| /* linux/net/ipv4/arp.c |
| * |
| * Copyright (C) 1994 by Florian La Roche |
| * |
| * This module implements the Address Resolution Protocol ARP (RFC 826), |
| * which is used to convert IP addresses (or in the future maybe other |
| * high-level addresses) into a low-level hardware address (like an Ethernet |
| * address). |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Fixes: |
| * Alan Cox : Removed the Ethernet assumptions in |
| * Florian's code |
| * Alan Cox : Fixed some small errors in the ARP |
| * logic |
| * Alan Cox : Allow >4K in /proc |
| * Alan Cox : Make ARP add its own protocol entry |
| * Ross Martin : Rewrote arp_rcv() and arp_get_info() |
| * Stephen Henson : Add AX25 support to arp_get_info() |
| * Alan Cox : Drop data when a device is downed. |
| * Alan Cox : Use init_timer(). |
| * Alan Cox : Double lock fixes. |
| * Martin Seine : Move the arphdr structure |
| * to if_arp.h for compatibility. |
| * with BSD based programs. |
| * Andrew Tridgell : Added ARP netmask code and |
| * re-arranged proxy handling. |
| * Alan Cox : Changed to use notifiers. |
| * Niibe Yutaka : Reply for this device or proxies only. |
| * Alan Cox : Don't proxy across hardware types! |
| * Jonathan Naylor : Added support for NET/ROM. |
| * Mike Shaver : RFC1122 checks. |
| * Jonathan Naylor : Only lookup the hardware address for |
| * the correct hardware type. |
| * Germano Caronni : Assorted subtle races. |
| * Craig Schlenter : Don't modify permanent entry |
| * during arp_rcv. |
| * Russ Nelson : Tidied up a few bits. |
| * Alexey Kuznetsov: Major changes to caching and behaviour, |
| * eg intelligent arp probing and |
| * generation |
| * of host down events. |
| * Alan Cox : Missing unlock in device events. |
| * Eckes : ARP ioctl control errors. |
| * Alexey Kuznetsov: Arp free fix. |
| * Manuel Rodriguez: Gratuitous ARP. |
| * Jonathan Layes : Added arpd support through kerneld |
| * message queue (960314) |
| * Mike Shaver : /proc/sys/net/ipv4/arp_* support |
| * Mike McLagan : Routing by source |
| * Stuart Cheshire : Metricom and grat arp fixes |
| * *** FOR 2.1 clean this up *** |
| * Lawrence V. Stefani: (08/12/96) Added FDDI support. |
| * Alan Cox : Took the AP1000 nasty FDDI hack and |
| * folded into the mainstream FDDI code. |
| * Ack spit, Linus how did you allow that |
| * one in... |
| * Jes Sorensen : Make FDDI work again in 2.1.x and |
| * clean up the APFDDI & gen. FDDI bits. |
| * Alexey Kuznetsov: new arp state machine; |
| * now it is in net/core/neighbour.c. |
| * Krzysztof Halasa: Added Frame Relay ARP support. |
| * Arnaldo C. Melo : convert /proc/net/arp to seq_file |
| * Shmulik Hen: Split arp_send to arp_create and |
| * arp_xmit so intermediate drivers like |
| * bonding can change the skb before |
| * sending (e.g. insert 8021q tag). |
| * Harald Welte : convert to make use of jenkins hash |
| * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/capability.h> |
| #include <linux/socket.h> |
| #include <linux/sockios.h> |
| #include <linux/errno.h> |
| #include <linux/in.h> |
| #include <linux/mm.h> |
| #include <linux/inet.h> |
| #include <linux/inetdevice.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/fddidevice.h> |
| #include <linux/if_arp.h> |
| #include <linux/trdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/stat.h> |
| #include <linux/init.h> |
| #include <linux/net.h> |
| #include <linux/rcupdate.h> |
| #include <linux/slab.h> |
| #ifdef CONFIG_SYSCTL |
| #include <linux/sysctl.h> |
| #endif |
| |
| #include <net/net_namespace.h> |
| #include <net/ip.h> |
| #include <net/icmp.h> |
| #include <net/route.h> |
| #include <net/protocol.h> |
| #include <net/tcp.h> |
| #include <net/sock.h> |
| #include <net/arp.h> |
| #include <net/ax25.h> |
| #include <net/netrom.h> |
| |
| #include <linux/uaccess.h> |
| |
| #include <linux/netfilter_arp.h> |
| |
| /* |
| * Interface to generic neighbour cache. |
| */ |
| static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); |
| static int arp_constructor(struct neighbour *neigh); |
| static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb); |
| static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb); |
| static void parp_redo(struct sk_buff *skb); |
| |
| static const struct neigh_ops arp_generic_ops = { |
| .family = AF_INET, |
| .solicit = arp_solicit, |
| .error_report = arp_error_report, |
| .output = neigh_resolve_output, |
| .connected_output = neigh_connected_output, |
| }; |
| |
| static const struct neigh_ops arp_hh_ops = { |
| .family = AF_INET, |
| .solicit = arp_solicit, |
| .error_report = arp_error_report, |
| .output = neigh_resolve_output, |
| .connected_output = neigh_resolve_output, |
| }; |
| |
| static const struct neigh_ops arp_direct_ops = { |
| .family = AF_INET, |
| .output = neigh_direct_output, |
| .connected_output = neigh_direct_output, |
| }; |
| |
| static const struct neigh_ops arp_broken_ops = { |
| .family = AF_INET, |
| .solicit = arp_solicit, |
| .error_report = arp_error_report, |
| .output = neigh_compat_output, |
| .connected_output = neigh_compat_output, |
| }; |
| |
| struct neigh_table arp_tbl = { |
| .family = AF_INET, |
| .key_len = 4, |
| .hash = arp_hash, |
| .constructor = arp_constructor, |
| .proxy_redo = parp_redo, |
| .id = "arp_cache", |
| .parms = { |
| .tbl = &arp_tbl, |
| .base_reachable_time = 30 * HZ, |
| .retrans_time = 1 * HZ, |
| .gc_staletime = 60 * HZ, |
| .reachable_time = 30 * HZ, |
| .delay_probe_time = 5 * HZ, |
| .queue_len_bytes = 64*1024, |
| .ucast_probes = 3, |
| .mcast_probes = 3, |
| .anycast_delay = 1 * HZ, |
| .proxy_delay = (8 * HZ) / 10, |
| .proxy_qlen = 64, |
| .locktime = 1 * HZ, |
| }, |
| .gc_interval = 30 * HZ, |
| .gc_thresh1 = 128, |
| .gc_thresh2 = 512, |
| .gc_thresh3 = 1024, |
| }; |
| EXPORT_SYMBOL(arp_tbl); |
| |
| int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir) |
| { |
| switch (dev->type) { |
| case ARPHRD_ETHER: |
| case ARPHRD_FDDI: |
| case ARPHRD_IEEE802: |
| ip_eth_mc_map(addr, haddr); |
| return 0; |
| case ARPHRD_IEEE802_TR: |
| ip_tr_mc_map(addr, haddr); |
| return 0; |
| case ARPHRD_INFINIBAND: |
| ip_ib_mc_map(addr, dev->broadcast, haddr); |
| return 0; |
| case ARPHRD_IPGRE: |
| ip_ipgre_mc_map(addr, dev->broadcast, haddr); |
| return 0; |
| default: |
| if (dir) { |
| memcpy(haddr, dev->broadcast, dev->addr_len); |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| |
| static u32 arp_hash(const void *pkey, |
| const struct net_device *dev, |
| __u32 *hash_rnd) |
| { |
| return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd); |
| } |
| |
| static int arp_constructor(struct neighbour *neigh) |
| { |
| __be32 addr = *(__be32 *)neigh->primary_key; |
| struct net_device *dev = neigh->dev; |
| struct in_device *in_dev; |
| struct neigh_parms *parms; |
| |
| rcu_read_lock(); |
| in_dev = __in_dev_get_rcu(dev); |
| if (in_dev == NULL) { |
| rcu_read_unlock(); |
| return -EINVAL; |
| } |
| |
| neigh->type = inet_addr_type(dev_net(dev), addr); |
| |
| parms = in_dev->arp_parms; |
| __neigh_parms_put(neigh->parms); |
| neigh->parms = neigh_parms_clone(parms); |
| rcu_read_unlock(); |
| |
| if (!dev->header_ops) { |
| neigh->nud_state = NUD_NOARP; |
| neigh->ops = &arp_direct_ops; |
| neigh->output = neigh_direct_output; |
| } else { |
| /* Good devices (checked by reading texts, but only Ethernet is |
| tested) |
| |
| ARPHRD_ETHER: (ethernet, apfddi) |
| ARPHRD_FDDI: (fddi) |
| ARPHRD_IEEE802: (tr) |
| ARPHRD_METRICOM: (strip) |
| ARPHRD_ARCNET: |
| etc. etc. etc. |
| |
| ARPHRD_IPDDP will also work, if author repairs it. |
| I did not it, because this driver does not work even |
| in old paradigm. |
| */ |
| |
| #if 1 |
| /* So... these "amateur" devices are hopeless. |
| The only thing, that I can say now: |
| It is very sad that we need to keep ugly obsolete |
| code to make them happy. |
| |
| They should be moved to more reasonable state, now |
| they use rebuild_header INSTEAD OF hard_start_xmit!!! |
| Besides that, they are sort of out of date |
| (a lot of redundant clones/copies, useless in 2.1), |
| I wonder why people believe that they work. |
| */ |
| switch (dev->type) { |
| default: |
| break; |
| case ARPHRD_ROSE: |
| #if IS_ENABLED(CONFIG_AX25) |
| case ARPHRD_AX25: |
| #if IS_ENABLED(CONFIG_NETROM) |
| case ARPHRD_NETROM: |
| #endif |
| neigh->ops = &arp_broken_ops; |
| neigh->output = neigh->ops->output; |
| return 0; |
| #else |
| break; |
| #endif |
| } |
| #endif |
| if (neigh->type == RTN_MULTICAST) { |
| neigh->nud_state = NUD_NOARP; |
| arp_mc_map(addr, neigh->ha, dev, 1); |
| } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) { |
| neigh->nud_state = NUD_NOARP; |
| memcpy(neigh->ha, dev->dev_addr, dev->addr_len); |
| } else if (neigh->type == RTN_BROADCAST || |
| (dev->flags & IFF_POINTOPOINT)) { |
| neigh->nud_state = NUD_NOARP; |
| memcpy(neigh->ha, dev->broadcast, dev->addr_len); |
| } |
| |
| if (dev->header_ops->cache) |
| neigh->ops = &arp_hh_ops; |
| else |
| neigh->ops = &arp_generic_ops; |
| |
| if (neigh->nud_state & NUD_VALID) |
| neigh->output = neigh->ops->connected_output; |
| else |
| neigh->output = neigh->ops->output; |
| } |
| return 0; |
| } |
| |
| static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb) |
| { |
| dst_link_failure(skb); |
| kfree_skb(skb); |
| } |
| |
| static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb) |
| { |
| __be32 saddr = 0; |
| u8 *dst_ha = NULL; |
| struct net_device *dev = neigh->dev; |
| __be32 target = *(__be32 *)neigh->primary_key; |
| int probes = atomic_read(&neigh->probes); |
| struct in_device *in_dev; |
| |
| rcu_read_lock(); |
| in_dev = __in_dev_get_rcu(dev); |
| if (!in_dev) { |
| rcu_read_unlock(); |
| return; |
| } |
| switch (IN_DEV_ARP_ANNOUNCE(in_dev)) { |
| default: |
| case 0: /* By default announce any local IP */ |
| if (skb && inet_addr_type(dev_net(dev), |
| ip_hdr(skb)->saddr) == RTN_LOCAL) |
| saddr = ip_hdr(skb)->saddr; |
| break; |
| case 1: /* Restrict announcements of saddr in same subnet */ |
| if (!skb) |
| break; |
| saddr = ip_hdr(skb)->saddr; |
| if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) { |
| /* saddr should be known to target */ |
| if (inet_addr_onlink(in_dev, target, saddr)) |
| break; |
| } |
| saddr = 0; |
| break; |
| case 2: /* Avoid secondary IPs, get a primary/preferred one */ |
| break; |
| } |
| rcu_read_unlock(); |
| |
| if (!saddr) |
| saddr = inet_select_addr(dev, target, RT_SCOPE_LINK); |
| |
| probes -= neigh->parms->ucast_probes; |
| if (probes < 0) { |
| if (!(neigh->nud_state & NUD_VALID)) |
| printk(KERN_DEBUG |
| "trying to ucast probe in NUD_INVALID\n"); |
| dst_ha = neigh->ha; |
| read_lock_bh(&neigh->lock); |
| } else { |
| probes -= neigh->parms->app_probes; |
| if (probes < 0) { |
| #ifdef CONFIG_ARPD |
| neigh_app_ns(neigh); |
| #endif |
| return; |
| } |
| } |
| |
| arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr, |
| dst_ha, dev->dev_addr, NULL); |
| if (dst_ha) |
| read_unlock_bh(&neigh->lock); |
| } |
| |
| static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip) |
| { |
| int scope; |
| |
| switch (IN_DEV_ARP_IGNORE(in_dev)) { |
| case 0: /* Reply, the tip is already validated */ |
| return 0; |
| case 1: /* Reply only if tip is configured on the incoming interface */ |
| sip = 0; |
| scope = RT_SCOPE_HOST; |
| break; |
| case 2: /* |
| * Reply only if tip is configured on the incoming interface |
| * and is in same subnet as sip |
| */ |
| scope = RT_SCOPE_HOST; |
| break; |
| case 3: /* Do not reply for scope host addresses */ |
| sip = 0; |
| scope = RT_SCOPE_LINK; |
| break; |
| case 4: /* Reserved */ |
| case 5: |
| case 6: |
| case 7: |
| return 0; |
| case 8: /* Do not reply */ |
| return 1; |
| default: |
| return 0; |
| } |
| return !inet_confirm_addr(in_dev, sip, tip, scope); |
| } |
| |
| static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev) |
| { |
| struct rtable *rt; |
| int flag = 0; |
| /*unsigned long now; */ |
| struct net *net = dev_net(dev); |
| |
| rt = ip_route_output(net, sip, tip, 0, 0); |
| if (IS_ERR(rt)) |
| return 1; |
| if (rt->dst.dev != dev) { |
| NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER); |
| flag = 1; |
| } |
| ip_rt_put(rt); |
| return flag; |
| } |
| |
| /* OBSOLETE FUNCTIONS */ |
| |
| /* |
| * Find an arp mapping in the cache. If not found, post a request. |
| * |
| * It is very UGLY routine: it DOES NOT use skb->dst->neighbour, |
| * even if it exists. It is supposed that skb->dev was mangled |
| * by a virtual device (eql, shaper). Nobody but broken devices |
| * is allowed to use this function, it is scheduled to be removed. --ANK |
| */ |
| |
| static int arp_set_predefined(int addr_hint, unsigned char *haddr, |
| __be32 paddr, struct net_device *dev) |
| { |
| switch (addr_hint) { |
| case RTN_LOCAL: |
| printk(KERN_DEBUG "ARP: arp called for own IP address\n"); |
| memcpy(haddr, dev->dev_addr, dev->addr_len); |
| return 1; |
| case RTN_MULTICAST: |
| arp_mc_map(paddr, haddr, dev, 1); |
| return 1; |
| case RTN_BROADCAST: |
| memcpy(haddr, dev->broadcast, dev->addr_len); |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| int arp_find(unsigned char *haddr, struct sk_buff *skb) |
| { |
| struct net_device *dev = skb->dev; |
| __be32 paddr; |
| struct neighbour *n; |
| |
| if (!skb_dst(skb)) { |
| printk(KERN_DEBUG "arp_find is called with dst==NULL\n"); |
| kfree_skb(skb); |
| return 1; |
| } |
| |
| paddr = skb_rtable(skb)->rt_gateway; |
| |
| if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr, |
| paddr, dev)) |
| return 0; |
| |
| n = __neigh_lookup(&arp_tbl, &paddr, dev, 1); |
| |
| if (n) { |
| n->used = jiffies; |
| if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) { |
| neigh_ha_snapshot(haddr, n, dev); |
| neigh_release(n); |
| return 0; |
| } |
| neigh_release(n); |
| } else |
| kfree_skb(skb); |
| return 1; |
| } |
| EXPORT_SYMBOL(arp_find); |
| |
| /* END OF OBSOLETE FUNCTIONS */ |
| |
| /* |
| * Check if we can use proxy ARP for this path |
| */ |
| static inline int arp_fwd_proxy(struct in_device *in_dev, |
| struct net_device *dev, struct rtable *rt) |
| { |
| struct in_device *out_dev; |
| int imi, omi = -1; |
| |
| if (rt->dst.dev == dev) |
| return 0; |
| |
| if (!IN_DEV_PROXY_ARP(in_dev)) |
| return 0; |
| imi = IN_DEV_MEDIUM_ID(in_dev); |
| if (imi == 0) |
| return 1; |
| if (imi == -1) |
| return 0; |
| |
| /* place to check for proxy_arp for routes */ |
| |
| out_dev = __in_dev_get_rcu(rt->dst.dev); |
| if (out_dev) |
| omi = IN_DEV_MEDIUM_ID(out_dev); |
| |
| return omi != imi && omi != -1; |
| } |
| |
| /* |
| * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev) |
| * |
| * RFC3069 supports proxy arp replies back to the same interface. This |
| * is done to support (ethernet) switch features, like RFC 3069, where |
| * the individual ports are not allowed to communicate with each |
| * other, BUT they are allowed to talk to the upstream router. As |
| * described in RFC 3069, it is possible to allow these hosts to |
| * communicate through the upstream router, by proxy_arp'ing. |
| * |
| * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation" |
| * |
| * This technology is known by different names: |
| * In RFC 3069 it is called VLAN Aggregation. |
| * Cisco and Allied Telesyn call it Private VLAN. |
| * Hewlett-Packard call it Source-Port filtering or port-isolation. |
| * Ericsson call it MAC-Forced Forwarding (RFC Draft). |
| * |
| */ |
| static inline int arp_fwd_pvlan(struct in_device *in_dev, |
| struct net_device *dev, struct rtable *rt, |
| __be32 sip, __be32 tip) |
| { |
| /* Private VLAN is only concerned about the same ethernet segment */ |
| if (rt->dst.dev != dev) |
| return 0; |
| |
| /* Don't reply on self probes (often done by windowz boxes)*/ |
| if (sip == tip) |
| return 0; |
| |
| if (IN_DEV_PROXY_ARP_PVLAN(in_dev)) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* |
| * Interface to link layer: send routine and receive handler. |
| */ |
| |
| /* |
| * Create an arp packet. If (dest_hw == NULL), we create a broadcast |
| * message. |
| */ |
| struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip, |
| struct net_device *dev, __be32 src_ip, |
| const unsigned char *dest_hw, |
| const unsigned char *src_hw, |
| const unsigned char *target_hw) |
| { |
| struct sk_buff *skb; |
| struct arphdr *arp; |
| unsigned char *arp_ptr; |
| int hlen = LL_RESERVED_SPACE(dev); |
| int tlen = dev->needed_tailroom; |
| |
| /* |
| * Allocate a buffer |
| */ |
| |
| skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC); |
| if (skb == NULL) |
| return NULL; |
| |
| skb_reserve(skb, hlen); |
| skb_reset_network_header(skb); |
| arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev)); |
| skb->dev = dev; |
| skb->protocol = htons(ETH_P_ARP); |
| if (src_hw == NULL) |
| src_hw = dev->dev_addr; |
| if (dest_hw == NULL) |
| dest_hw = dev->broadcast; |
| |
| /* |
| * Fill the device header for the ARP frame |
| */ |
| if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0) |
| goto out; |
| |
| /* |
| * Fill out the arp protocol part. |
| * |
| * The arp hardware type should match the device type, except for FDDI, |
| * which (according to RFC 1390) should always equal 1 (Ethernet). |
| */ |
| /* |
| * Exceptions everywhere. AX.25 uses the AX.25 PID value not the |
| * DIX code for the protocol. Make these device structure fields. |
| */ |
| switch (dev->type) { |
| default: |
| arp->ar_hrd = htons(dev->type); |
| arp->ar_pro = htons(ETH_P_IP); |
| break; |
| |
| #if IS_ENABLED(CONFIG_AX25) |
| case ARPHRD_AX25: |
| arp->ar_hrd = htons(ARPHRD_AX25); |
| arp->ar_pro = htons(AX25_P_IP); |
| break; |
| |
| #if IS_ENABLED(CONFIG_NETROM) |
| case ARPHRD_NETROM: |
| arp->ar_hrd = htons(ARPHRD_NETROM); |
| arp->ar_pro = htons(AX25_P_IP); |
| break; |
| #endif |
| #endif |
| |
| #if IS_ENABLED(CONFIG_FDDI) |
| case ARPHRD_FDDI: |
| arp->ar_hrd = htons(ARPHRD_ETHER); |
| arp->ar_pro = htons(ETH_P_IP); |
| break; |
| #endif |
| #if IS_ENABLED(CONFIG_TR) |
| case ARPHRD_IEEE802_TR: |
| arp->ar_hrd = htons(ARPHRD_IEEE802); |
| arp->ar_pro = htons(ETH_P_IP); |
| break; |
| #endif |
| } |
| |
| arp->ar_hln = dev->addr_len; |
| arp->ar_pln = 4; |
| arp->ar_op = htons(type); |
| |
| arp_ptr = (unsigned char *)(arp + 1); |
| |
| memcpy(arp_ptr, src_hw, dev->addr_len); |
| arp_ptr += dev->addr_len; |
| memcpy(arp_ptr, &src_ip, 4); |
| arp_ptr += 4; |
| if (target_hw != NULL) |
| memcpy(arp_ptr, target_hw, dev->addr_len); |
| else |
| memset(arp_ptr, 0, dev->addr_len); |
| arp_ptr += dev->addr_len; |
| memcpy(arp_ptr, &dest_ip, 4); |
| |
| return skb; |
| |
| out: |
| kfree_skb(skb); |
| return NULL; |
| } |
| EXPORT_SYMBOL(arp_create); |
| |
| /* |
| * Send an arp packet. |
| */ |
| void arp_xmit(struct sk_buff *skb) |
| { |
| /* Send it off, maybe filter it using firewalling first. */ |
| NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit); |
| } |
| EXPORT_SYMBOL(arp_xmit); |
| |
| /* |
| * Create and send an arp packet. |
| */ |
| void arp_send(int type, int ptype, __be32 dest_ip, |
| struct net_device *dev, __be32 src_ip, |
| const unsigned char *dest_hw, const unsigned char *src_hw, |
| const unsigned char *target_hw) |
| { |
| struct sk_buff *skb; |
| |
| /* |
| * No arp on this interface. |
| */ |
| |
| if (dev->flags&IFF_NOARP) |
| return; |
| |
| skb = arp_create(type, ptype, dest_ip, dev, src_ip, |
| dest_hw, src_hw, target_hw); |
| if (skb == NULL) |
| return; |
| |
| arp_xmit(skb); |
| } |
| EXPORT_SYMBOL(arp_send); |
| |
| /* |
| * Process an arp request. |
| */ |
| |
| static int arp_process(struct sk_buff *skb) |
| { |
| struct net_device *dev = skb->dev; |
| struct in_device *in_dev = __in_dev_get_rcu(dev); |
| struct arphdr *arp; |
| unsigned char *arp_ptr; |
| struct rtable *rt; |
| unsigned char *sha; |
| __be32 sip, tip; |
| u16 dev_type = dev->type; |
| int addr_type; |
| struct neighbour *n; |
| struct net *net = dev_net(dev); |
| |
| /* arp_rcv below verifies the ARP header and verifies the device |
| * is ARP'able. |
| */ |
| |
| if (in_dev == NULL) |
| goto out; |
| |
| arp = arp_hdr(skb); |
| |
| switch (dev_type) { |
| default: |
| if (arp->ar_pro != htons(ETH_P_IP) || |
| htons(dev_type) != arp->ar_hrd) |
| goto out; |
| break; |
| case ARPHRD_ETHER: |
| case ARPHRD_IEEE802_TR: |
| case ARPHRD_FDDI: |
| case ARPHRD_IEEE802: |
| /* |
| * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802 |
| * devices, according to RFC 2625) devices will accept ARP |
| * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2). |
| * This is the case also of FDDI, where the RFC 1390 says that |
| * FDDI devices should accept ARP hardware of (1) Ethernet, |
| * however, to be more robust, we'll accept both 1 (Ethernet) |
| * or 6 (IEEE 802.2) |
| */ |
| if ((arp->ar_hrd != htons(ARPHRD_ETHER) && |
| arp->ar_hrd != htons(ARPHRD_IEEE802)) || |
| arp->ar_pro != htons(ETH_P_IP)) |
| goto out; |
| break; |
| case ARPHRD_AX25: |
| if (arp->ar_pro != htons(AX25_P_IP) || |
| arp->ar_hrd != htons(ARPHRD_AX25)) |
| goto out; |
| break; |
| case ARPHRD_NETROM: |
| if (arp->ar_pro != htons(AX25_P_IP) || |
| arp->ar_hrd != htons(ARPHRD_NETROM)) |
| goto out; |
| break; |
| } |
| |
| /* Understand only these message types */ |
| |
| if (arp->ar_op != htons(ARPOP_REPLY) && |
| arp->ar_op != htons(ARPOP_REQUEST)) |
| goto out; |
| |
| /* |
| * Extract fields |
| */ |
| arp_ptr = (unsigned char *)(arp + 1); |
| sha = arp_ptr; |
| arp_ptr += dev->addr_len; |
| memcpy(&sip, arp_ptr, 4); |
| arp_ptr += 4; |
| arp_ptr += dev->addr_len; |
| memcpy(&tip, arp_ptr, 4); |
| /* |
| * Check for bad requests for 127.x.x.x and requests for multicast |
| * addresses. If this is one such, delete it. |
| */ |
| if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip)) |
| goto out; |
| |
| /* |
| * Special case: We must set Frame Relay source Q.922 address |
| */ |
| if (dev_type == ARPHRD_DLCI) |
| sha = dev->broadcast; |
| |
| /* |
| * Process entry. The idea here is we want to send a reply if it is a |
| * request for us or if it is a request for someone else that we hold |
| * a proxy for. We want to add an entry to our cache if it is a reply |
| * to us or if it is a request for our address. |
| * (The assumption for this last is that if someone is requesting our |
| * address, they are probably intending to talk to us, so it saves time |
| * if we cache their address. Their address is also probably not in |
| * our cache, since ours is not in their cache.) |
| * |
| * Putting this another way, we only care about replies if they are to |
| * us, in which case we add them to the cache. For requests, we care |
| * about those for us and those for our proxies. We reply to both, |
| * and in the case of requests for us we add the requester to the arp |
| * cache. |
| */ |
| |
| /* Special case: IPv4 duplicate address detection packet (RFC2131) */ |
| if (sip == 0) { |
| if (arp->ar_op == htons(ARPOP_REQUEST) && |
| inet_addr_type(net, tip) == RTN_LOCAL && |
| !arp_ignore(in_dev, sip, tip)) |
| arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, |
| dev->dev_addr, sha); |
| goto out; |
| } |
| |
| if (arp->ar_op == htons(ARPOP_REQUEST) && |
| ip_route_input_noref(skb, tip, sip, 0, dev) == 0) { |
| |
| rt = skb_rtable(skb); |
| addr_type = rt->rt_type; |
| |
| if (addr_type == RTN_LOCAL) { |
| int dont_send; |
| |
| dont_send = arp_ignore(in_dev, sip, tip); |
| if (!dont_send && IN_DEV_ARPFILTER(in_dev)) |
| dont_send = arp_filter(sip, tip, dev); |
| if (!dont_send) { |
| n = neigh_event_ns(&arp_tbl, sha, &sip, dev); |
| if (n) { |
| arp_send(ARPOP_REPLY, ETH_P_ARP, sip, |
| dev, tip, sha, dev->dev_addr, |
| sha); |
| neigh_release(n); |
| } |
| } |
| goto out; |
| } else if (IN_DEV_FORWARD(in_dev)) { |
| if (addr_type == RTN_UNICAST && |
| (arp_fwd_proxy(in_dev, dev, rt) || |
| arp_fwd_pvlan(in_dev, dev, rt, sip, tip) || |
| (rt->dst.dev != dev && |
| pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) { |
| n = neigh_event_ns(&arp_tbl, sha, &sip, dev); |
| if (n) |
| neigh_release(n); |
| |
| if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED || |
| skb->pkt_type == PACKET_HOST || |
| in_dev->arp_parms->proxy_delay == 0) { |
| arp_send(ARPOP_REPLY, ETH_P_ARP, sip, |
| dev, tip, sha, dev->dev_addr, |
| sha); |
| } else { |
| pneigh_enqueue(&arp_tbl, |
| in_dev->arp_parms, skb); |
| return 0; |
| } |
| goto out; |
| } |
| } |
| } |
| |
| /* Update our ARP tables */ |
| |
| n = __neigh_lookup(&arp_tbl, &sip, dev, 0); |
| |
| if (IN_DEV_ARP_ACCEPT(in_dev)) { |
| /* Unsolicited ARP is not accepted by default. |
| It is possible, that this option should be enabled for some |
| devices (strip is candidate) |
| */ |
| if (n == NULL && |
| (arp->ar_op == htons(ARPOP_REPLY) || |
| (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) && |
| inet_addr_type(net, sip) == RTN_UNICAST) |
| n = __neigh_lookup(&arp_tbl, &sip, dev, 1); |
| } |
| |
| if (n) { |
| int state = NUD_REACHABLE; |
| int override; |
| |
| /* If several different ARP replies follows back-to-back, |
| use the FIRST one. It is possible, if several proxy |
| agents are active. Taking the first reply prevents |
| arp trashing and chooses the fastest router. |
| */ |
| override = time_after(jiffies, n->updated + n->parms->locktime); |
| |
| /* Broadcast replies and request packets |
| do not assert neighbour reachability. |
| */ |
| if (arp->ar_op != htons(ARPOP_REPLY) || |
| skb->pkt_type != PACKET_HOST) |
| state = NUD_STALE; |
| neigh_update(n, sha, state, |
| override ? NEIGH_UPDATE_F_OVERRIDE : 0); |
| neigh_release(n); |
| } |
| |
| out: |
| consume_skb(skb); |
| return 0; |
| } |
| |
| static void parp_redo(struct sk_buff *skb) |
| { |
| arp_process(skb); |
| } |
| |
| |
| /* |
| * Receive an arp request from the device layer. |
| */ |
| |
| static int arp_rcv(struct sk_buff *skb, struct net_device *dev, |
| struct packet_type *pt, struct net_device *orig_dev) |
| { |
| struct arphdr *arp; |
| |
| /* ARP header, plus 2 device addresses, plus 2 IP addresses. */ |
| if (!pskb_may_pull(skb, arp_hdr_len(dev))) |
| goto freeskb; |
| |
| arp = arp_hdr(skb); |
| if (arp->ar_hln != dev->addr_len || |
| dev->flags & IFF_NOARP || |
| skb->pkt_type == PACKET_OTHERHOST || |
| skb->pkt_type == PACKET_LOOPBACK || |
| arp->ar_pln != 4) |
| goto freeskb; |
| |
| skb = skb_share_check(skb, GFP_ATOMIC); |
| if (skb == NULL) |
| goto out_of_mem; |
| |
| memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); |
| |
| return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process); |
| |
| freeskb: |
| kfree_skb(skb); |
| out_of_mem: |
| return 0; |
| } |
| |
| /* |
| * User level interface (ioctl) |
| */ |
| |
| /* |
| * Set (create) an ARP cache entry. |
| */ |
| |
| static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on) |
| { |
| if (dev == NULL) { |
| IPV4_DEVCONF_ALL(net, PROXY_ARP) = on; |
| return 0; |
| } |
| if (__in_dev_get_rtnl(dev)) { |
| IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on); |
| return 0; |
| } |
| return -ENXIO; |
| } |
| |
| static int arp_req_set_public(struct net *net, struct arpreq *r, |
| struct net_device *dev) |
| { |
| __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; |
| __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr; |
| |
| if (mask && mask != htonl(0xFFFFFFFF)) |
| return -EINVAL; |
| if (!dev && (r->arp_flags & ATF_COM)) { |
| dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family, |
| r->arp_ha.sa_data); |
| if (!dev) |
| return -ENODEV; |
| } |
| if (mask) { |
| if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL) |
| return -ENOBUFS; |
| return 0; |
| } |
| |
| return arp_req_set_proxy(net, dev, 1); |
| } |
| |
| static int arp_req_set(struct net *net, struct arpreq *r, |
| struct net_device *dev) |
| { |
| __be32 ip; |
| struct neighbour *neigh; |
| int err; |
| |
| if (r->arp_flags & ATF_PUBL) |
| return arp_req_set_public(net, r, dev); |
| |
| ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; |
| if (r->arp_flags & ATF_PERM) |
| r->arp_flags |= ATF_COM; |
| if (dev == NULL) { |
| struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0); |
| |
| if (IS_ERR(rt)) |
| return PTR_ERR(rt); |
| dev = rt->dst.dev; |
| ip_rt_put(rt); |
| if (!dev) |
| return -EINVAL; |
| } |
| switch (dev->type) { |
| #if IS_ENABLED(CONFIG_FDDI) |
| case ARPHRD_FDDI: |
| /* |
| * According to RFC 1390, FDDI devices should accept ARP |
| * hardware types of 1 (Ethernet). However, to be more |
| * robust, we'll accept hardware types of either 1 (Ethernet) |
| * or 6 (IEEE 802.2). |
| */ |
| if (r->arp_ha.sa_family != ARPHRD_FDDI && |
| r->arp_ha.sa_family != ARPHRD_ETHER && |
| r->arp_ha.sa_family != ARPHRD_IEEE802) |
| return -EINVAL; |
| break; |
| #endif |
| default: |
| if (r->arp_ha.sa_family != dev->type) |
| return -EINVAL; |
| break; |
| } |
| |
| neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev); |
| err = PTR_ERR(neigh); |
| if (!IS_ERR(neigh)) { |
| unsigned int state = NUD_STALE; |
| if (r->arp_flags & ATF_PERM) |
| state = NUD_PERMANENT; |
| err = neigh_update(neigh, (r->arp_flags & ATF_COM) ? |
| r->arp_ha.sa_data : NULL, state, |
| NEIGH_UPDATE_F_OVERRIDE | |
| NEIGH_UPDATE_F_ADMIN); |
| neigh_release(neigh); |
| } |
| return err; |
| } |
| |
| static unsigned int arp_state_to_flags(struct neighbour *neigh) |
| { |
| if (neigh->nud_state&NUD_PERMANENT) |
| return ATF_PERM | ATF_COM; |
| else if (neigh->nud_state&NUD_VALID) |
| return ATF_COM; |
| else |
| return 0; |
| } |
| |
| /* |
| * Get an ARP cache entry. |
| */ |
| |
| static int arp_req_get(struct arpreq *r, struct net_device *dev) |
| { |
| __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr; |
| struct neighbour *neigh; |
| int err = -ENXIO; |
| |
| neigh = neigh_lookup(&arp_tbl, &ip, dev); |
| if (neigh) { |
| read_lock_bh(&neigh->lock); |
| memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len); |
| r->arp_flags = arp_state_to_flags(neigh); |
| read_unlock_bh(&neigh->lock); |
| r->arp_ha.sa_family = dev->type; |
| strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev)); |
| neigh_release(neigh); |
| err = 0; |
| } |
| return err; |
| } |
| |
| int arp_invalidate(struct net_device *dev, __be32 ip) |
| { |
| struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev); |
| int err = -ENXIO; |
| |
| if (neigh) { |
| if (neigh->nud_state & ~NUD_NOARP) |
| err = neigh_update(neigh, NULL, NUD_FAILED, |
| NEIGH_UPDATE_F_OVERRIDE| |
| NEIGH_UPDATE_F_ADMIN); |
| neigh_release(neigh); |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL(arp_invalidate); |
| |
| static int arp_req_delete_public(struct net *net, struct arpreq *r, |
| struct net_device *dev) |
| { |
| __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr; |
| __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr; |
| |
| if (mask == htonl(0xFFFFFFFF)) |
| return pneigh_delete(&arp_tbl, net, &ip, dev); |
| |
| if (mask) |
| return -EINVAL; |
| |
| return arp_req_set_proxy(net, dev, 0); |
| } |
| |
| static int arp_req_delete(struct net *net, struct arpreq *r, |
| struct net_device *dev) |
| { |
| __be32 ip; |
| |
| if (r->arp_flags & ATF_PUBL) |
| return arp_req_delete_public(net, r, dev); |
| |
| ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; |
| if (dev == NULL) { |
| struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0); |
| if (IS_ERR(rt)) |
| return PTR_ERR(rt); |
| dev = rt->dst.dev; |
| ip_rt_put(rt); |
| if (!dev) |
| return -EINVAL; |
| } |
| return arp_invalidate(dev, ip); |
| } |
| |
| /* |
| * Handle an ARP layer I/O control request. |
| */ |
| |
| int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg) |
| { |
| int err; |
| struct arpreq r; |
| struct net_device *dev = NULL; |
| |
| switch (cmd) { |
| case SIOCDARP: |
| case SIOCSARP: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| case SIOCGARP: |
| err = copy_from_user(&r, arg, sizeof(struct arpreq)); |
| if (err) |
| return -EFAULT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (r.arp_pa.sa_family != AF_INET) |
| return -EPFNOSUPPORT; |
| |
| if (!(r.arp_flags & ATF_PUBL) && |
| (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB))) |
| return -EINVAL; |
| if (!(r.arp_flags & ATF_NETMASK)) |
| ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr = |
| htonl(0xFFFFFFFFUL); |
| rtnl_lock(); |
| if (r.arp_dev[0]) { |
| err = -ENODEV; |
| dev = __dev_get_by_name(net, r.arp_dev); |
| if (dev == NULL) |
| goto out; |
| |
| /* Mmmm... It is wrong... ARPHRD_NETROM==0 */ |
| if (!r.arp_ha.sa_family) |
| r.arp_ha.sa_family = dev->type; |
| err = -EINVAL; |
| if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type) |
| goto out; |
| } else if (cmd == SIOCGARP) { |
| err = -ENODEV; |
| goto out; |
| } |
| |
| switch (cmd) { |
| case SIOCDARP: |
| err = arp_req_delete(net, &r, dev); |
| break; |
| case SIOCSARP: |
| err = arp_req_set(net, &r, dev); |
| break; |
| case SIOCGARP: |
| err = arp_req_get(&r, dev); |
| break; |
| } |
| out: |
| rtnl_unlock(); |
| if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r))) |
| err = -EFAULT; |
| return err; |
| } |
| |
| static int arp_netdev_event(struct notifier_block *this, unsigned long event, |
| void *ptr) |
| { |
| struct net_device *dev = ptr; |
| |
| switch (event) { |
| case NETDEV_CHANGEADDR: |
| neigh_changeaddr(&arp_tbl, dev); |
| rt_cache_flush(dev_net(dev), 0); |
| break; |
| default: |
| break; |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block arp_netdev_notifier = { |
| .notifier_call = arp_netdev_event, |
| }; |
| |
| /* Note, that it is not on notifier chain. |
| It is necessary, that this routine was called after route cache will be |
| flushed. |
| */ |
| void arp_ifdown(struct net_device *dev) |
| { |
| neigh_ifdown(&arp_tbl, dev); |
| } |
| |
| |
| /* |
| * Called once on startup. |
| */ |
| |
| static struct packet_type arp_packet_type __read_mostly = { |
| .type = cpu_to_be16(ETH_P_ARP), |
| .func = arp_rcv, |
| }; |
| |
| static int arp_proc_init(void); |
| |
| void __init arp_init(void) |
| { |
| neigh_table_init(&arp_tbl); |
| |
| dev_add_pack(&arp_packet_type); |
| arp_proc_init(); |
| #ifdef CONFIG_SYSCTL |
| neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL); |
| #endif |
| register_netdevice_notifier(&arp_netdev_notifier); |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| #if IS_ENABLED(CONFIG_AX25) |
| |
| /* ------------------------------------------------------------------------ */ |
| /* |
| * ax25 -> ASCII conversion |
| */ |
| static char *ax2asc2(ax25_address *a, char *buf) |
| { |
| char c, *s; |
| int n; |
| |
| for (n = 0, s = buf; n < 6; n++) { |
| c = (a->ax25_call[n] >> 1) & 0x7F; |
| |
| if (c != ' ') |
| *s++ = c; |
| } |
| |
| *s++ = '-'; |
| n = (a->ax25_call[6] >> 1) & 0x0F; |
| if (n > 9) { |
| *s++ = '1'; |
| n -= 10; |
| } |
| |
| *s++ = n + '0'; |
| *s++ = '\0'; |
| |
| if (*buf == '\0' || *buf == '-') |
| return "*"; |
| |
| return buf; |
| } |
| #endif /* CONFIG_AX25 */ |
| |
| #define HBUFFERLEN 30 |
| |
| static void arp_format_neigh_entry(struct seq_file *seq, |
| struct neighbour *n) |
| { |
| char hbuffer[HBUFFERLEN]; |
| int k, j; |
| char tbuf[16]; |
| struct net_device *dev = n->dev; |
| int hatype = dev->type; |
| |
| read_lock(&n->lock); |
| /* Convert hardware address to XX:XX:XX:XX ... form. */ |
| #if IS_ENABLED(CONFIG_AX25) |
| if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM) |
| ax2asc2((ax25_address *)n->ha, hbuffer); |
| else { |
| #endif |
| for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) { |
| hbuffer[k++] = hex_asc_hi(n->ha[j]); |
| hbuffer[k++] = hex_asc_lo(n->ha[j]); |
| hbuffer[k++] = ':'; |
| } |
| if (k != 0) |
| --k; |
| hbuffer[k] = 0; |
| #if IS_ENABLED(CONFIG_AX25) |
| } |
| #endif |
| sprintf(tbuf, "%pI4", n->primary_key); |
| seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n", |
| tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name); |
| read_unlock(&n->lock); |
| } |
| |
| static void arp_format_pneigh_entry(struct seq_file *seq, |
| struct pneigh_entry *n) |
| { |
| struct net_device *dev = n->dev; |
| int hatype = dev ? dev->type : 0; |
| char tbuf[16]; |
| |
| sprintf(tbuf, "%pI4", n->key); |
| seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n", |
| tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00", |
| dev ? dev->name : "*"); |
| } |
| |
| static int arp_seq_show(struct seq_file *seq, void *v) |
| { |
| if (v == SEQ_START_TOKEN) { |
| seq_puts(seq, "IP address HW type Flags " |
| "HW address Mask Device\n"); |
| } else { |
| struct neigh_seq_state *state = seq->private; |
| |
| if (state->flags & NEIGH_SEQ_IS_PNEIGH) |
| arp_format_pneigh_entry(seq, v); |
| else |
| arp_format_neigh_entry(seq, v); |
| } |
| |
| return 0; |
| } |
| |
| static void *arp_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| /* Don't want to confuse "arp -a" w/ magic entries, |
| * so we tell the generic iterator to skip NUD_NOARP. |
| */ |
| return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP); |
| } |
| |
| /* ------------------------------------------------------------------------ */ |
| |
| static const struct seq_operations arp_seq_ops = { |
| .start = arp_seq_start, |
| .next = neigh_seq_next, |
| .stop = neigh_seq_stop, |
| .show = arp_seq_show, |
| }; |
| |
| static int arp_seq_open(struct inode *inode, struct file *file) |
| { |
| return seq_open_net(inode, file, &arp_seq_ops, |
| sizeof(struct neigh_seq_state)); |
| } |
| |
| static const struct file_operations arp_seq_fops = { |
| .owner = THIS_MODULE, |
| .open = arp_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_net, |
| }; |
| |
| |
| static int __net_init arp_net_init(struct net *net) |
| { |
| if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops)) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void __net_exit arp_net_exit(struct net *net) |
| { |
| proc_net_remove(net, "arp"); |
| } |
| |
| static struct pernet_operations arp_net_ops = { |
| .init = arp_net_init, |
| .exit = arp_net_exit, |
| }; |
| |
| static int __init arp_proc_init(void) |
| { |
| return register_pernet_subsys(&arp_net_ops); |
| } |
| |
| #else /* CONFIG_PROC_FS */ |
| |
| static int __init arp_proc_init(void) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_PROC_FS */ |