->ops->sff_irq_clear(ap); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_freeze); | 
 |  | 
 | /** | 
 |  *	ata_sff_thaw - Thaw SFF controller port | 
 |  *	@ap: port to thaw | 
 |  * | 
 |  *	Thaw SFF controller port. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | void ata_sff_thaw(struct ata_port *ap) | 
 | { | 
 | 	/* clear & re-enable interrupts */ | 
 | 	ap->ops->sff_check_status(ap); | 
 | 	ap->ops->sff_irq_clear(ap); | 
 | 	ap->ops->sff_irq_on(ap); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_thaw); | 
 |  | 
 | /** | 
 |  *	ata_sff_prereset - prepare SFF link for reset | 
 |  *	@link: SFF link to be reset | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  * | 
 |  *	SFF link @link is about to be reset.  Initialize it.  It first | 
 |  *	calls ata_std_prereset() and wait for !BSY if the port is | 
 |  *	being softreset. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_sff_prereset(struct ata_link *link, unsigned long deadline) | 
 | { | 
 | 	struct ata_eh_context *ehc = &link->eh_context; | 
 | 	int rc; | 
 |  | 
 | 	rc = ata_std_prereset(link, deadline); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* if we're about to do hardreset, nothing more to do */ | 
 | 	if (ehc->i.action & ATA_EH_HARDRESET) | 
 | 		return 0; | 
 |  | 
 | 	/* wait for !BSY if we don't know that no device is attached */ | 
 | 	if (!ata_link_offline(link)) { | 
 | 		rc = ata_sff_wait_ready(link, deadline); | 
 | 		if (rc && rc != -ENODEV) { | 
 | 			ata_link_printk(link, KERN_WARNING, "device not ready " | 
 | 					"(errno=%d), forcing hardreset\n", rc); | 
 | 			ehc->i.action |= ATA_EH_HARDRESET; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_prereset); | 
 |  | 
 | /** | 
 |  *	ata_devchk - PATA device presence detection | 
 |  *	@ap: ATA channel to examine | 
 |  *	@device: Device to examine (starting at zero) | 
 |  * | 
 |  *	This technique was originally described in | 
 |  *	Hale Landis's ATADRVR (www.ata-atapi.com), and | 
 |  *	later found its way into the ATA/ATAPI spec. | 
 |  * | 
 |  *	Write a pattern to the ATA shadow registers, | 
 |  *	and if a device is present, it will respond by | 
 |  *	correctly storing and echoing back the | 
 |  *	ATA shadow register contents. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	caller. | 
 |  */ | 
 | static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) | 
 | { | 
 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 	u8 nsect, lbal; | 
 |  | 
 | 	ap->ops->sff_dev_select(ap, device); | 
 |  | 
 | 	iowrite8(0x55, ioaddr->nsect_addr); | 
 | 	iowrite8(0xaa, ioaddr->lbal_addr); | 
 |  | 
 | 	iowrite8(0xaa, ioaddr->nsect_addr); | 
 | 	iowrite8(0x55, ioaddr->lbal_addr); | 
 |  | 
 | 	iowrite8(0x55, ioaddr->nsect_addr); | 
 | 	iowrite8(0xaa, ioaddr->lbal_addr); | 
 |  | 
 | 	nsect = ioread8(ioaddr->nsect_addr); | 
 | 	lbal = ioread8(ioaddr->lbal_addr); | 
 |  | 
 | 	if ((nsect == 0x55) && (lbal == 0xaa)) | 
 | 		return 1;	/* we found a device */ | 
 |  | 
 | 	return 0;		/* nothing found */ | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_dev_classify - Parse returned ATA device signature | 
 |  *	@dev: ATA device to classify (starting at zero) | 
 |  *	@present: device seems present | 
 |  *	@r_err: Value of error register on completion | 
 |  * | 
 |  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, | 
 |  *	an ATA/ATAPI-defined set of values is placed in the ATA | 
 |  *	shadow registers, indicating the results of device detection | 
 |  *	and diagnostics. | 
 |  * | 
 |  *	Select the ATA device, and read the values from the ATA shadow | 
 |  *	registers.  Then parse according to the Error register value, | 
 |  *	and the spec-defined values examined by ata_dev_classify(). | 
 |  * | 
 |  *	LOCKING: | 
 |  *	caller. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. | 
 |  */ | 
 | unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, | 
 | 				  u8 *r_err) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	struct ata_taskfile tf; | 
 | 	unsigned int class; | 
 | 	u8 err; | 
 |  | 
 | 	ap->ops->sff_dev_select(ap, dev->devno); | 
 |  | 
 | 	memset(&tf, 0, sizeof(tf)); | 
 |  | 
 | 	ap->ops->sff_tf_read(ap, &tf); | 
 | 	err = tf.feature; | 
 | 	if (r_err) | 
 | 		*r_err = err; | 
 |  | 
 | 	/* see if device passed diags: continue and warn later */ | 
 | 	if (err == 0) | 
 | 		/* diagnostic fail : do nothing _YET_ */ | 
 | 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; | 
 | 	else if (err == 1) | 
 | 		/* do nothing */ ; | 
 | 	else if ((dev->devno == 0) && (err == 0x81)) | 
 | 		/* do nothing */ ; | 
 | 	else | 
 | 		return ATA_DEV_NONE; | 
 |  | 
 | 	/* determine if device is ATA or ATAPI */ | 
 | 	class = ata_dev_classify(&tf); | 
 |  | 
 | 	if (class == ATA_DEV_UNKNOWN) { | 
 | 		/* If the device failed diagnostic, it's likely to | 
 | 		 * have reported incorrect device signature too. | 
 | 		 * Assume ATA device if the device seems present but | 
 | 		 * device signature is invalid with diagnostic | 
 | 		 * failure. | 
 | 		 */ | 
 | 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) | 
 | 			class = ATA_DEV_ATA; | 
 | 		else | 
 | 			class = ATA_DEV_NONE; | 
 | 	} else if ((class == ATA_DEV_ATA) && | 
 | 		   (ap->ops->sff_check_status(ap) == 0)) | 
 | 		class = ATA_DEV_NONE; | 
 |  | 
 | 	return class; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_dev_classify); | 
 |  | 
 | /** | 
 |  *	ata_sff_wait_after_reset - wait for devices to become ready after reset | 
 |  *	@link: SFF link which is just reset | 
 |  *	@devmask: mask of present devices | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  * | 
 |  *	Wait devices attached to SFF @link to become ready after | 
 |  *	reset.  It contains preceding 150ms wait to avoid accessing TF | 
 |  *	status register too early. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -ENODEV if some or all of devices in @devmask | 
 |  *	don't seem to exist.  -errno on other errors. | 
 |  */ | 
 | int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, | 
 | 			     unsigned long deadline) | 
 | { | 
 | 	struct ata_port *ap = link->ap; | 
 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 	unsigned int dev0 = devmask & (1 << 0); | 
 | 	unsigned int dev1 = devmask & (1 << 1); | 
 | 	int rc, ret = 0; | 
 |  | 
 | 	msleep(ATA_WAIT_AFTER_RESET); | 
 |  | 
 | 	/* always check readiness of the master device */ | 
 | 	rc = ata_sff_wait_ready(link, deadline); | 
 | 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor | 
 | 	 * and TF status is 0xff, bail out on it too. | 
 | 	 */ | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* if device 1 was found in ata_devchk, wait for register | 
 | 	 * access briefly, then wait for BSY to clear. | 
 | 	 */ | 
 | 	if (dev1) { | 
 | 		int i; | 
 |  | 
 | 		ap->ops->sff_dev_select(ap, 1); | 
 |  | 
 | 		/* Wait for register access.  Some ATAPI devices fail | 
 | 		 * to set nsect/lbal after reset, so don't waste too | 
 | 		 * much time on it.  We're gonna wait for !BSY anyway. | 
 | 		 */ | 
 | 		for (i = 0; i < 2; i++) { | 
 | 			u8 nsect, lbal; | 
 |  | 
 | 			nsect = ioread8(ioaddr->nsect_addr); | 
 | 			lbal = ioread8(ioaddr->lbal_addr); | 
 | 			if ((nsect == 1) && (lbal == 1)) | 
 | 				break; | 
 | 			msleep(50);	/* give drive a breather */ | 
 | 		} | 
 |  | 
 | 		rc = ata_sff_wait_ready(link, deadline); | 
 | 		if (rc) { | 
 | 			if (rc != -ENODEV) | 
 | 				return rc; | 
 | 			ret = rc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* is all this really necessary? */ | 
 | 	ap->ops->sff_dev_select(ap, 0); | 
 | 	if (dev1) | 
 | 		ap->ops->sff_dev_select(ap, 1); | 
 | 	if (dev0) | 
 | 		ap->ops->sff_dev_select(ap, 0); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); | 
 |  | 
 | static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, | 
 | 			     unsigned long deadline) | 
 | { | 
 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 |  | 
 | 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); | 
 |  | 
 | 	/* software reset.  causes dev0 to be selected */ | 
 | 	iowrite8(ap->ctl, ioaddr->ctl_addr); | 
 | 	udelay(20);	/* FIXME: flush */ | 
 | 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); | 
 | 	udelay(20);	/* FIXME: flush */ | 
 | 	iowrite8(ap->ctl, ioaddr->ctl_addr); | 
 | 	ap->last_ctl = ap->ctl; | 
 |  | 
 | 	/* wait the port to become ready */ | 
 | 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sff_softreset - reset host port via ATA SRST | 
 |  *	@link: ATA link to reset | 
 |  *	@classes: resulting classes of attached devices | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  * | 
 |  *	Reset host port using ATA SRST. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_sff_softreset(struct ata_link *link, unsigned int *classes, | 
 | 		      unsigned long deadline) | 
 | { | 
 | 	struct ata_port *ap = link->ap; | 
 | 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; | 
 | 	unsigned int devmask = 0; | 
 | 	int rc; | 
 | 	u8 err; | 
 |  | 
 | 	DPRINTK("ENTER\n"); | 
 |  | 
 | 	/* determine if device 0/1 are present */ | 
 | 	if (ata_devchk(ap, 0)) | 
 | 		devmask |= (1 << 0); | 
 | 	if (slave_possible && ata_devchk(ap, 1)) | 
 | 		devmask |= (1 << 1); | 
 |  | 
 | 	/* select device 0 again */ | 
 | 	ap->ops->sff_dev_select(ap, 0); | 
 |  | 
 | 	/* issue bus reset */ | 
 | 	DPRINTK("about to softreset, devmask=%x\n", devmask); | 
 | 	rc = ata_bus_softreset(ap, devmask, deadline); | 
 | 	/* if link is occupied, -ENODEV too is an error */ | 
 | 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) { | 
 | 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	/* determine by signature whether we have ATA or ATAPI devices */ | 
 | 	classes[0] = ata_sff_dev_classify(&link->device[0], | 
 | 					  devmask & (1 << 0), &err); | 
 | 	if (slave_possible && err != 0x81) | 
 | 		classes[1] = ata_sff_dev_classify(&link->device[1], | 
 | 						  devmask & (1 << 1), &err); | 
 |  | 
 | 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_softreset); | 
 |  | 
 | /** | 
 |  *	sata_sff_hardreset - reset host port via SATA phy reset | 
 |  *	@link: link to reset | 
 |  *	@class: resulting class of attached device | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  * | 
 |  *	SATA phy-reset host port using DET bits of SControl register, | 
 |  *	wait for !BSY and classify the attached device. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int sata_sff_hardreset(struct ata_link *link, unsigned int *class, | 
 | 		       unsigned long deadline) | 
 | { | 
 | 	struct ata_eh_context *ehc = &link->eh_context; | 
 | 	const unsigned long *timing = sata_ehc_deb_timing(ehc); | 
 | 	bool online; | 
 | 	int rc; | 
 |  | 
 | 	rc = sata_link_hardreset(link, timing, deadline, &online, | 
 | 				 ata_sff_check_ready); | 
 | 	if (online) | 
 | 		*class = ata_sff_dev_classify(link->device, 1, NULL); | 
 |  | 
 | 	DPRINTK("EXIT, class=%u\n", *class); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(sata_sff_hardreset); | 
 |  | 
 | /** | 
 |  *	ata_sff_postreset - SFF postreset callback | 
 |  *	@link: the target SFF ata_link | 
 |  *	@classes: classes of attached devices | 
 |  * | 
 |  *	This function is invoked after a successful reset.  It first | 
 |  *	calls ata_std_postreset() and performs SFF specific postreset | 
 |  *	processing. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  */ | 
 | void ata_sff_postreset(struct ata_link *link, unsigned int *classes) | 
 | { | 
 | 	struct ata_port *ap = link->ap; | 
 |  | 
 | 	ata_std_postreset(link, classes); | 
 |  | 
 | 	/* is double-select really necessary? */ | 
 | 	if (classes[0] != ATA_DEV_NONE) | 
 | 		ap->ops->sff_dev_select(ap, 1); | 
 | 	if (classes[1] != ATA_DEV_NONE) | 
 | 		ap->ops->sff_dev_select(ap, 0); | 
 |  | 
 | 	/* bail out if no device is present */ | 
 | 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { | 
 | 		DPRINTK("EXIT, no device\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* set up device control */ | 
 | 	if (ap->ioaddr.ctl_addr) { | 
 | 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr); | 
 | 		ap->last_ctl = ap->ctl; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_postreset); | 
 |  | 
 | /** | 
 |  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers | 
 |  *	@qc: command | 
 |  * | 
 |  *	Drain the FIFO and device of any stuck data following a command | 
 |  *	failing to complete. In some cases this is neccessary before a | 
 |  *	reset will recover the device. | 
 |  * | 
 |  */ | 
 |  | 
 | void ata_sff_drain_fifo(struct ata_queued_cmd *qc) | 
 | { | 
 | 	int count; | 
 | 	struct ata_port *ap; | 
 |  | 
 | 	/* We only need to flush incoming data when a command was running */ | 
 | 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) | 
 | 		return; | 
 |  | 
 | 	ap = qc->ap; | 
 | 	/* Drain up to 64K of data before we give up this recovery method */ | 
 | 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) | 
 | 						&& count < 65536; count += 2) | 
 | 		ioread16(ap->ioaddr.data_addr); | 
 |  | 
 | 	/* Can become DEBUG later */ | 
 | 	if (count) | 
 | 		ata_port_printk(ap, KERN_DEBUG, | 
 | 			"drained %d bytes to clear DRQ.\n", count); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); | 
 |  | 
 | /** | 
 |  *	ata_sff_error_handler - Stock error handler for BMDMA controller | 
 |  *	@ap: port to handle error for | 
 |  * | 
 |  *	Stock error handler for SFF controller.  It can handle both | 
 |  *	PATA and SATA controllers.  Many controllers should be able to | 
 |  *	use this EH as-is or with some added handling before and | 
 |  *	after. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  */ | 
 | void ata_sff_error_handler(struct ata_port *ap) | 
 | { | 
 | 	ata_reset_fn_t softreset = ap->ops->softreset; | 
 | 	ata_reset_fn_t hardreset = ap->ops->hardreset; | 
 | 	struct ata_queued_cmd *qc; | 
 | 	unsigned long flags; | 
 | 	int thaw = 0; | 
 |  | 
 | 	qc = __ata_qc_from_tag(ap, ap->link.active_tag); | 
 | 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) | 
 | 		qc = NULL; | 
 |  | 
 | 	/* reset PIO HSM and stop DMA engine */ | 
 | 	spin_lock_irqsave(ap->lock, flags); | 
 |  | 
 | 	ap->hsm_task_state = HSM_ST_IDLE; | 
 |  | 
 | 	if (ap->ioaddr.bmdma_addr && | 
 | 	    qc && (qc->tf.protocol == ATA_PROT_DMA || | 
 | 		   qc->tf.protocol == ATAPI_PROT_DMA)) { | 
 | 		u8 host_stat; | 
 |  | 
 | 		host_stat = ap->ops->bmdma_status(ap); | 
 |  | 
 | 		/* BMDMA controllers indicate host bus error by | 
 | 		 * setting DMA_ERR bit and timing out.  As it wasn't | 
 | 		 * really a timeout event, adjust error mask and | 
 | 		 * cancel frozen state. | 
 | 		 */ | 
 | 		if (qc->err_mask == AC_ERR_TIMEOUT | 
 | 						&& (host_stat & ATA_DMA_ERR)) { | 
 | 			qc->err_mask = AC_ERR_HOST_BUS; | 
 | 			thaw = 1; | 
 | 		} | 
 |  | 
 | 		ap->ops->bmdma_stop(qc); | 
 | 	} | 
 |  | 
 | 	ata_sff_sync(ap);		/* FIXME: We don't need this */ | 
 | 	ap->ops->sff_check_status(ap); | 
 | 	ap->ops->sff_irq_clear(ap); | 
 | 	/* We *MUST* do FIFO draining before we issue a reset as several | 
 | 	 * devices helpfully clear their internal state and will lock solid | 
 | 	 * if we touch the data port post reset. Pass qc in case anyone wants | 
 | 	 *  to do different PIO/DMA recovery or has per command fixups | 
 | 	 */ | 
 | 	if (ap->ops->drain_fifo) | 
 | 		ap->ops->drain_fifo(qc); | 
 |  | 
 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 |  | 
 | 	if (thaw) | 
 | 		ata_eh_thaw_port(ap); | 
 |  | 
 | 	/* PIO and DMA engines have been stopped, perform recovery */ | 
 |  | 
 | 	/* Ignore ata_sff_softreset if ctl isn't accessible and | 
 | 	 * built-in hardresets if SCR access isn't available. | 
 | 	 */ | 
 | 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) | 
 | 		softreset = NULL; | 
 | 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link)) | 
 | 		hardreset = NULL; | 
 |  | 
 | 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, | 
 | 		  ap->ops->postreset); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_error_handler); | 
 |  | 
 | /** | 
 |  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller | 
 |  *	@qc: internal command to clean up | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  */ | 
 | void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(ap->lock, flags); | 
 |  | 
 | 	ap->hsm_task_state = HSM_ST_IDLE; | 
 |  | 
 | 	if (ap->ioaddr.bmdma_addr) | 
 | 		ap->ops->bmdma_stop(qc); | 
 |  | 
 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd); | 
 |  | 
 | /** | 
 |  *	ata_sff_port_start - Set port up for dma. | 
 |  *	@ap: Port to initialize | 
 |  * | 
 |  *	Called just after data structures for each port are | 
 |  *	initialized.  Allocates space for PRD table if the device | 
 |  *	is DMA capable SFF. | 
 |  * | 
 |  *	May be used as the port_start() entry in ata_port_operations. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | int ata_sff_port_start(struct ata_port *ap) | 
 | { | 
 | 	if (ap->ioaddr.bmdma_addr) | 
 | 		return ata_port_start(ap); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_port_start); | 
 |  | 
 | /** | 
 |  *	ata_sff_port_start32 - Set port up for dma. | 
 |  *	@ap: Port to initialize | 
 |  * | 
 |  *	Called just after data structures for each port are | 
 |  *	initialized.  Allocates space for PRD table if the device | 
 |  *	is DMA capable SFF. | 
 |  * | 
 |  *	May be used as the port_start() entry in ata_port_operations for | 
 |  *	devices that are capable of 32bit PIO. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | int ata_sff_port_start32(struct ata_port *ap) | 
 | { | 
 | 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; | 
 | 	if (ap->ioaddr.bmdma_addr) | 
 | 		return ata_port_start(ap); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_port_start32); | 
 |  | 
 | /** | 
 |  *	ata_sff_std_ports - initialize ioaddr with standard port offsets. | 
 |  *	@ioaddr: IO address structure to be initialized | 
 |  * | 
 |  *	Utility function which initializes data_addr, error_addr, | 
 |  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, | 
 |  *	device_addr, status_addr, and command_addr to standard offsets | 
 |  *	relative to cmd_addr. | 
 |  * | 
 |  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. | 
 |  */ | 
 | void ata_sff_std_ports(struct ata_ioports *ioaddr) | 
 | { | 
 | 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; | 
 | 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; | 
 | 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; | 
 | 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; | 
 | 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; | 
 | 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; | 
 | 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; | 
 | 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; | 
 | 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; | 
 | 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sff_std_ports); | 
 |  | 
 | unsigned long ata_bmdma_mode_filter(struct ata_device *adev, | 
 | 				    unsigned long xfer_mask) | 
 | { | 
 | 	/* Filter out DMA modes if the device has been configured by | 
 | 	   the BIOS as PIO only */ | 
 |  | 
 | 	if (adev->link->ap->ioaddr.bmdma_addr == NULL) | 
 | 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); | 
 | 	return xfer_mask; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter); | 
 |  | 
 | /** | 
 |  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction | 
 |  *	@qc: Info associated with this ATA transaction. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_bmdma_setup(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); | 
 | 	u8 dmactl; | 
 |  | 
 | 	/* load PRD table addr. */ | 
 | 	mb();	/* make sure PRD table writes are visible to controller */ | 
 | 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); | 
 |  | 
 | 	/* specify data direction, triple-check start bit is clear */ | 
 | 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
 | 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); | 
 | 	if (!rw) | 
 | 		dmactl |= ATA_DMA_WR; | 
 | 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
 |  | 
 | 	/* issue r/w command */ | 
 | 	ap->ops->sff_exec_command(ap, &qc->tf); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_bmdma_setup); | 
 |  | 
 | /** | 
 |  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction | 
 |  *	@qc: Info associated with this ATA transaction. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_bmdma_start(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	u8 dmactl; | 
 |  | 
 | 	/* start host DMA transaction */ | 
 | 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
 | 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
 |  | 
 | 	/* Strictly, one may wish to issue an ioread8() here, to | 
 | 	 * flush the mmio write.  However, control also passes | 
 | 	 * to the hardware at this point, and it will interrupt | 
 | 	 * us when we are to resume control.  So, in effect, | 
 | 	 * we don't care when the mmio write flushes. | 
 | 	 * Further, a read of the DMA status register _immediately_ | 
 | 	 * following the write may not be what certain flaky hardware | 
 | 	 * is expected, so I think it is best to not add a readb() | 
 | 	 * without first all the MMIO ATA cards/mobos. | 
 | 	 * Or maybe I'm just being paranoid. | 
 | 	 * | 
 | 	 * FIXME: The posting of this write means I/O starts are | 
 | 	 * unneccessarily delayed for MMIO | 
 | 	 */ | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_bmdma_start); | 
 |  | 
 | /** | 
 |  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer | 
 |  *	@qc: Command we are ending DMA for | 
 |  * | 
 |  *	Clears the ATA_DMA_START flag in the dma control register | 
 |  * | 
 |  *	May be used as the bmdma_stop() entry in ata_port_operations. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_bmdma_stop(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	void __iomem *mmio = ap->ioaddr.bmdma_addr; | 
 |  | 
 | 	/* clear start/stop bit */ | 
 | 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, | 
 | 		 mmio + ATA_DMA_CMD); | 
 |  | 
 | 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ | 
 | 	ata_sff_dma_pause(ap); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_bmdma_stop); | 
 |  | 
 | /** | 
 |  *	ata_bmdma_status - Read PCI IDE BMDMA status | 
 |  *	@ap: Port associated with this ATA transaction. | 
 |  * | 
 |  *	Read and return BMDMA status register. | 
 |  * | 
 |  *	May be used as the bmdma_status() entry in ata_port_operations. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | u8 ata_bmdma_status(struct ata_port *ap) | 
 | { | 
 | 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_bmdma_status); | 
 |  | 
 | /** | 
 |  *	ata_bus_reset - reset host port and associated ATA channel | 
 |  *	@ap: port to reset | 
 |  * | 
 |  *	This is typically the first time we actually start issuing | 
 |  *	commands to the ATA channel.  We wait for BSY to clear, then | 
 |  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its | 
 |  *	result.  Determine what devices, if any, are on the channel | 
 |  *	by looking at the device 0/1 error register.  Look at the signature | 
 |  *	stored in each device's taskfile registers, to determine if | 
 |  *	the device is ATA or ATAPI. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	PCI/etc. bus probe sem. | 
 |  *	Obtains host lock. | 
 |  * | 
 |  *	SIDE EFFECTS: | 
 |  *	Sets ATA_FLAG_DISABLED if bus reset fails. | 
 |  * | 
 |  *	DEPRECATED: | 
 |  *	This function is only for drivers which still use old EH and | 
 |  *	will be removed soon. | 
 |  */ | 
 | void ata_bus_reset(struct ata_port *ap) | 
 | { | 
 | 	struct ata_device *device = ap->link.device; | 
 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; | 
 | 	u8 err; | 
 | 	unsigned int dev0, dev1 = 0, devmask = 0; | 
 | 	int rc; | 
 |  | 
 | 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); | 
 |  | 
 | 	/* determine if device 0/1 are present */ | 
 | 	if (ap->flags & ATA_FLAG_SATA_RESET) | 
 | 		dev0 = 1; | 
 | 	else { | 
 | 		dev0 = ata_devchk(ap, 0); | 
 | 		if (slave_possible) | 
 | 			dev1 = ata_devchk(ap, 1); | 
 | 	} | 
 |  | 
 | 	if (dev0) | 
 | 		devmask |= (1 << 0); | 
 | 	if (dev1) | 
 | 		devmask |= (1 << 1); | 
 |  | 
 | 	/* select device 0 again */ | 
 | 	ap->ops->sff_dev_select(ap, 0); | 
 |  | 
 | 	/* issue bus reset */ | 
 | 	if (ap->flags & ATA_FLAG_SRST) { | 
 | 		rc = ata_bus_softreset(ap, devmask, | 
 | 				       ata_deadline(jiffies, 40000)); | 
 | 		if (rc && rc != -ENODEV) | 
 | 			goto err_out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * determine by signature whether we have ATA or ATAPI devices | 
 | 	 */ | 
 | 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err); | 
 | 	if ((slave_possible) && (err != 0x81)) | 
 | 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err); | 
 |  | 
 | 	/* is double-select really necessary? */ | 
 | 	if (device[1].class != ATA_DEV_NONE) | 
 | 		ap->ops->sff_dev_select(ap, 1); | 
 | 	if (device[0].class != ATA_DEV_NONE) | 
 | 		ap->ops->sff_dev_select(ap, 0); | 
 |  | 
 | 	/* if no devices were detected, disable this port */ | 
 | 	if ((device[0].class == ATA_DEV_NONE) && | 
 | 	    (device[1].class == ATA_DEV_NONE)) | 
 | 		goto err_out; | 
 |  | 
 | 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { | 
 | 		/* set up device control for ATA_FLAG_SATA_RESET */ | 
 | 		iowrite8(ap->ctl, ioaddr->ctl_addr); | 
 | 		ap->last_ctl = ap->ctl; | 
 | 	} | 
 |  | 
 | 	DPRINTK("EXIT\n"); | 
 | 	return; | 
 |  | 
 | err_out: | 
 | 	ata_port_printk(ap, KERN_ERR, "disabling port\n"); | 
 | 	ata_port_disable(ap); | 
 |  | 
 | 	DPRINTK("EXIT\n"); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_bus_reset); | 
 |  | 
 | #ifdef CONFIG_PCI | 
 |  | 
 | /** | 
 |  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex | 
 |  *	@pdev: PCI device | 
 |  * | 
 |  *	Some PCI ATA devices report simplex mode but in fact can be told to | 
 |  *	enter non simplex mode. This implements the necessary logic to | 
 |  *	perform the task on such devices. Calling it on other devices will | 
 |  *	have -undefined- behaviour. | 
 |  */ | 
 | int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) | 
 | { | 
 | 	unsigned long bmdma = pci_resource_start(pdev, 4); | 
 | 	u8 simplex; | 
 |  | 
 | 	if (bmdma == 0) | 
 | 		return -ENOENT; | 
 |  | 
 | 	simplex = inb(bmdma + 0x02); | 
 | 	outb(simplex & 0x60, bmdma + 0x02); | 
 | 	simplex = inb(bmdma + 0x02); | 
 | 	if (simplex & 0x80) | 
 | 		return -EOPNOTSUPP; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); | 
 |  | 
 | /** | 
 |  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host | 
 |  *	@host: target ATA host | 
 |  * | 
 |  *	Acquire PCI BMDMA resources and initialize @host accordingly. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_pci_bmdma_init(struct ata_host *host) | 
 | { | 
 | 	struct device *gdev = host->dev; | 
 | 	struct pci_dev *pdev = to_pci_dev(gdev); | 
 | 	int i, rc; | 
 |  | 
 | 	/* No BAR4 allocation: No DMA */ | 
 | 	if (pci_resource_start(pdev, 4) == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* TODO: If we get no DMA mask we should fall back to PIO */ | 
 | 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* request and iomap DMA region */ | 
 | 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); | 
 | 	if (rc) { | 
 | 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	host->iomap = pcim_iomap_table(pdev); | 
 |  | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 | 		void __iomem *bmdma = host->iomap[4] + 8 * i; | 
 |  | 
 | 		if (ata_port_is_dummy(ap)) | 
 | 			continue; | 
 |  | 
 | 		ap->ioaddr.bmdma_addr = bmdma; | 
 | 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && | 
 | 		    (ioread8(bmdma + 2) & 0x80)) | 
 | 			host->flags |= ATA_HOST_SIMPLEX; | 
 |  | 
 | 		ata_port_desc(ap, "bmdma 0x%llx", | 
 | 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); | 
 |  | 
 | static int ata_resources_present(struct pci_dev *pdev, int port) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* Check the PCI resources for this channel are enabled */ | 
 | 	port = port * 2; | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		if (pci_resource_start(pdev, port + i) == 0 || | 
 | 		    pci_resource_len(pdev, port + i) == 0) | 
 | 			return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host | 
 |  *	@host: target ATA host | 
 |  * | 
 |  *	Acquire native PCI ATA resources for @host and initialize the | 
 |  *	first two ports of @host accordingly.  Ports marked dummy are | 
 |  *	skipped and allocation failure makes the port dummy. | 
 |  * | 
 |  *	Note that native PCI resources are valid even for legacy hosts | 
 |  *	as we fix up pdev resources array early in boot, so this | 
 |  *	function can be used for both native and legacy SFF hosts. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 if at least one port is initialized, -ENODEV if no port is | 
 |  *	available. | 
 |  */ | 
 | int ata_pci_sff_init_host(struct ata_host *host) | 
 | { | 
 | 	struct device *gdev = host->dev; | 
 | 	struct pci_dev *pdev = to_pci_dev(gdev); | 
 | 	unsigned int mask = 0; | 
 | 	int i, rc; | 
 |  | 
 | 	/* request, iomap BARs and init port addresses accordingly */ | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 | 		int base = i * 2; | 
 | 		void __iomem * const *iomap; | 
 |  | 
 | 		if (ata_port_is_dummy(ap)) | 
 | 			continue; | 
 |  | 
 | 		/* Discard disabled ports.  Some controllers show | 
 | 		 * their unused channels this way.  Disabled ports are | 
 | 		 * made dummy. | 
 | 		 */ | 
 | 		if (!ata_resources_present(pdev, i)) { | 
 | 			ap->ops = &ata_dummy_port_ops; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		rc = pcim_iomap_regions(pdev, 0x3 << base, | 
 | 					dev_driver_string(gdev)); | 
 | 		if (rc) { | 
 | 			dev_printk(KERN_WARNING, gdev, | 
 | 				   "failed to request/iomap BARs for port %d " | 
 | 				   "(errno=%d)\n", i, rc); | 
 | 			if (rc == -EBUSY) | 
 | 				pcim_pin_device(pdev); | 
 | 			ap->ops = &ata_dummy_port_ops; | 
 | 			continue; | 
 | 		} | 
 | 		host->iomap = iomap = pcim_iomap_table(pdev); | 
 |  | 
 | 		ap->ioaddr.cmd_addr = iomap[base]; | 
 | 		ap->ioaddr.altstatus_addr = | 
 | 		ap->ioaddr.ctl_addr = (void __iomem *) | 
 | 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); | 
 | 		ata_sff_std_ports(&ap->ioaddr); | 
 |  | 
 | 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", | 
 | 			(unsigned long long)pci_resource_start(pdev, base), | 
 | 			(unsigned long long)pci_resource_start(pdev, base + 1)); | 
 |  | 
 | 		mask |= 1 << i; | 
 | 	} | 
 |  | 
 | 	if (!mask) { | 
 | 		dev_printk(KERN_ERR, gdev, "no available native port\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); | 
 |  | 
 | /** | 
 |  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host | 
 |  *	@pdev: target PCI device | 
 |  *	@ppi: array of port_info, must be enough for two ports | 
 |  *	@r_host: out argument for the initialized ATA host | 
 |  * | 
 |  *	Helper to allocate ATA host for @pdev, acquire all native PCI | 
 |  *	resources and initialize it accordingly in one go. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_pci_sff_prepare_host(struct pci_dev *pdev, | 
 | 			     const struct ata_port_info * const *ppi, | 
 | 			     struct ata_host **r_host) | 
 | { | 
 | 	struct ata_host *host; | 
 | 	int rc; | 
 |  | 
 | 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); | 
 | 	if (!host) { | 
 | 		dev_printk(KERN_ERR, &pdev->dev, | 
 | 			   "failed to allocate ATA host\n"); | 
 | 		rc = -ENOMEM; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	rc = ata_pci_sff_init_host(host); | 
 | 	if (rc) | 
 | 		goto err_out; | 
 |  | 
 | 	/* init DMA related stuff */ | 
 | 	rc = ata_pci_bmdma_init(host); | 
 | 	if (rc) | 
 | 		goto err_bmdma; | 
 |  | 
 | 	devres_remove_group(&pdev->dev, NULL); | 
 | 	*r_host = host; | 
 | 	return 0; | 
 |  | 
 | err_bmdma: | 
 | 	/* This is necessary because PCI and iomap resources are | 
 | 	 * merged and releasing the top group won't release the | 
 | 	 * acquired resources if some of those have been acquired | 
 | 	 * before entering this function. | 
 | 	 */ | 
 | 	pcim_iounmap_regions(pdev, 0xf); | 
 | err_out: | 
 | 	devres_release_group(&pdev->dev, NULL); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); | 
 |  | 
 | /** | 
 |  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it | 
 |  *	@host: target SFF ATA host | 
 |  *	@irq_handler: irq_handler used when requesting IRQ(s) | 
 |  *	@sht: scsi_host_template to use when registering the host | 
 |  * | 
 |  *	This is the counterpart of ata_host_activate() for SFF ATA | 
 |  *	hosts.  This separate helper is necessary because SFF hosts | 
 |  *	use two separate interrupts in legacy mode. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_pci_sff_activate_host(struct ata_host *host, | 
 | 			      irq_handler_t irq_handler, | 
 | 			      struct scsi_host_template *sht) | 
 | { | 
 | 	struct device *dev = host->dev; | 
 | 	struct pci_dev *pdev = to_pci_dev(dev); | 
 | 	const char *drv_name = dev_driver_string(host->dev); | 
 | 	int legacy_mode = 0, rc; | 
 |  | 
 | 	rc = ata_host_start(host); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { | 
 | 		u8 tmp8, mask; | 
 |  | 
 | 		/* TODO: What if one channel is in native mode ... */ | 
 | 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); | 
 | 		mask = (1 << 2) | (1 << 0); | 
 | 		if ((tmp8 & mask) != mask) | 
 | 			legacy_mode = 1; | 
 | #if defined(CONFIG_NO_ATA_LEGACY) | 
 | 		/* Some platforms with PCI limits cannot address compat | 
 | 		   port space. In that case we punt if their firmware has | 
 | 		   left a device in compatibility mode */ | 
 | 		if (legacy_mode) { | 
 | 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); | 
 | 			return -EOPNOTSUPP; | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	if (!devres_open_group(dev, NULL, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!legacy_mode && pdev->irq) { | 
 | 		rc = devm_request_irq(dev, pdev->irq, irq_handler, | 
 | 				      IRQF_SHARED, drv_name, host); | 
 | 		if (rc) | 
 | 			goto out; | 
 |  | 
 | 		ata_port_desc(host->ports[0], "irq %d", pdev->irq); | 
 | 		ata_port_desc(host->ports[1], "irq %d", pdev->irq); | 
 | 	} else if (legacy_mode) { | 
 | 		if (!ata_port_is_dummy(host->ports[0])) { | 
 | 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), | 
 | 					      irq_handler, IRQF_SHARED, | 
 | 					      drv_name, host); | 
 | 			if (rc) | 
 | 				goto out; | 
 |  | 
 | 			ata_port_desc(host->ports[0], "irq %d", | 
 | 				      ATA_PRIMARY_IRQ(pdev)); | 
 | 		} | 
 |  | 
 | 		if (!ata_port_is_dummy(host->ports[1])) { | 
 | 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), | 
 | 					      irq_handler, IRQF_SHARED, | 
 | 					      drv_name, host); | 
 | 			if (rc) | 
 | 				goto out; | 
 |  | 
 | 			ata_port_desc(host->ports[1], "irq %d", | 
 | 				      ATA_SECONDARY_IRQ(pdev)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = ata_host_register(host, sht); | 
 | out: | 
 | 	if (rc == 0) | 
 | 		devres_remove_group(dev, NULL); | 
 | 	else | 
 | 		devres_release_group(dev, NULL); | 
 |  | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); | 
 |  | 
 | /** | 
 |  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller | 
 |  *	@pdev: Controller to be initialized | 
 |  *	@ppi: array of port_info, must be enough for two ports | 
 |  *	@sht: scsi_host_template to use when registering the host | 
 |  *	@host_priv: host private_data | 
 |  * | 
 |  *	This is a helper function which can be called from a driver's | 
 |  *	xxx_init_one() probe function if the hardware uses traditional | 
 |  *	IDE taskfile registers. | 
 |  * | 
 |  *	This function calls pci_enable_device(), reserves its register | 
 |  *	regions, sets the dma mask, enables bus master mode, and calls | 
 |  *	ata_device_add() | 
 |  * | 
 |  *	ASSUMPTION: | 
 |  *	Nobody makes a single channel controller that appears solely as | 
 |  *	the secondary legacy port on PCI. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from PCI layer (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Zero on success, negative on errno-based value on error. | 
 |  */ | 
 | int ata_pci_sff_init_one(struct pci_dev *pdev, | 
 | 			 const struct ata_port_info * const *ppi, | 
 | 			 struct scsi_host_template *sht, void *host_priv) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	const struct ata_port_info *pi = NULL; | 
 | 	struct ata_host *host = NULL; | 
 | 	int i, rc; | 
 |  | 
 | 	DPRINTK("ENTER\n"); | 
 |  | 
 | 	/* look up the first valid port_info */ | 
 | 	for (i = 0; i < 2 && ppi[i]; i++) { | 
 | 		if (ppi[i]->port_ops != &ata_dummy_port_ops) { | 
 | 			pi = ppi[i]; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!pi) { | 
 | 		dev_printk(KERN_ERR, &pdev->dev, | 
 | 			   "no valid port_info specified\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!devres_open_group(dev, NULL, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rc = pcim_enable_device(pdev); | 
 | 	if (rc) | 
 | 		goto out; | 
 |  | 
 | 	/* prepare and activate SFF host */ | 
 | 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host); | 
 | 	if (rc) | 
 | 		goto out; | 
 | 	host->private_data = host_priv; | 
 |  | 
 | 	pci_set_master(pdev); | 
 | 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); | 
 | out: | 
 | 	if (rc == 0) | 
 | 		devres_remove_group(&pdev->dev, NULL); | 
 | 	else | 
 | 		devres_release_group(&pdev->dev, NULL); | 
 |  | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); | 
 |  | 
 | #endif /* CONFIG_PCI */ |