blob: 7bdd248ec7708d93c6f405a8dba02c63c09ac46d [file] [log] [blame]
/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
*/
/*
* This file implements UBIFS initialization and VFS superblock operations. Some
* initialization stuff which is rather large and complex is placed at
* corresponding subsystems, but most of it is here.
*/
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/parser.h>
#include <linux/seq_file.h>
#include <linux/mount.h>
#include <linux/math64.h>
#include <linux/writeback.h>
#include "ubifs.h"
/*
* Maximum amount of memory we may 'kmalloc()' without worrying that we are
* allocating too much.
*/
#define UBIFS_KMALLOC_OK (128*1024)
/* Slab cache for UBIFS inodes */
struct kmem_cache *ubifs_inode_slab;
/* UBIFS TNC shrinker description */
static struct shrinker ubifs_shrinker_info = {
.shrink = ubifs_shrinker,
.seeks = DEFAULT_SEEKS,
};
/**
* validate_inode - validate inode.
* @c: UBIFS file-system description object
* @inode: the inode to validate
*
* This is a helper function for 'ubifs_iget()' which validates various fields
* of a newly built inode to make sure they contain sane values and prevent
* possible vulnerabilities. Returns zero if the inode is all right and
* a non-zero error code if not.
*/
static int validate_inode(struct ubifs_info *c, const struct inode *inode)
{
int err;
const struct ubifs_inode *ui = ubifs_inode(inode);
if (inode->i_size > c->max_inode_sz) {
ubifs_err("inode is too large (%lld)",
(long long)inode->i_size);
return 1;
}
if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
ubifs_err("unknown compression type %d", ui->compr_type);
return 2;
}
if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
return 3;
if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
return 4;
if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
return 5;
if (!ubifs_compr_present(ui->compr_type)) {
ubifs_warn("inode %lu uses '%s' compression, but it was not "
"compiled in", inode->i_ino,
ubifs_compr_name(ui->compr_type));
}
err = dbg_check_dir_size(c, inode);
return err;
}
struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
{
int err;
union ubifs_key key;
struct ubifs_ino_node *ino;
struct ubifs_info *c = sb->s_fs_info;
struct inode *inode;
struct ubifs_inode *ui;
dbg_gen("inode %lu", inum);
inode = iget_locked(sb, inum);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
ui = ubifs_inode(inode);
ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
if (!ino) {
err = -ENOMEM;
goto out;
}
ino_key_init(c, &key, inode->i_ino);
err = ubifs_tnc_lookup(c, &key, ino);
if (err)
goto out_ino;
inode->i_flags |= (S_NOCMTIME | S_NOATIME);
inode->i_nlink = le32_to_cpu(ino->nlink);
inode->i_uid = le32_to_cpu(ino->uid);
inode->i_gid = le32_to_cpu(ino->gid);
inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
inode->i_mode = le32_to_cpu(ino->mode);
inode->i_size = le64_to_cpu(ino->size);
ui->data_len = le32_to_cpu(ino->data_len);
ui->flags = le32_to_cpu(ino->flags);
ui->compr_type = le16_to_cpu(ino->compr_type);
ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
ui->xattr_size = le32_to_cpu(ino->xattr_size);
ui->xattr_names = le32_to_cpu(ino->xattr_names);
ui->synced_i_size = ui->ui_size = inode->i_size;
ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
err = validate_inode(c, inode);
if (err)
goto out_invalid;
/* Disable read-ahead */
inode->i_mapping->backing_dev_info = &c->bdi;
switch (inode->i_mode & S_IFMT) {
case S_IFREG:
inode->i_mapping->a_ops = &ubifs_file_address_operations;
inode->i_op = &ubifs_file_inode_operations;
inode->i_fop = &ubifs_file_operations;
if (ui->xattr) {
ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
if (!ui->data) {
err = -ENOMEM;
goto out_ino;
}
memcpy(ui->data, ino->data, ui->data_len);
((char *)ui->data)[ui->data_len] = '\0';
} else if (ui->data_len != 0) {
err = 10;
goto out_invalid;
}
break;
case S_IFDIR:
inode->i_op = &ubifs_dir_inode_operations;
inode->i_fop = &ubifs_dir_operations;
if (ui->data_len != 0) {
err = 11;
goto out_invalid;
}
break;
case S_IFLNK:
inode->i_op = &ubifs_symlink_inode_operations;
if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
err = 12;
goto out_invalid;
}
ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
if (!ui->data) {
err = -ENOMEM;
goto out_ino;
}
memcpy(ui->data, ino->data, ui->data_len);
((char *)ui->data)[ui->data_len] = '\0';
break;
case S_IFBLK:
case S_IFCHR:
{
dev_t rdev;
union ubifs_dev_desc *dev;
ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
if (!ui->data) {
err = -ENOMEM;
goto out_ino;
}
dev = (union ubifs_dev_desc *)ino->data;
if (ui->data_len == sizeof(dev->new))
rdev = new_decode_dev(le32_to_cpu(dev->new));
else if (ui->data_len == sizeof(dev->huge))
rdev = huge_decode_dev(le64_to_cpu(dev->huge));
else {
err = 13;
goto out_invalid;
}
memcpy(ui->data, ino->data, ui->data_len);
inode->i_op = &ubifs_file_inode_operations;
init_special_inode(inode, inode->i_mode, rdev);
break;
}
case S_IFSOCK:
case S_IFIFO:
inode->i_op = &ubifs_file_inode_operations;
init_special_inode(inode, inode->i_mode, 0);
if (ui->data_len != 0) {
err = 14;
goto out_invalid;
}
break;
default:
err = 15;
goto out_invalid;
}
kfree(ino);
ubifs_set_inode_flags(inode);
unlock_new_inode(inode);
return inode;
out_invalid:
ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
dbg_dump_node(c, ino);
dbg_dump_inode(c, inode);
err = -EINVAL;
out_ino:
kfree(ino);
out:
ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
iget_failed(inode);
return ERR_PTR(err);
}
static struct inode *ubifs_alloc_inode(struct super_block *sb)
{
struct ubifs_inode *ui;
ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
if (!ui)
return NULL;
memset((void *)ui + sizeof(struct inode), 0,
sizeof(struct ubifs_inode) - sizeof(struct inode));
mutex_init(&ui->ui_mutex);
spin_lock_init(&ui->ui_lock);
return &ui->vfs_inode;
};
static void ubifs_destroy_inode(struct inode *inode)
{
struct ubifs_inode *ui = ubifs_inode(inode);
kfree(ui->data);
kmem_cache_free(ubifs_inode_slab, inode);
}
/*
* Note, Linux write-back code calls this without 'i_mutex'.
*/
static int ubifs_write_inode(struct inode *inode, int wait)
{
int err = 0;
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct ubifs_inode *ui = ubifs_inode(inode);
ubifs_assert(!ui->xattr);
if (is_bad_inode(inode))
return 0;
mutex_lock(&ui->ui_mutex);
/*
* Due to races between write-back forced by budgeting
* (see 'sync_some_inodes()') and pdflush write-back, the inode may
* have already been synchronized, do not do this again. This might
* also happen if it was synchronized in an VFS operation, e.g.
* 'ubifs_link()'.
*/
if (!ui->dirty) {
mutex_unlock(&ui->ui_mutex);
return 0;
}
/*
* As an optimization, do not write orphan inodes to the media just
* because this is not needed.
*/
dbg_gen("inode %lu, mode %#x, nlink %u",
inode->i_ino, (int)inode->i_mode, inode->i_nlink);
if (inode->i_nlink) {
err = ubifs_jnl_write_inode(c, inode);
if (err)
ubifs_err("can't write inode %lu, error %d",
inode->i_ino, err);
}
ui->dirty = 0;
mutex_unlock(&ui->ui_mutex);
ubifs_release_dirty_inode_budget(c, ui);
return err;
}
static void ubifs_delete_inode(struct inode *inode)
{
int err;
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct ubifs_inode *ui = ubifs_inode(inode);
if (ui->xattr)
/*
* Extended attribute inode deletions are fully handled in
* 'ubifs_removexattr()'. These inodes are special and have
* limited usage, so there is nothing to do here.
*/
goto out;
dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
ubifs_assert(!atomic_read(&inode->i_count));
ubifs_assert(inode->i_nlink == 0);
truncate_inode_pages(&inode->i_data, 0);
if (is_bad_inode(inode))
goto out;
ui->ui_size = inode->i_size = 0;
err = ubifs_jnl_delete_inode(c, inode);
if (err)
/*
* Worst case we have a lost orphan inode wasting space, so a
* simple error message is OK here.
*/
ubifs_err("can't delete inode %lu, error %d",
inode->i_ino, err);
out:
if (ui->dirty)
ubifs_release_dirty_inode_budget(c, ui);
clear_inode(inode);
}
static void ubifs_dirty_inode(struct inode *inode)
{
struct ubifs_inode *ui = ubifs_inode(inode);
ubifs_assert(mutex_is_locked(&ui->ui_mutex));
if (!ui->dirty) {
ui->dirty = 1;
dbg_gen("inode %lu", inode->i_ino);
}
}
static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct ubifs_info *c = dentry->d_sb->s_fs_info;
unsigned long long free;
__le32 *uuid = (__le32 *)c->uuid;
free = ubifs_get_free_space(c);
dbg_gen("free space %lld bytes (%lld blocks)",
free, free >> UBIFS_BLOCK_SHIFT);
buf->f_type = UBIFS_SUPER_MAGIC;
buf->f_bsize = UBIFS_BLOCK_SIZE;
buf->f_blocks = c->block_cnt;
buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
if (free > c->report_rp_size)
buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
else
buf->f_bavail = 0;
buf->f_files = 0;
buf->f_ffree = 0;
buf->f_namelen = UBIFS_MAX_NLEN;
buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
ubifs_assert(buf->f_bfree <= c->block_cnt);
return 0;
}
static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
{
struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
if (c->mount_opts.unmount_mode == 2)
seq_printf(s, ",fast_unmount");
else if (c->mount_opts.unmount_mode == 1)
seq_printf(s, ",norm_unmount");
if (c->mount_opts.bulk_read == 2)
seq_printf(s, ",bulk_read");
else if (c->mount_opts.bulk_read == 1)
seq_printf(s, ",no_bulk_read");
if (c->mount_opts.chk_data_crc == 2)
seq_printf(s, ",chk_data_crc");
else if (c->mount_opts.chk_data_crc == 1)
seq_printf(s, ",no_chk_data_crc");
if (c->mount_opts.override_compr) {
seq_printf(s, ",compr=");
seq_printf(s, ubifs_compr_name(c->mount_opts.compr_type));
}
return 0;
}
static int ubifs_sync_fs(struct super_block *sb, int wait)
{
int i, err;
struct ubifs_info *c = sb->s_fs_info;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.range_start = 0,
.range_end = LLONG_MAX,
.nr_to_write = LONG_MAX,
};
/*
* Zero @wait is just an advisory thing to help the file system shove
* lots of data into the queues, and there will be the second
* '->sync_fs()' call, with non-zero @wait.
*/
if (!wait)
return 0;
if (sb->s_flags & MS_RDONLY)
return 0;
/*
* VFS calls '->sync_fs()' before synchronizing all dirty inodes and
* pages, so synchronize them first, then commit the journal. Strictly
* speaking, it is not necessary to commit the journal here,
* synchronizing write-buffers would be enough. But committing makes
* UBIFS free space predictions much more accurate, so we want to let
* the user be able to get more accurate results of 'statfs()' after
* they synchronize the file system.
*/
generic_sync_sb_inodes(sb, &wbc);
/*
* Synchronize write buffers, because 'ubifs_run_commit()' does not
* do this if it waits for an already running commit.
*/
for (i = 0; i < c->jhead_cnt; i++) {
err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
if (err)
return err;
}
err = ubifs_run_commit(c);
if (err)
return err;
return ubi_sync(c->vi.ubi_num);
}
/**
* init_constants_early - initialize UBIFS constants.
* @c: UBIFS file-system description object
*
* This function initialize UBIFS constants which do not need the superblock to
* be read. It also checks that the UBI volume satisfies basic UBIFS
* requirements. Returns zero in case of success and a negative error code in
* case of failure.
*/
static int init_constants_early(struct ubifs_info *c)
{
if (c->vi.corrupted) {
ubifs_warn("UBI volume is corrupted - read-only mode");
c->ro_media = 1;
}
if (c->di.ro_mode) {
ubifs_msg("read-only UBI device");
c->ro_media = 1;
}
if (c->vi.vol_type == UBI_STATIC_VOLUME) {
ubifs_msg("static UBI volume - read-only mode");
c->ro_media = 1;
}
c->leb_cnt = c->vi.size;
c->leb_size = c->vi.usable_leb_size;
c->half_leb_size = c->leb_size / 2;
c->min_io_size = c->di.min_io_size;
c->min_io_shift = fls(c->min_io_size) - 1;
if (c->leb_size < UBIFS_MIN_LEB_SZ) {
ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
c->leb_size, UBIFS_MIN_LEB_SZ);
return -EINVAL;
}
if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
ubifs_err("too few LEBs (%d), min. is %d",
c->leb_cnt, UBIFS_MIN_LEB_CNT);
return -EINVAL;
}
if (!is_power_of_2(c->min_io_size)) {
ubifs_err("bad min. I/O size %d", c->min_io_size);
return -EINVAL;
}
/*
* UBIFS aligns all node to 8-byte boundary, so to make function in
* io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
* less than 8.
*/
if (c->min_io_size < 8) {
c->min_io_size = 8;
c->min_io_shift = 3;
}
c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
/*
* Initialize node length ranges which are mostly needed for node
* length validation.
*/
c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
c->ranges[UBIFS_ORPH_NODE].min_len =
UBIFS_ORPH_NODE_SZ + sizeof(__le64);
c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
/*
* Minimum indexing node size is amended later when superblock is
* read and the key length is known.
*/
c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
/*
* Maximum indexing node size is amended later when superblock is
* read and the fanout is known.
*/
c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
/*
* Initialize dead and dark LEB space watermarks. See gc.c for comments
* about these values.
*/
c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
/*
* Calculate how many bytes would be wasted at the end of LEB if it was
* fully filled with data nodes of maximum size. This is used in
* calculations when reporting free space.
*/
c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
/* Buffer size for bulk-reads */
c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
if (c->max_bu_buf_len > c->leb_size)
c->max_bu_buf_len = c->leb_size;
return 0;
}
/**
* bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
* @c: UBIFS file-system description object
* @lnum: LEB the write-buffer was synchronized to
* @free: how many free bytes left in this LEB
* @pad: how many bytes were padded
*
* This is a callback function which is called by the I/O unit when the
* write-buffer is synchronized. We need this to correctly maintain space
* accounting in bud logical eraseblocks. This function returns zero in case of
* success and a negative error code in case of failure.
*
* This function actually belongs to the journal, but we keep it here because
* we want to keep it static.
*/
static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
{
return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
}
/*
* init_constants_sb - initialize UBIFS constants.
* @c: UBIFS file-system description object
*
* This is a helper function which initializes various UBIFS constants after
* the superblock has been read. It also checks various UBIFS parameters and
* makes sure they are all right. Returns zero in case of success and a
* negative error code in case of failure.
*/
static int init_constants_sb(struct ubifs_info *c)
{
int tmp, err;
long long tmp64;
c->main_bytes = (long long)c->main_lebs * c->leb_size;
c->max_znode_sz = sizeof(struct ubifs_znode) +
c->fanout * sizeof(struct ubifs_zbranch);
tmp = ubifs_idx_node_sz(c, 1);
c->ranges[UBIFS_IDX_NODE].min_len = tmp;
c->min_idx_node_sz = ALIGN(tmp, 8);
tmp = ubifs_idx_node_sz(c, c->fanout);
c->ranges[UBIFS_IDX_NODE].max_len = tmp;
c->max_idx_node_sz = ALIGN(tmp, 8);
/* Make sure LEB size is large enough to fit full commit */
tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
tmp = ALIGN(tmp, c->min_io_size);
if (tmp > c->leb_size) {
dbg_err("too small LEB size %d, at least %d needed",
c->leb_size, tmp);
return -EINVAL;
}
/*
* Make sure that the log is large enough to fit reference nodes for
* all buds plus one reserved LEB.
*/
tmp64 = c->max_bud_bytes + c->leb_size - 1;
c->max_bud_cnt = div_u64(tmp64, c->leb_size);
tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
tmp /= c->leb_size;
tmp += 1;
if (c->log_lebs < tmp) {
dbg_err("too small log %d LEBs, required min. %d LEBs",
c->log_lebs, tmp);
return -EINVAL;
}
/*
* When budgeting we assume worst-case scenarios when the pages are not
* be compressed and direntries are of the maximum size.
*
* Note, data, which may be stored in inodes is budgeted separately, so
* it is not included into 'c->inode_budget'.
*/
c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
c->inode_budget = UBIFS_INO_NODE_SZ;
c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
/*
* When the amount of flash space used by buds becomes
* 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
* The writers are unblocked when the commit is finished. To avoid
* writers to be blocked UBIFS initiates background commit in advance,
* when number of bud bytes becomes above the limit defined below.
*/
c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
/*
* Ensure minimum journal size. All the bytes in the journal heads are
* considered to be used, when calculating the current journal usage.
* Consequently, if the journal is too small, UBIFS will treat it as
* always full.
*/
tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
if (c->bg_bud_bytes < tmp64)
c->bg_bud_bytes = tmp64;
if (c->max_bud_bytes < tmp64 + c->leb_size)
c->max_bud_bytes = tmp64 + c->leb_size;
err = ubifs_calc_lpt_geom(c);
if (err)
return err;
/* Initialize effective LEB size used in budgeting calculations */
c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
return 0;
}
/*
* init_constants_master - initialize UBIFS constants.
* @c: UBIFS file-system description object
*
* This is a helper function which initializes various UBIFS constants after
* the master node has been read. It also checks various UBIFS parameters and
* makes sure they are all right.
*/
static void init_constants_master(struct ubifs_info *c)
{
long long tmp64;
c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
c->report_rp_size = ubifs_reported_space(c, c->rp_size);
/*
* Calculate total amount of FS blocks. This number is not used
* internally because it does not make much sense for UBIFS, but it is
* necessary to report something for the 'statfs()' call.
*
* Subtract the LEB reserved for GC, the LEB which is reserved for
* deletions, minimum LEBs for the index, and assume only one journal
* head is available.
*/
tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
tmp64 *= (long long)c->leb_size - c->leb_overhead;
tmp64 = ubifs_reported_space(c, tmp64);
c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
}
/**
* take_gc_lnum - reserve GC LEB.
* @c: UBIFS file-system description object
*
* This function ensures that the LEB reserved for garbage collection is marked
* as "taken" in lprops. We also have to set free space to LEB size and dirty
* space to zero, because lprops may contain out-of-date information if the
* file-system was un-mounted before it has been committed. This function
* returns zero in case of success and a negative error code in case of
* failure.
*/
static int take_gc_lnum(struct ubifs_info *c)
{
int err;
if (c->gc_lnum == -1) {
ubifs_err("no LEB for GC");
return -EINVAL;
}
/* And we have to tell lprops that this LEB is taken */
err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
LPROPS_TAKEN, 0, 0);
return err;
}
/**
* alloc_wbufs - allocate write-buffers.
* @c: UBIFS file-system description object
*
* This helper function allocates and initializes UBIFS write-buffers. Returns
* zero in case of success and %-ENOMEM in case of failure.
*/
static int alloc_wbufs(struct ubifs_info *c)
{
int i, err;
c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
GFP_KERNEL);
if (!c->jheads)
return -ENOMEM;
/* Initialize journal heads */
for (i = 0; i < c->jhead_cnt; i++) {
INIT_LIST_HEAD(&c->jheads[i].buds_list);
err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
if (err)
return err;
c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
c->jheads[i].wbuf.jhead = i;
}
c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
/*
* Garbage Collector head likely contains long-term data and
* does not need to be synchronized by timer.
*/
c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
c->jheads[GCHD].wbuf.timeout = 0;
return 0;
}
/**
* free_wbufs - free write-buffers.
* @c: UBIFS file-system description object
*/
static void free_wbufs(struct ubifs_info *c)
{
int i;
if (c->jheads) {
for (i = 0; i < c->jhead_cnt; i++) {
kfree(c->jheads[i].wbuf.buf);
kfree(c->jheads[i].wbuf.inodes);
}
kfree(c->jheads);
c->jheads = NULL;
}
}
/**
* free_orphans - free orphans.
* @c: UBIFS file-system description object
*/
static void free_orphans(struct ubifs_info *c)
{
struct ubifs_orphan *orph;
while (c->orph_dnext) {
orph = c->orph_dnext;
c->orph_dnext = orph->dnext;
list_del(&orph->list);
kfree(orph);
}
while (!list_empty(&c->orph_list)) {
orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
list_del(&orph->list);
kfree(orph);
dbg_err("orphan list not empty at unmount");
}
vfree(c->orph_buf);
c->orph_buf = NULL;
}
/**
* free_buds - free per-bud objects.
* @c: UBIFS file-system description object
*/
static void free_buds(struct ubifs_info *c)
{
struct rb_node *this = c->buds.rb_node;
struct ubifs_bud *bud;
while (this) {
if (this->rb_left)
this = this->rb_left;
else if (this->rb_right)
this = this->rb_right;
else {
bud = rb_entry(this, struct ubifs_bud, rb);
this = rb_parent(this);
if (this) {
if (this->rb_left == &bud->rb)
this->rb_left = NULL;
else
this->rb_right = NULL;
}
kfree(bud);
}
}
}
/**
* check_volume_empty - check if the UBI volume is empty.
* @c: UBIFS file-system description object
*
* This function checks if the UBIFS volume is empty by looking if its LEBs are
* mapped or not. The result of checking is stored in the @c->empty variable.
* Returns zero in case of success and a negative error code in case of
* failure.
*/
static int check_volume_empty(struct ubifs_info *c)
{
int lnum, err;
c->empty = 1;
for (lnum = 0; lnum < c->leb_cnt; lnum++) {
err = ubi_is_mapped(c->ubi, lnum);
if (unlikely(err < 0))
return err;
if (err == 1) {
c->empty = 0;
break;
}
cond_resched();
}
return 0;
}
/*
* UBIFS mount options.
*
* Opt_fast_unmount: do not run a journal commit before un-mounting
* Opt_norm_unmount: run a journal commit before un-mounting
* Opt_bulk_read: enable bulk-reads
* Opt_no_bulk_read: disable bulk-reads
* Opt_chk_data_crc: check CRCs when reading data nodes
* Opt_no_chk_data_crc: do not check CRCs when reading data nodes
* Opt_override_compr: override default compressor
* Opt_err: just end of array marker
*/
enum {
Opt_fast_unmount,
Opt_norm_unmount,
Opt_bulk_read,
Opt_no_bulk_read,
Opt_chk_data_crc,
Opt_no_chk_data_crc,
Opt_override_compr,
Opt_err,
};
static const match_table_t tokens = {
{Opt_fast_unmount, "fast_unmount"},
{Opt_norm_unmount, "norm_unmount"},
{Opt_bulk_read, "bulk_read"},
{Opt_no_bulk_read, "no_bulk_read"},
{Opt_chk_data_crc, "chk_data_crc"},
{Opt_no_chk_data_crc, "no_chk_data_crc"},
{Opt_override_compr, "compr=%s"},
{Opt_err, NULL},
};
/**
* ubifs_parse_options - parse mount parameters.
* @c: UBIFS file-system description object
* @options: parameters to parse
* @is_remount: non-zero if this is FS re-mount
*
* This function parses UBIFS mount options and returns zero in case success
* and a negative error code in case of failure.
*/
static int ubifs_parse_options(struct ubifs_info *c, char *options,
int is_remount)
{
char *p;
substring_t args[MAX_OPT_ARGS];
if (!options)
return 0;
while ((p = strsep(&options, ","))) {
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
/*
* %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
* We accepte them in order to be backware-compatible. But this
* should be removed at some point.
*/
case Opt_fast_unmount:
c->mount_opts.unmount_mode = 2;
break;
case Opt_norm_unmount:
c->mount_opts.unmount_mode = 1;
break;
case Opt_bulk_read:
c->mount_opts.bulk_read = 2;
c->bulk_read = 1;
break;
case Opt_no_bulk_read:
c->mount_opts.bulk_read = 1;
c->bulk_read = 0;
break;
case Opt_chk_data_crc:
c->mount_opts.chk_data_crc = 2;
c->no_chk_data_crc = 0;
break;
case Opt_no_chk_data_crc:
c->mount_opts.chk_data_crc = 1;
c->no_chk_data_crc = 1;
break;
case Opt_override_compr:
{
char *name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "none"))
c->mount_opts.compr_type = UBIFS_COMPR_NONE;
else if (!strcmp(name, "lzo"))
c->mount_opts.compr_type = UBIFS_COMPR_LZO;
else if (!strcmp(name, "zlib"))
c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
else {
ubifs_err("unknown compressor \"%s\"", name);
kfree(name);
return -EINVAL;
}
kfree(name);
c->mount_opts.override_compr = 1;
c->default_compr = c->mount_opts.compr_type;
break;
}
default:
ubifs_err("unrecognized mount option \"%s\" "
"or missing value", p);
return -EINVAL;
}
}
return 0;
}
/**
* destroy_journal - destroy journal data structures.
* @c: UBIFS file-system description object
*
* This function destroys journal data structures including those that may have
* been created by recovery functions.
*/
static void destroy_journal(struct ubifs_info *c)
{
while (!list_empty(&c->unclean_leb_list)) {
struct ubifs_unclean_leb *ucleb;
ucleb = list_entry(c->unclean_leb_list.next,
struct ubifs_unclean_leb, list);
list_del(&ucleb->list);
kfree(ucleb);
}
while (!list_empty(&c->old_buds)) {
struct ubifs_bud *bud;
bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
list_del(&bud->list);
kfree(bud);
}
ubifs_destroy_idx_gc(c);
ubifs_destroy_size_tree(c);
ubifs_tnc_close(c);
free_buds(c);
}
/**
* bu_init - initialize bulk-read information.
* @c: UBIFS file-system description object
*/
static void bu_init(struct ubifs_info *c)
{
ubifs_assert(c->bulk_read == 1);
if (c->bu.buf)
return; /* Already initialized */
again:
c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
if (!c->bu.buf) {
if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
c->max_bu_buf_len = UBIFS_KMALLOC_OK;
goto again;
}
/* Just disable bulk-read */
ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
"disabling it", c->max_bu_buf_len);
c->mount_opts.bulk_read = 1;
c->bulk_read = 0;
return;
}
}
/**
* check_free_space - check if there is enough free space to mount.
* @c: UBIFS file-system description object
*
* This function makes sure UBIFS has enough free space to be mounted in
* read/write mode. UBIFS must always have some free space to allow deletions.
*/
static int check_free_space(struct ubifs_info *c)
{
ubifs_assert(c->dark_wm > 0);
if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
ubifs_err("insufficient free space to mount in read/write mode");
dbg_dump_budg(c);
dbg_dump_lprops(c);
return -ENOSPC;
}
return 0;
}
/**
* mount_ubifs - mount UBIFS file-system.
* @c: UBIFS file-system description object
*
* This function mounts UBIFS file system. Returns zero in case of success and
* a negative error code in case of failure.
*
* Note, the function does not de-allocate resources it it fails half way
* through, and the caller has to do this instead.
*/
static int mount_ubifs(struct ubifs_info *c)
{
struct super_block *sb = c->vfs_sb;
int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
long long x;
size_t sz;
err = init_constants_early(c);
if (err)
return err;
err = ubifs_debugging_init(c);
if (err)
return err;
err = check_volume_empty(c);
if (err)
goto out_free;
if (c->empty && (mounted_read_only || c->ro_media)) {
/*
* This UBI volume is empty, and read-only, or the file system
* is mounted read-only - we cannot format it.
*/
ubifs_err("can't format empty UBI volume: read-only %s",
c->ro_media ? "UBI volume" : "mount");
err = -EROFS;
goto out_free;
}
if (c->ro_media && !mounted_read_only) {
ubifs_err("cannot mount read-write - read-only media");
err = -EROFS;
goto out_free;
}
/*
* The requirement for the buffer is that it should fit indexing B-tree
* height amount of integers. We assume the height if the TNC tree will
* never exceed 64.
*/
err = -ENOMEM;
c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
if (!c->bottom_up_buf)
goto out_free;
c->sbuf = vmalloc(c->leb_size);
if (!c->sbuf)
goto out_free;
if (!mounted_read_only) {
c->ileb_buf = vmalloc(c->leb_size);
if (!c->ileb_buf)
goto out_free;
}
if (c->bulk_read == 1)
bu_init(c);
/*
* We have to check all CRCs, even for data nodes, when we mount the FS
* (specifically, when we are replaying).
*/
c->always_chk_crc = 1;
err = ubifs_read_superblock(c);
if (err)
goto out_free;
/*
* Make sure the compressor which is set as default in the superblock
* or overridden by mount options is actually compiled in.
*/
if (!ubifs_compr_present(c->default_compr)) {
ubifs_err("'compressor \"%s\" is not compiled in",
ubifs_compr_name(c->default_compr));
goto out_free;
}
err = init_constants_sb(c);
if (err)
goto out_free;
sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
c->cbuf = kmalloc(sz, GFP_NOFS);
if (!c->cbuf) {
err = -ENOMEM;
goto out_free;
}
sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
if (!mounted_read_only) {
err = alloc_wbufs(c);
if (err)
goto out_cbuf;
/* Create background thread */
c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
if (IS_ERR(c->bgt)) {
err = PTR_ERR(c->bgt);
c->bgt = NULL;
ubifs_err("cannot spawn \"%s\", error %d",
c->bgt_name, err);
goto out_wbufs;
}
wake_up_process(c->bgt);
}
err = ubifs_read_master(c);
if (err)
goto out_master;
init_constants_master(c);
if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
ubifs_msg("recovery needed");
c->need_recovery = 1;
if (!mounted_read_only) {
err = ubifs_recover_inl_heads(c, c->sbuf);
if (err)
goto out_master;
}
} else if (!mounted_read_only) {
/*
* Set the "dirty" flag so that if we reboot uncleanly we
* will notice this immediately on the next mount.
*/
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
err = ubifs_write_master(c);
if (err)
goto out_master;
}
err = ubifs_lpt_init(c, 1, !mounted_read_only);
if (err)
goto out_lpt;
err = dbg_check_idx_size(c, c->old_idx_sz);
if (err)
goto out_lpt;
err = ubifs_replay_journal(c);
if (err)
goto out_journal;
err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
if (err)
goto out_orphans;
if (!mounted_read_only) {
int lnum;
err = check_free_space(c);
if (err)
goto out_orphans;
/* Check for enough log space */
lnum = c->lhead_lnum + 1;
if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
lnum = UBIFS_LOG_LNUM;
if (lnum == c->ltail_lnum) {
err = ubifs_consolidate_log(c);
if (err)
goto out_orphans;
}
if (c->need_recovery) {
err = ubifs_recover_size(c);
if (err)
goto out_orphans;
err = ubifs_rcvry_gc_commit(c);
} else {
err = take_gc_lnum(c);
if (err)
goto out_orphans;
/*
* GC LEB may contain garbage if there was an unclean
* reboot, and it should be un-mapped.
*/
err = ubifs_leb_unmap(c, c->gc_lnum);
if (err)
return err;
}
err = dbg_check_lprops(c);
if (err)
goto out_orphans;
} else if (c->need_recovery) {
err = ubifs_recover_size(c);
if (err)
goto out_orphans;
} else {
/*
* Even if we mount read-only, we have to set space in GC LEB
* to proper value because this affects UBIFS free space
* reporting. We do not want to have a situation when
* re-mounting from R/O to R/W changes amount of free space.
*/
err = take_gc_lnum(c);
if (err)
goto out_orphans;
}
spin_lock(&ubifs_infos_lock);
list_add_tail(&c->infos_list, &ubifs_infos);
spin_unlock(&ubifs_infos_lock);
if (c->need_recovery) {
if (mounted_read_only)
ubifs_msg("recovery deferred");
else {
c->need_recovery = 0;
ubifs_msg("recovery completed");
/*
* GC LEB has to be empty and taken at this point. But
* the journal head LEBs may also be accounted as
* "empty taken" if they are empty.
*/
ubifs_assert(c->lst.taken_empty_lebs > 0);
}
} else
ubifs_assert(c->lst.taken_empty_lebs > 0);
err = dbg_check_filesystem(c);
if (err)
goto out_infos;
err = dbg_debugfs_init_fs(c);
if (err)
goto out_infos;
c->always_chk_crc = 0;
ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
c->vi.ubi_num, c->vi.vol_id, c->vi.name);
if (mounted_read_only)
ubifs_msg("mounted read-only");
x = (long long)c->main_lebs * c->leb_size;
ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
"LEBs)", x, x >> 10, x >> 20, c->main_lebs);
x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
"LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
ubifs_msg("media format: %d (latest is %d)",
c->fmt_version, UBIFS_FORMAT_VERSION);
ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
c->report_rp_size, c->report_rp_size >> 10);
dbg_msg("compiled on: " __DATE__ " at " __TIME__);
dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
dbg_msg("LEB size: %d bytes (%d KiB)",
c->leb_size, c->leb_size >> 10);
dbg_msg("data journal heads: %d",
c->jhead_cnt - NONDATA_JHEADS_CNT);
dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
"-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
dbg_msg("big_lpt %d", c->big_lpt);
dbg_msg("log LEBs: %d (%d - %d)",
c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
dbg_msg("LPT area LEBs: %d (%d - %d)",
c->lpt_lebs, c->lpt_first, c->lpt_last);
dbg_msg("orphan area LEBs: %d (%d - %d)",
c->orph_lebs, c->orph_first, c->orph_last);
dbg_msg("main area LEBs: %d (%d - %d)",
c->main_lebs, c->main_first, c->leb_cnt - 1);
dbg_msg("index LEBs: %d", c->lst.idx_lebs);
dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
dbg_msg("key hash type: %d", c->key_hash_type);
dbg_msg("tree fanout: %d", c->fanout);
dbg_msg("reserved GC LEB: %d", c->gc_lnum);
dbg_msg("first main LEB: %d", c->main_first);
dbg_msg("max. znode size %d", c->max_znode_sz);
dbg_msg("max. index node size %d", c->max_idx_node_sz);
dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu",
UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
UBIFS_MAX_DENT_NODE_SZ);
dbg_msg("dead watermark: %d", c->dead_wm);
dbg_msg("dark watermark: %d", c->dark_wm);
dbg_msg("LEB overhead: %d", c->leb_overhead);
x = (long long)c->main_lebs * c->dark_wm;
dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
x, x >> 10, x >> 20);
dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
c->max_bud_bytes, c->max_bud_bytes >> 10,
c->max_bud_bytes >> 20);
dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
c->bg_bud_bytes, c->bg_bud_bytes >> 10,
c->bg_bud_bytes >> 20);
dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
dbg_msg("max. seq. number: %llu", c->max_sqnum);
dbg_msg("commit number: %llu", c->cmt_no);
return 0;
out_infos:
spin_lock(&ubifs_infos_lock);
list_del(&c->infos_list);
spin_unlock(&ubifs_infos_lock);
out_orphans:
free_orphans(c);
out_journal:
destroy_journal(c);
out_lpt:
ubifs_lpt_free(c, 0);
out_master:
kfree(c->mst_node);
kfree(c->rcvrd_mst_node);
if (c->bgt)
kthread_stop(c->bgt);
out_wbufs:
free_wbufs(c);
out_cbuf:
kfree(c->cbuf);
out_free:
kfree(c->bu.buf);
vfree(c->ileb_buf);
vfree(c->sbuf);
kfree(c->bottom_up_buf);
ubifs_debugging_exit(c);
return err;
}
/**
* ubifs_umount - un-mount UBIFS file-system.
* @c: UBIFS file-system description object
*
* Note, this function is called to free allocated resourced when un-mounting,
* as well as free resources when an error occurred while we were half way
* through mounting (error path cleanup function). So it has to make sure the
* resource was actually allocated before freeing it.
*/
static void ubifs_umount(struct ubifs_info *c)
{
dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
c->vi.vol_id);
dbg_debugfs_exit_fs(c);
spin_lock(&ubifs_infos_lock);
list_del(&c->infos_list);
spin_unlock(&ubifs_infos_lock);
if (c->bgt)
kthread_stop(c->bgt);
destroy_journal(c);
free_wbufs(c);
free_orphans(c);
ubifs_lpt_free(c, 0);
kfree(c->cbuf);
kfree(c->rcvrd_mst_node);
kfree(c->mst_node);
kfree(c->bu.buf);
vfree(c->ileb_buf);
vfree(c->sbuf);
kfree(c->bottom_up_buf);
ubifs_debugging_exit(c);
}
/**
* ubifs_remount_rw - re-mount in read-write mode.
* @c: UBIFS file-system description object
*
* UBIFS avoids allocating many unnecessary resources when mounted in read-only
* mode. This function allocates the needed resources and re-mounts UBIFS in
* read-write mode.
*/
static int ubifs_remount_rw(struct ubifs_info *c)
{
int err, lnum;
mutex_lock(&c->umount_mutex);
dbg_save_space_info(c);
c->remounting_rw = 1;
c->always_chk_crc = 1;
err = check_free_space(c);
if (err)
goto out;
if (c->old_leb_cnt != c->leb_cnt) {
struct ubifs_sb_node *sup;
sup = ubifs_read_sb_node(c);
if (IS_ERR(sup)) {
err = PTR_ERR(sup);
goto out;
}
sup->leb_cnt = cpu_to_le32(c->leb_cnt);
err = ubifs_write_sb_node(c, sup);
if (err)
goto out;
}
if (c->need_recovery) {
ubifs_msg("completing deferred recovery");
err = ubifs_write_rcvrd_mst_node(c);
if (err)
goto out;
err = ubifs_recover_size(c);
if (err)
goto out;
err = ubifs_clean_lebs(c, c->sbuf);
if (err)
goto out;
err = ubifs_recover_inl_heads(c, c->sbuf);
if (err)
goto out;
} else {
/* A readonly mount is not allowed to have orphans */
ubifs_assert(c->tot_orphans == 0);
err = ubifs_clear_orphans(c);
if (err)
goto out;
}
if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
err = ubifs_write_master(c);
if (err)
goto out;
}
c->ileb_buf = vmalloc(c->leb_size);
if (!c->ileb_buf) {
err = -ENOMEM;
goto out;
}
err = ubifs_lpt_init(c, 0, 1);
if (err)
goto out;
err = alloc_wbufs(c);
if (err)
goto out;
ubifs_create_buds_lists(c);
/* Create background thread */
c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
if (IS_ERR(c->bgt)) {
err = PTR_ERR(c->bgt);
c->bgt = NULL;
ubifs_err("cannot spawn \"%s\", error %d",
c->bgt_name, err);
goto out;
}
wake_up_process(c->bgt);
c->orph_buf = vmalloc(c->leb_size);
if (!c->orph_buf) {
err = -ENOMEM;
goto out;
}
/* Check for enough log space */
lnum = c->lhead_lnum + 1;
if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
lnum = UBIFS_LOG_LNUM;
if (lnum == c->ltail_lnum) {
err = ubifs_consolidate_log(c);
if (err)
goto out;
}
if (c->need_recovery)
err = ubifs_rcvry_gc_commit(c);
else
err = ubifs_leb_unmap(c, c->gc_lnum);
if (err)
goto out;
if (c->need_recovery) {
c->need_recovery = 0;
ubifs_msg("deferred recovery completed");
}
dbg_gen("re-mounted read-write");
c->vfs_sb->s_flags &= ~MS_RDONLY;
c->remounting_rw = 0;
c->always_chk_crc = 0;
err = dbg_check_space_info(c);
mutex_unlock(&c->umount_mutex);
return err;
out:
vfree(c->orph_buf);
c->orph_buf = NULL;
if (c->bgt) {
kthread_stop(c->bgt);
c->bgt = NULL;
}
free_wbufs(c);
vfree(c->ileb_buf);
c->ileb_buf = NULL;
ubifs_lpt_free(c, 1);
c->remounting_rw = 0;
c->always_chk_crc = 0;
mutex_unlock(&c->umount_mutex);
return err;
}
/**
* ubifs_remount_ro - re-mount in read-only mode.
* @c: UBIFS file-system description object
*
* We assume VFS has stopped writing. Possibly the background thread could be
* running a commit, however kthread_stop will wait in that case.
*/
static void ubifs_remount_ro(struct ubifs_info *c)
{
int i, err;
ubifs_assert(!c->need_recovery);
ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
mutex_lock(&c->umount_mutex);
if (c->bgt) {
kthread_stop(c->bgt);
c->bgt = NULL;
}
dbg_save_space_info(c);
for (i = 0; i < c->jhead_cnt; i++) {
ubifs_wbuf_sync(&c->jheads[i].wbuf);
del_timer_sync(&c->jheads[i].wbuf.timer);
}
c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
err = ubifs_write_master(c);
if (err)
ubifs_ro_mode(c, err);
free_wbufs(c);
vfree(c->orph_buf);
c->orph_buf = NULL;
vfree(c->ileb_buf);
c->ileb_buf = NULL;
ubifs_lpt_free(c, 1);
err = dbg_check_space_info(c);
if (err)
ubifs_ro_mode(c, err);
mutex_unlock(&c->umount_mutex);
}
static void ubifs_put_super(struct super_block *sb)
{
int i;
struct ubifs_info *c = sb->s_fs_info;
ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
c->vi.vol_id);
/*
* The following asserts are only valid if there has not been a failure
* of the media. For example, there will be dirty inodes if we failed
* to write them back because of I/O errors.
*/
ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
ubifs_assert(c->budg_idx_growth == 0);
ubifs_assert(c->budg_dd_growth == 0);
ubifs_assert(c->budg_data_growth == 0);
/*
* The 'c->umount_lock' prevents races between UBIFS memory shrinker
* and file system un-mount. Namely, it prevents the shrinker from
* picking this superblock for shrinking - it will be just skipped if
* the mutex is locked.
*/
mutex_lock(&c->umount_mutex);
if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
/*
* First of all kill the background thread to make sure it does
* not interfere with un-mounting and freeing resources.
*/
if (c->bgt) {
kthread_stop(c->bgt);
c->bgt = NULL;
}
/* Synchronize write-buffers */
if (c->jheads)
for (i = 0; i < c->jhead_cnt; i++) {
ubifs_wbuf_sync(&c->jheads[i].wbuf);
del_timer_sync(&c->jheads[i].wbuf.timer);
}
/*
* On fatal errors c->ro_media is set to 1, in which case we do
* not write the master node.
*/
if (!c->ro_media) {
/*
* We are being cleanly unmounted which means the
* orphans were killed - indicate this in the master
* node. Also save the reserved GC LEB number.
*/
int err;
c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
err = ubifs_write_master(c);
if (err)
/*
* Recovery will attempt to fix the master area
* next mount, so we just print a message and
* continue to unmount normally.
*/
ubifs_err("failed to write master node, "
"error %d", err);
}
}
ubifs_umount(c);
bdi_destroy(&c->bdi);
ubi_close_volume(c->ubi);
mutex_unlock(&c->umount_mutex);
kfree(c);
}
static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
{
int err;
struct ubifs_info *c = sb->s_fs_info;
dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
err = ubifs_parse_options(c, data, 1);
if (err) {
ubifs_err("invalid or unknown remount parameter");
return err;
}
if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
if (c->ro_media) {
ubifs_msg("cannot re-mount due to prior errors");
return -EROFS;
}
err = ubifs_remount_rw(c);
if (err)
return err;
} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
if (c->ro_media) {
ubifs_msg("cannot re-mount due to prior errors");
return -EROFS;
}
ubifs_remount_ro(c);
}
if (c->bulk_read == 1)
bu_init(c);
else {
dbg_gen("disable bulk-read");
kfree(c->bu.buf);
c->bu.buf = NULL;
}
ubifs_assert(c->lst.taken_empty_lebs > 0);
return 0;
}
const struct super_operations ubifs_super_operations = {
.alloc_inode = ubifs_alloc_inode,
.destroy_inode = ubifs_destroy_inode,
.put_super = ubifs_put_super,
.write_inode = ubifs_write_inode,
.delete_inode = ubifs_delete_inode,
.statfs = ubifs_statfs,
.dirty_inode = ubifs_dirty_inode,
.remount_fs = ubifs_remount_fs,
.show_options = ubifs_show_options,
.sync_fs = ubifs_sync_fs,
};
/**
* open_ubi - parse UBI device name string and open the UBI device.
* @name: UBI volume name
* @mode: UBI volume open mode
*
* There are several ways to specify UBI volumes when mounting UBIFS:
* o ubiX_Y - UBI device number X, volume Y;
* o ubiY - UBI device number 0, volume Y;
* o ubiX:NAME - mount UBI device X, volume with name NAME;
* o ubi:NAME - mount UBI device 0, volume with name NAME.
*
* Alternative '!' separator may be used instead of ':' (because some shells
* like busybox may interpret ':' as an NFS host name separator). This function
* returns ubi volume object in case of success and a negative error code in
* case of failure.
*/
static struct ubi_volume_desc *open_ubi(const char *name, int mode)
{
int dev, vol;
char *endptr;
if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
return ERR_PTR(-EINVAL);
/* ubi:NAME method */
if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
return ubi_open_volume_nm(0, name + 4, mode);
if (!isdigit(name[3]))
return ERR_PTR(-EINVAL);
dev = simple_strtoul(name + 3, &endptr, 0);
/* ubiY method */
if (*endptr == '\0')
return ubi_open_volume(0, dev, mode);
/* ubiX_Y method */
if (*endptr == '_' && isdigit(endptr[1])) {
vol = simple_strtoul(endptr + 1, &endptr, 0);
if (*endptr != '\0')
return ERR_PTR(-EINVAL);
return ubi_open_volume(dev, vol, mode);
}
/* ubiX:NAME method */
if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
return ubi_open_volume_nm(dev, ++endptr, mode);
return ERR_PTR(-EINVAL);
}
static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
{
struct ubi_volume_desc *ubi = sb->s_fs_info;
struct ubifs_info *c;
struct inode *root;
int err;
c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
if (!c)
return -ENOMEM;
spin_lock_init(&c->cnt_lock);
spin_lock_init(&c->cs_lock);
spin_lock_init(&c->buds_lock);
spin_lock_init(&c->space_lock);
spin_lock_init(&c->orphan_lock);
init_rwsem(&c->commit_sem);
mutex_init(&c->lp_mutex);
mutex_init(&c->tnc_mutex);
mutex_init(&c->log_mutex);
mutex_init(&c->mst_mutex);
mutex_init(&c->umount_mutex);
mutex_init(&c->bu_mutex);
init_waitqueue_head(&c->cmt_wq);
c->buds = RB_ROOT;
c->old_idx = RB_ROOT;
c->size_tree = RB_ROOT;
c->orph_tree = RB_ROOT;
INIT_LIST_HEAD(&c->infos_list);
INIT_LIST_HEAD(&c->idx_gc);
INIT_LIST_HEAD(&c->replay_list);
INIT_LIST_HEAD(&c->replay_buds);
INIT_LIST_HEAD(&c->uncat_list);
INIT_LIST_HEAD(&c->empty_list);
INIT_LIST_HEAD(&c->freeable_list);
INIT_LIST_HEAD(&c->frdi_idx_list);
INIT_LIST_HEAD(&c->unclean_leb_list);
INIT_LIST_HEAD(&c->old_buds);
INIT_LIST_HEAD(&c->orph_list);
INIT_LIST_HEAD(&c->orph_new);
c->highest_inum = UBIFS_FIRST_INO;
c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
ubi_get_volume_info(ubi, &c->vi);
ubi_get_device_info(c->vi.ubi_num, &c->di);
/* Re-open the UBI device in read-write mode */
c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
if (IS_ERR(c->ubi)) {
err = PTR_ERR(c->ubi);
goto out_free;
}
/*
* UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
* UBIFS, I/O is not deferred, it is done immediately in readpage,
* which means the user would have to wait not just for their own I/O
* but the read-ahead I/O as well i.e. completely pointless.
*
* Read-ahead will be disabled because @c->bdi.ra_pages is 0.
*/
c->bdi.capabilities = BDI_CAP_MAP_COPY;
c->bdi.unplug_io_fn = default_unplug_io_fn;
err = bdi_init(&c->bdi);
if (err)
goto out_close;
err = ubifs_parse_options(c, data, 0);
if (err)
goto out_bdi;
c->vfs_sb = sb;
sb->s_fs_info = c;
sb->s_magic = UBIFS_SUPER_MAGIC;
sb->s_blocksize = UBIFS_BLOCK_SIZE;
sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
sb->s_dev = c->vi.cdev;
sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
if (c->max_inode_sz > MAX_LFS_FILESIZE)
sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
sb->s_op = &ubifs_super_operations;
mutex_lock(&c->umount_mutex);
err = mount_ubifs(c);
if (err) {
ubifs_assert(err < 0);
goto out_unlock;
}
/* Read the root inode */
root = ubifs_iget(sb, UBIFS_ROOT_INO);
if (IS_ERR(root)) {
err = PTR_ERR(root);
goto out_umount;
}
sb->s_root = d_alloc_root(root);
if (!sb->s_root)
goto out_iput;
mutex_unlock(&c->umount_mutex);
return 0;
out_iput:
iput(root);
out_umount:
ubifs_umount(c);
out_unlock:
mutex_unlock(&c->umount_mutex);
out_bdi:
bdi_destroy(&c->bdi);
out_close:
ubi_close_volume(c->ubi);
out_free:
kfree(c);
return err;
}
static int sb_test(struct super_block *sb, void *data)
{
dev_t *dev = data;
return sb->s_dev == *dev;
}
static int sb_set(struct super_block *sb, void *data)
{
dev_t *dev = data;
sb->s_dev = *dev;
return 0;
}
static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
const char *name, void *data, struct vfsmount *mnt)
{
struct ubi_volume_desc *ubi;
struct ubi_volume_info vi;
struct super_block *sb;
int err;
dbg_gen("name %s, flags %#x", name, flags);
/*
* Get UBI device number and volume ID. Mount it read-only so far
* because this might be a new mount point, and UBI allows only one
* read-write user at a time.
*/
ubi = open_ubi(name, UBI_READONLY);
if (IS_ERR(ubi)) {
ubifs_err("cannot open \"%s\", error %d",
name, (int)PTR_ERR(ubi));
return PTR_ERR(ubi);
}
ubi_get_volume_info(ubi, &vi);
dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
if (IS_ERR(sb)) {
err = PTR_ERR(sb);
goto out_close;
}
if (sb->s_root) {
/* A new mount point for already mounted UBIFS */
dbg_gen("this ubi volume is already mounted");
if ((flags ^ sb->s_flags) & MS_RDONLY) {
err = -EBUSY;
goto out_deact;
}
} else {
sb->s_flags = flags;
/*
* Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
* replaced by 'c'.
*/
sb->s_fs_info = ubi;
err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
if (err)
goto out_deact;
/* We do not support atime */
sb->s_flags |= MS_ACTIVE | MS_NOATIME;
}
/* 'fill_super()' opens ubi again so we must close it here */
ubi_close_volume(ubi);
return simple_set_mnt(mnt, sb);
out_deact:
up_write(&sb->s_umount);
deactivate_super(sb);
out_close:
ubi_close_volume(ubi);
return err;
}
static void ubifs_kill_sb(struct super_block *sb)
{
generic_shutdown_super(sb);
}
static struct file_system_type ubifs_fs_type = {
.name = "ubifs",
.owner = THIS_MODULE,
.get_sb = ubifs_get_sb,
.kill_sb = ubifs_kill_sb
};
/*
* Inode slab cache constructor.
*/
static void inode_slab_ctor(void *obj)
{
struct ubifs_inode *ui = obj;
inode_init_once(&ui->vfs_inode);
}
static int __init ubifs_init(void)
{
int err;
BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
/* Make sure node sizes are 8-byte aligned */
BUILD_BUG_ON(UBIFS_CH_SZ & 7);
BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
BUILD_BUG_ON(MIN_WRITE_SZ & 7);
/* Check min. node size */
BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
/* Defined node sizes */
BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
/*
* We use 2 bit wide bit-fields to store compression type, which should
* be amended if more compressors are added. The bit-fields are:
* @compr_type in 'struct ubifs_inode', @default_compr in
* 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
*/
BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
/*
* We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
* UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
*/
if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
" at least 4096 bytes",
(unsigned int)PAGE_CACHE_SIZE);
return -EINVAL;
}
err = register_filesystem(&ubifs_fs_type);
if (err) {
ubifs_err("cannot register file system, error %d", err);
return err;
}
err = -ENOMEM;
ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
sizeof(struct ubifs_inode), 0,
SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
&inode_slab_ctor);
if (!ubifs_inode_slab)
goto out_reg;
register_shrinker(&ubifs_shrinker_info);
err = ubifs_compressors_init();
if (err)
goto out_shrinker;
err = dbg_debugfs_init();
if (err)
goto out_compr;
return 0;
out_compr:
ubifs_compressors_exit();
out_shrinker:
unregister_shrinker(&ubifs_shrinker_info);
kmem_cache_destroy(ubifs_inode_slab);
out_reg:
unregister_filesystem(&ubifs_fs_type);
return err;
}
/* late_initcall to let compressors initialize first */
late_initcall(ubifs_init);
static void __exit ubifs_exit(void)
{
ubifs_assert(list_empty(&ubifs_infos));
ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
dbg_debugfs_exit();
ubifs_compressors_exit();
unregister_shrinker(&ubifs_shrinker_info);
kmem_cache_destroy(ubifs_inode_slab);
unregister_filesystem(&ubifs_fs_type);
}
module_exit(ubifs_exit);
MODULE_LICENSE("GPL");
MODULE_VERSION(__stringify(UBIFS_VERSION));
MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
MODULE_DESCRIPTION("UBIFS - UBI File System");