| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_POWERPC_PGTABLE_RADIX_H |
| #define _ASM_POWERPC_PGTABLE_RADIX_H |
| |
| #ifndef __ASSEMBLY__ |
| #include <asm/cmpxchg.h> |
| #endif |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| #include <asm/book3s/64/radix-64k.h> |
| #else |
| #include <asm/book3s/64/radix-4k.h> |
| #endif |
| |
| /* |
| * For P9 DD1 only, we need to track whether the pte's huge. |
| */ |
| #define R_PAGE_LARGE _RPAGE_RSV1 |
| |
| |
| #ifndef __ASSEMBLY__ |
| #include <asm/book3s/64/tlbflush-radix.h> |
| #include <asm/cpu_has_feature.h> |
| #endif |
| |
| /* An empty PTE can still have a R or C writeback */ |
| #define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED) |
| |
| /* Bits to set in a RPMD/RPUD/RPGD */ |
| #define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE) |
| #define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE) |
| #define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE) |
| |
| /* Don't have anything in the reserved bits and leaf bits */ |
| #define RADIX_PMD_BAD_BITS 0x60000000000000e0UL |
| #define RADIX_PUD_BAD_BITS 0x60000000000000e0UL |
| #define RADIX_PGD_BAD_BITS 0x60000000000000e0UL |
| |
| /* |
| * Size of EA range mapped by our pagetables. |
| */ |
| #define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \ |
| RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT) |
| #define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE) |
| |
| /* |
| * We support 52 bit address space, Use top bit for kernel |
| * virtual mapping. Also make sure kernel fit in the top |
| * quadrant. |
| * |
| * +------------------+ |
| * +------------------+ Kernel virtual map (0xc008000000000000) |
| * | | |
| * | | |
| * | | |
| * 0b11......+------------------+ Kernel linear map (0xc....) |
| * | | |
| * | 2 quadrant | |
| * | | |
| * 0b10......+------------------+ |
| * | | |
| * | 1 quadrant | |
| * | | |
| * 0b01......+------------------+ |
| * | | |
| * | 0 quadrant | |
| * | | |
| * 0b00......+------------------+ |
| * |
| * |
| * 3rd quadrant expanded: |
| * +------------------------------+ |
| * | | |
| * | | |
| * | | |
| * +------------------------------+ Kernel IO map end (0xc010000000000000) |
| * | | |
| * | | |
| * | 1/2 of virtual map | |
| * | | |
| * | | |
| * +------------------------------+ Kernel IO map start |
| * | | |
| * | 1/4 of virtual map | |
| * | | |
| * +------------------------------+ Kernel vmemap start |
| * | | |
| * | 1/4 of virtual map | |
| * | | |
| * +------------------------------+ Kernel virt start (0xc008000000000000) |
| * | | |
| * | | |
| * | | |
| * +------------------------------+ Kernel linear (0xc.....) |
| */ |
| |
| #define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000) |
| #define RADIX_KERN_VIRT_SIZE ASM_CONST(0x0008000000000000) |
| |
| /* |
| * The vmalloc space starts at the beginning of that region, and |
| * occupies a quarter of it on radix config. |
| * (we keep a quarter for the virtual memmap) |
| */ |
| #define RADIX_VMALLOC_START RADIX_KERN_VIRT_START |
| #define RADIX_VMALLOC_SIZE (RADIX_KERN_VIRT_SIZE >> 2) |
| #define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE) |
| /* |
| * Defines the address of the vmemap area, in its own region on |
| * hash table CPUs. |
| */ |
| #define RADIX_VMEMMAP_BASE (RADIX_VMALLOC_END) |
| |
| #define RADIX_KERN_IO_START (RADIX_KERN_VIRT_START + (RADIX_KERN_VIRT_SIZE >> 1)) |
| |
| #ifndef __ASSEMBLY__ |
| #define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE) |
| #define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE) |
| #define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE) |
| #define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE) |
| |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| extern void radix__mark_rodata_ro(void); |
| extern void radix__mark_initmem_nx(void); |
| #endif |
| |
| static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr, |
| unsigned long set) |
| { |
| pte_t pte; |
| unsigned long old_pte, new_pte; |
| |
| do { |
| pte = READ_ONCE(*ptep); |
| old_pte = pte_val(pte); |
| new_pte = (old_pte | set) & ~clr; |
| |
| } while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte))); |
| |
| return old_pte; |
| } |
| |
| |
| static inline unsigned long radix__pte_update(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep, unsigned long clr, |
| unsigned long set, |
| int huge) |
| { |
| unsigned long old_pte; |
| |
| if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { |
| |
| unsigned long new_pte; |
| |
| old_pte = __radix_pte_update(ptep, ~0ul, 0); |
| /* |
| * new value of pte |
| */ |
| new_pte = (old_pte | set) & ~clr; |
| radix__flush_tlb_pte_p9_dd1(old_pte, mm, addr); |
| if (new_pte) |
| __radix_pte_update(ptep, 0, new_pte); |
| } else |
| old_pte = __radix_pte_update(ptep, clr, set); |
| if (!huge) |
| assert_pte_locked(mm, addr); |
| |
| return old_pte; |
| } |
| |
| static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm, |
| unsigned long addr, |
| pte_t *ptep, int full) |
| { |
| unsigned long old_pte; |
| |
| if (full) { |
| /* |
| * If we are trying to clear the pte, we can skip |
| * the DD1 pte update sequence and batch the tlb flush. The |
| * tlb flush batching is done by mmu gather code. We |
| * still keep the cmp_xchg update to make sure we get |
| * correct R/C bit which might be updated via Nest MMU. |
| */ |
| old_pte = __radix_pte_update(ptep, ~0ul, 0); |
| } else |
| old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0); |
| |
| return __pte(old_pte); |
| } |
| |
| /* |
| * Set the dirty and/or accessed bits atomically in a linux PTE, this |
| * function doesn't need to invalidate tlb. |
| */ |
| static inline void radix__ptep_set_access_flags(struct mm_struct *mm, |
| pte_t *ptep, pte_t entry, |
| unsigned long address) |
| { |
| |
| unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | |
| _PAGE_RW | _PAGE_EXEC); |
| |
| if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { |
| |
| unsigned long old_pte, new_pte; |
| |
| old_pte = __radix_pte_update(ptep, ~0, 0); |
| /* |
| * new value of pte |
| */ |
| new_pte = old_pte | set; |
| radix__flush_tlb_pte_p9_dd1(old_pte, mm, address); |
| __radix_pte_update(ptep, 0, new_pte); |
| } else |
| __radix_pte_update(ptep, 0, set); |
| asm volatile("ptesync" : : : "memory"); |
| } |
| |
| static inline int radix__pte_same(pte_t pte_a, pte_t pte_b) |
| { |
| return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0); |
| } |
| |
| static inline int radix__pte_none(pte_t pte) |
| { |
| return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0; |
| } |
| |
| static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte, int percpu) |
| { |
| *ptep = pte; |
| asm volatile("ptesync" : : : "memory"); |
| } |
| |
| static inline int radix__pmd_bad(pmd_t pmd) |
| { |
| return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS); |
| } |
| |
| static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b) |
| { |
| return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0); |
| } |
| |
| static inline int radix__pud_bad(pud_t pud) |
| { |
| return !!(pud_val(pud) & RADIX_PUD_BAD_BITS); |
| } |
| |
| |
| static inline int radix__pgd_bad(pgd_t pgd) |
| { |
| return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| |
| static inline int radix__pmd_trans_huge(pmd_t pmd) |
| { |
| return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE; |
| } |
| |
| static inline pmd_t radix__pmd_mkhuge(pmd_t pmd) |
| { |
| if (cpu_has_feature(CPU_FTR_POWER9_DD1)) |
| return __pmd(pmd_val(pmd) | _PAGE_PTE | R_PAGE_LARGE); |
| return __pmd(pmd_val(pmd) | _PAGE_PTE); |
| } |
| static inline void radix__pmdp_huge_split_prepare(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp) |
| { |
| /* Nothing to do for radix. */ |
| return; |
| } |
| |
| extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, unsigned long clr, |
| unsigned long set); |
| extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp); |
| extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| pgtable_t pgtable); |
| extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); |
| extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp); |
| extern int radix__has_transparent_hugepage(void); |
| #endif |
| |
| extern int __meminit radix__vmemmap_create_mapping(unsigned long start, |
| unsigned long page_size, |
| unsigned long phys); |
| extern void radix__vmemmap_remove_mapping(unsigned long start, |
| unsigned long page_size); |
| |
| extern int radix__map_kernel_page(unsigned long ea, unsigned long pa, |
| pgprot_t flags, unsigned int psz); |
| |
| static inline unsigned long radix__get_tree_size(void) |
| { |
| unsigned long rts_field; |
| /* |
| * We support 52 bits, hence: |
| * DD1 52-28 = 24, 0b11000 |
| * Others 52-31 = 21, 0b10101 |
| * RTS encoding details |
| * bits 0 - 3 of rts -> bits 6 - 8 unsigned long |
| * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long |
| */ |
| if (cpu_has_feature(CPU_FTR_POWER9_DD1)) |
| rts_field = (0x3UL << 61); |
| else { |
| rts_field = (0x5UL << 5); /* 6 - 8 bits */ |
| rts_field |= (0x2UL << 61); |
| } |
| return rts_field; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| int radix__create_section_mapping(unsigned long start, unsigned long end); |
| int radix__remove_section_mapping(unsigned long start, unsigned long end); |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| #endif /* __ASSEMBLY__ */ |
| #endif |