| /* |
| * Frontswap frontend |
| * |
| * This code provides the generic "frontend" layer to call a matching |
| * "backend" driver implementation of frontswap. See |
| * Documentation/vm/frontswap.txt for more information. |
| * |
| * Copyright (C) 2009-2012 Oracle Corp. All rights reserved. |
| * Author: Dan Magenheimer |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. |
| */ |
| |
| #include <linux/mman.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/security.h> |
| #include <linux/module.h> |
| #include <linux/debugfs.h> |
| #include <linux/frontswap.h> |
| #include <linux/swapfile.h> |
| |
| DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key); |
| |
| /* |
| * frontswap_ops are added by frontswap_register_ops, and provide the |
| * frontswap "backend" implementation functions. Multiple implementations |
| * may be registered, but implementations can never deregister. This |
| * is a simple singly-linked list of all registered implementations. |
| */ |
| static struct frontswap_ops *frontswap_ops __read_mostly; |
| |
| #define for_each_frontswap_ops(ops) \ |
| for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next) |
| |
| /* |
| * If enabled, frontswap_store will return failure even on success. As |
| * a result, the swap subsystem will always write the page to swap, in |
| * effect converting frontswap into a writethrough cache. In this mode, |
| * there is no direct reduction in swap writes, but a frontswap backend |
| * can unilaterally "reclaim" any pages in use with no data loss, thus |
| * providing increases control over maximum memory usage due to frontswap. |
| */ |
| static bool frontswap_writethrough_enabled __read_mostly; |
| |
| /* |
| * If enabled, the underlying tmem implementation is capable of doing |
| * exclusive gets, so frontswap_load, on a successful tmem_get must |
| * mark the page as no longer in frontswap AND mark it dirty. |
| */ |
| static bool frontswap_tmem_exclusive_gets_enabled __read_mostly; |
| |
| #ifdef CONFIG_DEBUG_FS |
| /* |
| * Counters available via /sys/kernel/debug/frontswap (if debugfs is |
| * properly configured). These are for information only so are not protected |
| * against increment races. |
| */ |
| static u64 frontswap_loads; |
| static u64 frontswap_succ_stores; |
| static u64 frontswap_failed_stores; |
| static u64 frontswap_invalidates; |
| |
| static inline void inc_frontswap_loads(void) { |
| frontswap_loads++; |
| } |
| static inline void inc_frontswap_succ_stores(void) { |
| frontswap_succ_stores++; |
| } |
| static inline void inc_frontswap_failed_stores(void) { |
| frontswap_failed_stores++; |
| } |
| static inline void inc_frontswap_invalidates(void) { |
| frontswap_invalidates++; |
| } |
| #else |
| static inline void inc_frontswap_loads(void) { } |
| static inline void inc_frontswap_succ_stores(void) { } |
| static inline void inc_frontswap_failed_stores(void) { } |
| static inline void inc_frontswap_invalidates(void) { } |
| #endif |
| |
| /* |
| * Due to the asynchronous nature of the backends loading potentially |
| * _after_ the swap system has been activated, we have chokepoints |
| * on all frontswap functions to not call the backend until the backend |
| * has registered. |
| * |
| * This would not guards us against the user deciding to call swapoff right as |
| * we are calling the backend to initialize (so swapon is in action). |
| * Fortunatly for us, the swapon_mutex has been taked by the callee so we are |
| * OK. The other scenario where calls to frontswap_store (called via |
| * swap_writepage) is racing with frontswap_invalidate_area (called via |
| * swapoff) is again guarded by the swap subsystem. |
| * |
| * While no backend is registered all calls to frontswap_[store|load| |
| * invalidate_area|invalidate_page] are ignored or fail. |
| * |
| * The time between the backend being registered and the swap file system |
| * calling the backend (via the frontswap_* functions) is indeterminate as |
| * frontswap_ops is not atomic_t (or a value guarded by a spinlock). |
| * That is OK as we are comfortable missing some of these calls to the newly |
| * registered backend. |
| * |
| * Obviously the opposite (unloading the backend) must be done after all |
| * the frontswap_[store|load|invalidate_area|invalidate_page] start |
| * ignoring or failing the requests. However, there is currently no way |
| * to unload a backend once it is registered. |
| */ |
| |
| /* |
| * Register operations for frontswap |
| */ |
| void frontswap_register_ops(struct frontswap_ops *ops) |
| { |
| DECLARE_BITMAP(a, MAX_SWAPFILES); |
| DECLARE_BITMAP(b, MAX_SWAPFILES); |
| struct swap_info_struct *si; |
| unsigned int i; |
| |
| bitmap_zero(a, MAX_SWAPFILES); |
| bitmap_zero(b, MAX_SWAPFILES); |
| |
| spin_lock(&swap_lock); |
| plist_for_each_entry(si, &swap_active_head, list) { |
| if (!WARN_ON(!si->frontswap_map)) |
| set_bit(si->type, a); |
| } |
| spin_unlock(&swap_lock); |
| |
| /* the new ops needs to know the currently active swap devices */ |
| for_each_set_bit(i, a, MAX_SWAPFILES) |
| ops->init(i); |
| |
| /* |
| * Setting frontswap_ops must happen after the ops->init() calls |
| * above; cmpxchg implies smp_mb() which will ensure the init is |
| * complete at this point. |
| */ |
| do { |
| ops->next = frontswap_ops; |
| } while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next); |
| |
| static_branch_inc(&frontswap_enabled_key); |
| |
| spin_lock(&swap_lock); |
| plist_for_each_entry(si, &swap_active_head, list) { |
| if (si->frontswap_map) |
| set_bit(si->type, b); |
| } |
| spin_unlock(&swap_lock); |
| |
| /* |
| * On the very unlikely chance that a swap device was added or |
| * removed between setting the "a" list bits and the ops init |
| * calls, we re-check and do init or invalidate for any changed |
| * bits. |
| */ |
| if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) { |
| for (i = 0; i < MAX_SWAPFILES; i++) { |
| if (!test_bit(i, a) && test_bit(i, b)) |
| ops->init(i); |
| else if (test_bit(i, a) && !test_bit(i, b)) |
| ops->invalidate_area(i); |
| } |
| } |
| } |
| EXPORT_SYMBOL(frontswap_register_ops); |
| |
| /* |
| * Enable/disable frontswap writethrough (see above). |
| */ |
| void frontswap_writethrough(bool enable) |
| { |
| frontswap_writethrough_enabled = enable; |
| } |
| EXPORT_SYMBOL(frontswap_writethrough); |
| |
| /* |
| * Enable/disable frontswap exclusive gets (see above). |
| */ |
| void frontswap_tmem_exclusive_gets(bool enable) |
| { |
| frontswap_tmem_exclusive_gets_enabled = enable; |
| } |
| EXPORT_SYMBOL(frontswap_tmem_exclusive_gets); |
| |
| /* |
| * Called when a swap device is swapon'd. |
| */ |
| void __frontswap_init(unsigned type, unsigned long *map) |
| { |
| struct swap_info_struct *sis = swap_info[type]; |
| struct frontswap_ops *ops; |
| |
| VM_BUG_ON(sis == NULL); |
| |
| /* |
| * p->frontswap is a bitmap that we MUST have to figure out which page |
| * has gone in frontswap. Without it there is no point of continuing. |
| */ |
| if (WARN_ON(!map)) |
| return; |
| /* |
| * Irregardless of whether the frontswap backend has been loaded |
| * before this function or it will be later, we _MUST_ have the |
| * p->frontswap set to something valid to work properly. |
| */ |
| frontswap_map_set(sis, map); |
| |
| for_each_frontswap_ops(ops) |
| ops->init(type); |
| } |
| EXPORT_SYMBOL(__frontswap_init); |
| |
| bool __frontswap_test(struct swap_info_struct *sis, |
| pgoff_t offset) |
| { |
| if (sis->frontswap_map) |
| return test_bit(offset, sis->frontswap_map); |
| return false; |
| } |
| EXPORT_SYMBOL(__frontswap_test); |
| |
| static inline void __frontswap_set(struct swap_info_struct *sis, |
| pgoff_t offset) |
| { |
| set_bit(offset, sis->frontswap_map); |
| atomic_inc(&sis->frontswap_pages); |
| } |
| |
| static inline void __frontswap_clear(struct swap_info_struct *sis, |
| pgoff_t offset) |
| { |
| clear_bit(offset, sis->frontswap_map); |
| atomic_dec(&sis->frontswap_pages); |
| } |
| |
| /* |
| * "Store" data from a page to frontswap and associate it with the page's |
| * swaptype and offset. Page must be locked and in the swap cache. |
| * If frontswap already contains a page with matching swaptype and |
| * offset, the frontswap implementation may either overwrite the data and |
| * return success or invalidate the page from frontswap and return failure. |
| */ |
| int __frontswap_store(struct page *page) |
| { |
| int ret = -1; |
| swp_entry_t entry = { .val = page_private(page), }; |
| int type = swp_type(entry); |
| struct swap_info_struct *sis = swap_info[type]; |
| pgoff_t offset = swp_offset(entry); |
| struct frontswap_ops *ops; |
| |
| VM_BUG_ON(!frontswap_ops); |
| VM_BUG_ON(!PageLocked(page)); |
| VM_BUG_ON(sis == NULL); |
| |
| /* |
| * If a dup, we must remove the old page first; we can't leave the |
| * old page no matter if the store of the new page succeeds or fails, |
| * and we can't rely on the new page replacing the old page as we may |
| * not store to the same implementation that contains the old page. |
| */ |
| if (__frontswap_test(sis, offset)) { |
| __frontswap_clear(sis, offset); |
| for_each_frontswap_ops(ops) |
| ops->invalidate_page(type, offset); |
| } |
| |
| /* Try to store in each implementation, until one succeeds. */ |
| for_each_frontswap_ops(ops) { |
| ret = ops->store(type, offset, page); |
| if (!ret) /* successful store */ |
| break; |
| } |
| if (ret == 0) { |
| __frontswap_set(sis, offset); |
| inc_frontswap_succ_stores(); |
| } else { |
| inc_frontswap_failed_stores(); |
| } |
| if (frontswap_writethrough_enabled) |
| /* report failure so swap also writes to swap device */ |
| ret = -1; |
| return ret; |
| } |
| EXPORT_SYMBOL(__frontswap_store); |
| |
| /* |
| * "Get" data from frontswap associated with swaptype and offset that were |
| * specified when the data was put to frontswap and use it to fill the |
| * specified page with data. Page must be locked and in the swap cache. |
| */ |
| int __frontswap_load(struct page *page) |
| { |
| int ret = -1; |
| swp_entry_t entry = { .val = page_private(page), }; |
| int type = swp_type(entry); |
| struct swap_info_struct *sis = swap_info[type]; |
| pgoff_t offset = swp_offset(entry); |
| struct frontswap_ops *ops; |
| |
| VM_BUG_ON(!frontswap_ops); |
| VM_BUG_ON(!PageLocked(page)); |
| VM_BUG_ON(sis == NULL); |
| |
| if (!__frontswap_test(sis, offset)) |
| return -1; |
| |
| /* Try loading from each implementation, until one succeeds. */ |
| for_each_frontswap_ops(ops) { |
| ret = ops->load(type, offset, page); |
| if (!ret) /* successful load */ |
| break; |
| } |
| if (ret == 0) { |
| inc_frontswap_loads(); |
| if (frontswap_tmem_exclusive_gets_enabled) { |
| SetPageDirty(page); |
| __frontswap_clear(sis, offset); |
| } |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(__frontswap_load); |
| |
| /* |
| * Invalidate any data from frontswap associated with the specified swaptype |
| * and offset so that a subsequent "get" will fail. |
| */ |
| void __frontswap_invalidate_page(unsigned type, pgoff_t offset) |
| { |
| struct swap_info_struct *sis = swap_info[type]; |
| struct frontswap_ops *ops; |
| |
| VM_BUG_ON(!frontswap_ops); |
| VM_BUG_ON(sis == NULL); |
| |
| if (!__frontswap_test(sis, offset)) |
| return; |
| |
| for_each_frontswap_ops(ops) |
| ops->invalidate_page(type, offset); |
| __frontswap_clear(sis, offset); |
| inc_frontswap_invalidates(); |
| } |
| EXPORT_SYMBOL(__frontswap_invalidate_page); |
| |
| /* |
| * Invalidate all data from frontswap associated with all offsets for the |
| * specified swaptype. |
| */ |
| void __frontswap_invalidate_area(unsigned type) |
| { |
| struct swap_info_struct *sis = swap_info[type]; |
| struct frontswap_ops *ops; |
| |
| VM_BUG_ON(!frontswap_ops); |
| VM_BUG_ON(sis == NULL); |
| |
| if (sis->frontswap_map == NULL) |
| return; |
| |
| for_each_frontswap_ops(ops) |
| ops->invalidate_area(type); |
| atomic_set(&sis->frontswap_pages, 0); |
| bitmap_zero(sis->frontswap_map, sis->max); |
| } |
| EXPORT_SYMBOL(__frontswap_invalidate_area); |
| |
| static unsigned long __frontswap_curr_pages(void) |
| { |
| unsigned long totalpages = 0; |
| struct swap_info_struct *si = NULL; |
| |
| assert_spin_locked(&swap_lock); |
| plist_for_each_entry(si, &swap_active_head, list) |
| totalpages += atomic_read(&si->frontswap_pages); |
| return totalpages; |
| } |
| |
| static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused, |
| int *swapid) |
| { |
| int ret = -EINVAL; |
| struct swap_info_struct *si = NULL; |
| int si_frontswap_pages; |
| unsigned long total_pages_to_unuse = total; |
| unsigned long pages = 0, pages_to_unuse = 0; |
| |
| assert_spin_locked(&swap_lock); |
| plist_for_each_entry(si, &swap_active_head, list) { |
| si_frontswap_pages = atomic_read(&si->frontswap_pages); |
| if (total_pages_to_unuse < si_frontswap_pages) { |
| pages = pages_to_unuse = total_pages_to_unuse; |
| } else { |
| pages = si_frontswap_pages; |
| pages_to_unuse = 0; /* unuse all */ |
| } |
| /* ensure there is enough RAM to fetch pages from frontswap */ |
| if (security_vm_enough_memory_mm(current->mm, pages)) { |
| ret = -ENOMEM; |
| continue; |
| } |
| vm_unacct_memory(pages); |
| *unused = pages_to_unuse; |
| *swapid = si->type; |
| ret = 0; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Used to check if it's necessory and feasible to unuse pages. |
| * Return 1 when nothing to do, 0 when need to shink pages, |
| * error code when there is an error. |
| */ |
| static int __frontswap_shrink(unsigned long target_pages, |
| unsigned long *pages_to_unuse, |
| int *type) |
| { |
| unsigned long total_pages = 0, total_pages_to_unuse; |
| |
| assert_spin_locked(&swap_lock); |
| |
| total_pages = __frontswap_curr_pages(); |
| if (total_pages <= target_pages) { |
| /* Nothing to do */ |
| *pages_to_unuse = 0; |
| return 1; |
| } |
| total_pages_to_unuse = total_pages - target_pages; |
| return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type); |
| } |
| |
| /* |
| * Frontswap, like a true swap device, may unnecessarily retain pages |
| * under certain circumstances; "shrink" frontswap is essentially a |
| * "partial swapoff" and works by calling try_to_unuse to attempt to |
| * unuse enough frontswap pages to attempt to -- subject to memory |
| * constraints -- reduce the number of pages in frontswap to the |
| * number given in the parameter target_pages. |
| */ |
| void frontswap_shrink(unsigned long target_pages) |
| { |
| unsigned long pages_to_unuse = 0; |
| int uninitialized_var(type), ret; |
| |
| /* |
| * we don't want to hold swap_lock while doing a very |
| * lengthy try_to_unuse, but swap_list may change |
| * so restart scan from swap_active_head each time |
| */ |
| spin_lock(&swap_lock); |
| ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type); |
| spin_unlock(&swap_lock); |
| if (ret == 0) |
| try_to_unuse(type, true, pages_to_unuse); |
| return; |
| } |
| EXPORT_SYMBOL(frontswap_shrink); |
| |
| /* |
| * Count and return the number of frontswap pages across all |
| * swap devices. This is exported so that backend drivers can |
| * determine current usage without reading debugfs. |
| */ |
| unsigned long frontswap_curr_pages(void) |
| { |
| unsigned long totalpages = 0; |
| |
| spin_lock(&swap_lock); |
| totalpages = __frontswap_curr_pages(); |
| spin_unlock(&swap_lock); |
| |
| return totalpages; |
| } |
| EXPORT_SYMBOL(frontswap_curr_pages); |
| |
| static int __init init_frontswap(void) |
| { |
| #ifdef CONFIG_DEBUG_FS |
| struct dentry *root = debugfs_create_dir("frontswap", NULL); |
| if (root == NULL) |
| return -ENXIO; |
| debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads); |
| debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores); |
| debugfs_create_u64("failed_stores", S_IRUGO, root, |
| &frontswap_failed_stores); |
| debugfs_create_u64("invalidates", S_IRUGO, |
| root, &frontswap_invalidates); |
| #endif |
| return 0; |
| } |
| |
| module_init(init_frontswap); |