| /* |
| * (C) 1997 Linus Torvalds |
| * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) |
| */ |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/dcache.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/writeback.h> |
| #include <linux/module.h> |
| #include <linux/backing-dev.h> |
| #include <linux/wait.h> |
| #include <linux/rwsem.h> |
| #include <linux/hash.h> |
| #include <linux/swap.h> |
| #include <linux/security.h> |
| #include <linux/pagemap.h> |
| #include <linux/cdev.h> |
| #include <linux/bootmem.h> |
| #include <linux/fsnotify.h> |
| #include <linux/mount.h> |
| #include <linux/async.h> |
| #include <linux/posix_acl.h> |
| #include <linux/prefetch.h> |
| #include <linux/ima.h> |
| #include <linux/cred.h> |
| #include <linux/buffer_head.h> /* for inode_has_buffers */ |
| #include "internal.h" |
| |
| /* |
| * Inode locking rules: |
| * |
| * inode->i_lock protects: |
| * inode->i_state, inode->i_hash, __iget() |
| * inode_lru_lock protects: |
| * inode_lru, inode->i_lru |
| * inode_sb_list_lock protects: |
| * sb->s_inodes, inode->i_sb_list |
| * inode_wb_list_lock protects: |
| * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list |
| * inode_hash_lock protects: |
| * inode_hashtable, inode->i_hash |
| * |
| * Lock ordering: |
| * |
| * inode_sb_list_lock |
| * inode->i_lock |
| * inode_lru_lock |
| * |
| * inode_wb_list_lock |
| * inode->i_lock |
| * |
| * inode_hash_lock |
| * inode_sb_list_lock |
| * inode->i_lock |
| * |
| * iunique_lock |
| * inode_hash_lock |
| */ |
| |
| static unsigned int i_hash_mask __read_mostly; |
| static unsigned int i_hash_shift __read_mostly; |
| static struct hlist_head *inode_hashtable __read_mostly; |
| static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); |
| |
| static LIST_HEAD(inode_lru); |
| static DEFINE_SPINLOCK(inode_lru_lock); |
| |
| __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); |
| __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock); |
| |
| /* |
| * iprune_sem provides exclusion between the icache shrinking and the |
| * umount path. |
| * |
| * We don't actually need it to protect anything in the umount path, |
| * but only need to cycle through it to make sure any inode that |
| * prune_icache took off the LRU list has been fully torn down by the |
| * time we are past evict_inodes. |
| */ |
| static DECLARE_RWSEM(iprune_sem); |
| |
| /* |
| * Empty aops. Can be used for the cases where the user does not |
| * define any of the address_space operations. |
| */ |
| const struct address_space_operations empty_aops = { |
| }; |
| EXPORT_SYMBOL(empty_aops); |
| |
| /* |
| * Statistics gathering.. |
| */ |
| struct inodes_stat_t inodes_stat; |
| |
| static DEFINE_PER_CPU(unsigned int, nr_inodes); |
| static DEFINE_PER_CPU(unsigned int, nr_unused); |
| |
| static struct kmem_cache *inode_cachep __read_mostly; |
| |
| static int get_nr_inodes(void) |
| { |
| int i; |
| int sum = 0; |
| for_each_possible_cpu(i) |
| sum += per_cpu(nr_inodes, i); |
| return sum < 0 ? 0 : sum; |
| } |
| |
| static inline int get_nr_inodes_unused(void) |
| { |
| int i; |
| int sum = 0; |
| for_each_possible_cpu(i) |
| sum += per_cpu(nr_unused, i); |
| return sum < 0 ? 0 : sum; |
| } |
| |
| int get_nr_dirty_inodes(void) |
| { |
| /* not actually dirty inodes, but a wild approximation */ |
| int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); |
| return nr_dirty > 0 ? nr_dirty : 0; |
| } |
| |
| /* |
| * Handle nr_inode sysctl |
| */ |
| #ifdef CONFIG_SYSCTL |
| int proc_nr_inodes(ctl_table *table, int write, |
| void __user *buffer, size_t *lenp, loff_t *ppos) |
| { |
| inodes_stat.nr_inodes = get_nr_inodes(); |
| inodes_stat.nr_unused = get_nr_inodes_unused(); |
| return proc_dointvec(table, write, buffer, lenp, ppos); |
| } |
| #endif |
| |
| /** |
| * inode_init_always - perform inode structure intialisation |
| * @sb: superblock inode belongs to |
| * @inode: inode to initialise |
| * |
| * These are initializations that need to be done on every inode |
| * allocation as the fields are not initialised by slab allocation. |
| */ |
| int inode_init_always(struct super_block *sb, struct inode *inode) |
| { |
| static const struct inode_operations empty_iops; |
| static const struct file_operations empty_fops; |
| struct address_space *const mapping = &inode->i_data; |
| |
| inode->i_sb = sb; |
| inode->i_blkbits = sb->s_blocksize_bits; |
| inode->i_flags = 0; |
| atomic_set(&inode->i_count, 1); |
| inode->i_op = &empty_iops; |
| inode->i_fop = &empty_fops; |
| inode->i_nlink = 1; |
| inode->i_uid = 0; |
| inode->i_gid = 0; |
| atomic_set(&inode->i_writecount, 0); |
| inode->i_size = 0; |
| inode->i_blocks = 0; |
| inode->i_bytes = 0; |
| inode->i_generation = 0; |
| #ifdef CONFIG_QUOTA |
| memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); |
| #endif |
| inode->i_pipe = NULL; |
| inode->i_bdev = NULL; |
| inode->i_cdev = NULL; |
| inode->i_rdev = 0; |
| inode->dirtied_when = 0; |
| |
| if (security_inode_alloc(inode)) |
| goto out; |
| spin_lock_init(&inode->i_lock); |
| lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); |
| |
| mutex_init(&inode->i_mutex); |
| lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); |
| |
| init_rwsem(&inode->i_alloc_sem); |
| lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); |
| |
| mapping->a_ops = &empty_aops; |
| mapping->host = inode; |
| mapping->flags = 0; |
| mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); |
| mapping->assoc_mapping = NULL; |
| mapping->backing_dev_info = &default_backing_dev_info; |
| mapping->writeback_index = 0; |
| |
| /* |
| * If the block_device provides a backing_dev_info for client |
| * inodes then use that. Otherwise the inode share the bdev's |
| * backing_dev_info. |
| */ |
| if (sb->s_bdev) { |
| struct backing_dev_info *bdi; |
| |
| bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; |
| mapping->backing_dev_info = bdi; |
| } |
| inode->i_private = NULL; |
| inode->i_mapping = mapping; |
| #ifdef CONFIG_FS_POSIX_ACL |
| inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; |
| #endif |
| |
| #ifdef CONFIG_FSNOTIFY |
| inode->i_fsnotify_mask = 0; |
| #endif |
| |
| this_cpu_inc(nr_inodes); |
| |
| return 0; |
| out: |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL(inode_init_always); |
| |
| static struct inode *alloc_inode(struct super_block *sb) |
| { |
| struct inode *inode; |
| |
| if (sb->s_op->alloc_inode) |
| inode = sb->s_op->alloc_inode(sb); |
| else |
| inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); |
| |
| if (!inode) |
| return NULL; |
| |
| if (unlikely(inode_init_always(sb, inode))) { |
| if (inode->i_sb->s_op->destroy_inode) |
| inode->i_sb->s_op->destroy_inode(inode); |
| else |
| kmem_cache_free(inode_cachep, inode); |
| return NULL; |
| } |
| |
| return inode; |
| } |
| |
| void free_inode_nonrcu(struct inode *inode) |
| { |
| kmem_cache_free(inode_cachep, inode); |
| } |
| EXPORT_SYMBOL(free_inode_nonrcu); |
| |
| void __destroy_inode(struct inode *inode) |
| { |
| BUG_ON(inode_has_buffers(inode)); |
| security_inode_free(inode); |
| fsnotify_inode_delete(inode); |
| #ifdef CONFIG_FS_POSIX_ACL |
| if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) |
| posix_acl_release(inode->i_acl); |
| if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) |
| posix_acl_release(inode->i_default_acl); |
| #endif |
| this_cpu_dec(nr_inodes); |
| } |
| EXPORT_SYMBOL(__destroy_inode); |
| |
| static void i_callback(struct rcu_head *head) |
| { |
| struct inode *inode = container_of(head, struct inode, i_rcu); |
| INIT_LIST_HEAD(&inode->i_dentry); |
| kmem_cache_free(inode_cachep, inode); |
| } |
| |
| static void destroy_inode(struct inode *inode) |
| { |
| BUG_ON(!list_empty(&inode->i_lru)); |
| __destroy_inode(inode); |
| if (inode->i_sb->s_op->destroy_inode) |
| inode->i_sb->s_op->destroy_inode(inode); |
| else |
| call_rcu(&inode->i_rcu, i_callback); |
| } |
| |
| void address_space_init_once(struct address_space *mapping) |
| { |
| memset(mapping, 0, sizeof(*mapping)); |
| INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); |
| spin_lock_init(&mapping->tree_lock); |
| mutex_init(&mapping->i_mmap_mutex); |
| INIT_LIST_HEAD(&mapping->private_list); |
| spin_lock_init(&mapping->private_lock); |
| INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); |
| INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); |
| } |
| EXPORT_SYMBOL(address_space_init_once); |
| |
| /* |
| * These are initializations that only need to be done |
| * once, because the fields are idempotent across use |
| * of the inode, so let the slab aware of that. |
| */ |
| void inode_init_once(struct inode *inode) |
| { |
| memset(inode, 0, sizeof(*inode)); |
| INIT_HLIST_NODE(&inode->i_hash); |
| INIT_LIST_HEAD(&inode->i_dentry); |
| INIT_LIST_HEAD(&inode->i_devices); |
| INIT_LIST_HEAD(&inode->i_wb_list); |
| INIT_LIST_HEAD(&inode->i_lru); |
| address_space_init_once(&inode->i_data); |
| i_size_ordered_init(inode); |
| #ifdef CONFIG_FSNOTIFY |
| INIT_HLIST_HEAD(&inode->i_fsnotify_marks); |
| #endif |
| } |
| EXPORT_SYMBOL(inode_init_once); |
| |
| static void init_once(void *foo) |
| { |
| struct inode *inode = (struct inode *) foo; |
| |
| inode_init_once(inode); |
| } |
| |
| /* |
| * inode->i_lock must be held |
| */ |
| void __iget(struct inode *inode) |
| { |
| atomic_inc(&inode->i_count); |
| } |
| |
| /* |
| * get additional reference to inode; caller must already hold one. |
| */ |
| void ihold(struct inode *inode) |
| { |
| WARN_ON(atomic_inc_return(&inode->i_count) < 2); |
| } |
| EXPORT_SYMBOL(ihold); |
| |
| static void inode_lru_list_add(struct inode *inode) |
| { |
| spin_lock(&inode_lru_lock); |
| if (list_empty(&inode->i_lru)) { |
| list_add(&inode->i_lru, &inode_lru); |
| this_cpu_inc(nr_unused); |
| } |
| spin_unlock(&inode_lru_lock); |
| } |
| |
| static void inode_lru_list_del(struct inode *inode) |
| { |
| spin_lock(&inode_lru_lock); |
| if (!list_empty(&inode->i_lru)) { |
| list_del_init(&inode->i_lru); |
| this_cpu_dec(nr_unused); |
| } |
| spin_unlock(&inode_lru_lock); |
| } |
| |
| /** |
| * inode_sb_list_add - add inode to the superblock list of inodes |
| * @inode: inode to add |
| */ |
| void inode_sb_list_add(struct inode *inode) |
| { |
| spin_lock(&inode_sb_list_lock); |
| list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); |
| spin_unlock(&inode_sb_list_lock); |
| } |
| EXPORT_SYMBOL_GPL(inode_sb_list_add); |
| |
| static inline void inode_sb_list_del(struct inode *inode) |
| { |
| spin_lock(&inode_sb_list_lock); |
| list_del_init(&inode->i_sb_list); |
| spin_unlock(&inode_sb_list_lock); |
| } |
| |
| static unsigned long hash(struct super_block *sb, unsigned long hashval) |
| { |
| unsigned long tmp; |
| |
| tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / |
| L1_CACHE_BYTES; |
| tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); |
| return tmp & i_hash_mask; |
| } |
| |
| /** |
| * __insert_inode_hash - hash an inode |
| * @inode: unhashed inode |
| * @hashval: unsigned long value used to locate this object in the |
| * inode_hashtable. |
| * |
| * Add an inode to the inode hash for this superblock. |
| */ |
| void __insert_inode_hash(struct inode *inode, unsigned long hashval) |
| { |
| struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); |
| |
| spin_lock(&inode_hash_lock); |
| spin_lock(&inode->i_lock); |
| hlist_add_head(&inode->i_hash, b); |
| spin_unlock(&inode->i_lock); |
| spin_unlock(&inode_hash_lock); |
| } |
| EXPORT_SYMBOL(__insert_inode_hash); |
| |
| /** |
| * remove_inode_hash - remove an inode from the hash |
| * @inode: inode to unhash |
| * |
| * Remove an inode from the superblock. |
| */ |
| void remove_inode_hash(struct inode *inode) |
| { |
| spin_lock(&inode_hash_lock); |
| spin_lock(&inode->i_lock); |
| hlist_del_init(&inode->i_hash); |
| spin_unlock(&inode->i_lock); |
| spin_unlock(&inode_hash_lock); |
| } |
| EXPORT_SYMBOL(remove_inode_hash); |
| |
| void end_writeback(struct inode *inode) |
| { |
| might_sleep(); |
| /* |
| * We have to cycle tree_lock here because reclaim can be still in the |
| * process of removing the last page (in __delete_from_page_cache()) |
| * and we must not free mapping under it. |
| */ |
| spin_lock_irq(&inode->i_data.tree_lock); |
| BUG_ON(inode->i_data.nrpages); |
| spin_unlock_irq(&inode->i_data.tree_lock); |
| BUG_ON(!list_empty(&inode->i_data.private_list)); |
| BUG_ON(!(inode->i_state & I_FREEING)); |
| BUG_ON(inode->i_state & I_CLEAR); |
| inode_sync_wait(inode); |
| /* don't need i_lock here, no concurrent mods to i_state */ |
| inode->i_state = I_FREEING | I_CLEAR; |
| } |
| EXPORT_SYMBOL(end_writeback); |
| |
| /* |
| * Free the inode passed in, removing it from the lists it is still connected |
| * to. We remove any pages still attached to the inode and wait for any IO that |
| * is still in progress before finally destroying the inode. |
| * |
| * An inode must already be marked I_FREEING so that we avoid the inode being |
| * moved back onto lists if we race with other code that manipulates the lists |
| * (e.g. writeback_single_inode). The caller is responsible for setting this. |
| * |
| * An inode must already be removed from the LRU list before being evicted from |
| * the cache. This should occur atomically with setting the I_FREEING state |
| * flag, so no inodes here should ever be on the LRU when being evicted. |
| */ |
| static void evict(struct inode *inode) |
| { |
| const struct super_operations *op = inode->i_sb->s_op; |
| |
| BUG_ON(!(inode->i_state & I_FREEING)); |
| BUG_ON(!list_empty(&inode->i_lru)); |
| |
| inode_wb_list_del(inode); |
| inode_sb_list_del(inode); |
| |
| if (op->evict_inode) { |
| op->evict_inode(inode); |
| } else { |
| if (inode->i_data.nrpages) |
| truncate_inode_pages(&inode->i_data, 0); |
| end_writeback(inode); |
| } |
| if (S_ISBLK(inode->i_mode) && inode->i_bdev) |
| bd_forget(inode); |
| if (S_ISCHR(inode->i_mode) && inode->i_cdev) |
| cd_forget(inode); |
| |
| remove_inode_hash(inode); |
| |
| spin_lock(&inode->i_lock); |
| wake_up_bit(&inode->i_state, __I_NEW); |
| BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); |
| spin_unlock(&inode->i_lock); |
| |
| destroy_inode(inode); |
| } |
| |
| /* |
| * dispose_list - dispose of the contents of a local list |
| * @head: the head of the list to free |
| * |
| * Dispose-list gets a local list with local inodes in it, so it doesn't |
| * need to worry about list corruption and SMP locks. |
| */ |
| static void dispose_list(struct list_head *head) |
| { |
| while (!list_empty(head)) { |
| struct inode *inode; |
| |
| inode = list_first_entry(head, struct inode, i_lru); |
| list_del_init(&inode->i_lru); |
| |
| evict(inode); |
| } |
| } |
| |
| /** |
| * evict_inodes - evict all evictable inodes for a superblock |
| * @sb: superblock to operate on |
| * |
| * Make sure that no inodes with zero refcount are retained. This is |
| * called by superblock shutdown after having MS_ACTIVE flag removed, |
| * so any inode reaching zero refcount during or after that call will |
| * be immediately evicted. |
| */ |
| void evict_inodes(struct super_block *sb) |
| { |
| struct inode *inode, *next; |
| LIST_HEAD(dispose); |
| |
| spin_lock(&inode_sb_list_lock); |
| list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { |
| if (atomic_read(&inode->i_count)) |
| continue; |
| |
| spin_lock(&inode->i_lock); |
| if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { |
| spin_unlock(&inode->i_lock); |
| continue; |
| } |
| |
| inode->i_state |= I_FREEING; |
| inode_lru_list_del(inode); |
| spin_unlock(&inode->i_lock); |
| list_add(&inode->i_lru, &dispose); |
| } |
| spin_unlock(&inode_sb_list_lock); |
| |
| dispose_list(&dispose); |
| |
| /* |
| * Cycle through iprune_sem to make sure any inode that prune_icache |
| * moved off the list before we took the lock has been fully torn |
| * down. |
| */ |
| down_write(&iprune_sem); |
| up_write(&iprune_sem); |
| } |
| |
| /** |
| * invalidate_inodes - attempt to free all inodes on a superblock |
| * @sb: superblock to operate on |
| * @kill_dirty: flag to guide handling of dirty inodes |
| * |
| * Attempts to free all inodes for a given superblock. If there were any |
| * busy inodes return a non-zero value, else zero. |
| * If @kill_dirty is set, discard dirty inodes too, otherwise treat |
| * them as busy. |
| */ |
| int invalidate_inodes(struct super_block *sb, bool kill_dirty) |
| { |
| int busy = 0; |
| struct inode *inode, *next; |
| LIST_HEAD(dispose); |
| |
| spin_lock(&inode_sb_list_lock); |
| list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { |
| spin_lock(&inode->i_lock); |
| if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { |
| spin_unlock(&inode->i_lock); |
| continue; |
| } |
| if (inode->i_state & I_DIRTY && !kill_dirty) { |
| spin_unlock(&inode->i_lock); |
| busy = 1; |
| continue; |
| } |
| if (atomic_read(&inode->i_count)) { |
| spin_unlock(&inode->i_lock); |
| busy = 1; |
| continue; |
| } |
| |
| inode->i_state |= I_FREEING; |
| inode_lru_list_del(inode); |
| spin_unlock(&inode->i_lock); |
| list_add(&inode->i_lru, &dispose); |
| } |
| spin_unlock(&inode_sb_list_lock); |
| |
| dispose_list(&dispose); |
| |
| return busy; |
| } |
| |
| static int can_unuse(struct inode *inode) |
| { |
| if (inode->i_state & ~I_REFERENCED) |
| return 0; |
| if (inode_has_buffers(inode)) |
| return 0; |
| if (atomic_read(&inode->i_count)) |
| return 0; |
| if (inode->i_data.nrpages) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * Scan `goal' inodes on the unused list for freeable ones. They are moved to a |
| * temporary list and then are freed outside inode_lru_lock by dispose_list(). |
| * |
| * Any inodes which are pinned purely because of attached pagecache have their |
| * pagecache removed. If the inode has metadata buffers attached to |
| * mapping->private_list then try to remove them. |
| * |
| * If the inode has the I_REFERENCED flag set, then it means that it has been |
| * used recently - the flag is set in iput_final(). When we encounter such an |
| * inode, clear the flag and move it to the back of the LRU so it gets another |
| * pass through the LRU before it gets reclaimed. This is necessary because of |
| * the fact we are doing lazy LRU updates to minimise lock contention so the |
| * LRU does not have strict ordering. Hence we don't want to reclaim inodes |
| * with this flag set because they are the inodes that are out of order. |
| */ |
| static void prune_icache(int nr_to_scan) |
| { |
| LIST_HEAD(freeable); |
| int nr_scanned; |
| unsigned long reap = 0; |
| |
| down_read(&iprune_sem); |
| spin_lock(&inode_lru_lock); |
| for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { |
| struct inode *inode; |
| |
| if (list_empty(&inode_lru)) |
| break; |
| |
| inode = list_entry(inode_lru.prev, struct inode, i_lru); |
| |
| /* |
| * we are inverting the inode_lru_lock/inode->i_lock here, |
| * so use a trylock. If we fail to get the lock, just move the |
| * inode to the back of the list so we don't spin on it. |
| */ |
| if (!spin_trylock(&inode->i_lock)) { |
| list_move(&inode->i_lru, &inode_lru); |
| continue; |
| } |
| |
| /* |
| * Referenced or dirty inodes are still in use. Give them |
| * another pass through the LRU as we canot reclaim them now. |
| */ |
| if (atomic_read(&inode->i_count) || |
| (inode->i_state & ~I_REFERENCED)) { |
| list_del_init(&inode->i_lru); |
| spin_unlock(&inode->i_lock); |
| this_cpu_dec(nr_unused); |
| continue; |
| } |
| |
| /* recently referenced inodes get one more pass */ |
| if (inode->i_state & I_REFERENCED) { |
| inode->i_state &= ~I_REFERENCED; |
| list_move(&inode->i_lru, &inode_lru); |
| spin_unlock(&inode->i_lock); |
| continue; |
| } |
| if (inode_has_buffers(inode) || inode->i_data.nrpages) { |
| __iget(inode); |
| spin_unlock(&inode->i_lock); |
| spin_unlock(&inode_lru_lock); |
| if (remove_inode_buffers(inode)) |
| reap += invalidate_mapping_pages(&inode->i_data, |
| 0, -1); |
| iput(inode); |
| spin_lock(&inode_lru_lock); |
| |
| if (inode != list_entry(inode_lru.next, |
| struct inode, i_lru)) |
| continue; /* wrong inode or list_empty */ |
| /* avoid lock inversions with trylock */ |
| if (!spin_trylock(&inode->i_lock)) |
| continue; |
| if (!can_unuse(inode)) { |
| spin_unlock(&inode->i_lock); |
| continue; |
| } |
| } |
| WARN_ON(inode->i_state & I_NEW); |
| inode->i_state |= I_FREEING; |
| spin_unlock(&inode->i_lock); |
| |
| list_move(&inode->i_lru, &freeable); |
| this_cpu_dec(nr_unused); |
| } |
| if (current_is_kswapd()) |
| __count_vm_events(KSWAPD_INODESTEAL, reap); |
| else |
| __count_vm_events(PGINODESTEAL, reap); |
| spin_unlock(&inode_lru_lock); |
| |
| dispose_list(&freeable); |
| up_read(&iprune_sem); |
| } |
| |
| /* |
| * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, |
| * "unused" means that no dentries are referring to the inodes: the files are |
| * not open and the dcache references to those inodes have already been |
| * reclaimed. |
| * |
| * This function is passed the number of inodes to scan, and it returns the |
| * total number of remaining possibly-reclaimable inodes. |
| */ |
| static int shrink_icache_memory(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| int nr = sc->nr_to_scan; |
| gfp_t gfp_mask = sc->gfp_mask; |
| |
| if (nr) { |
| /* |
| * Nasty deadlock avoidance. We may hold various FS locks, |
| * and we don't want to recurse into the FS that called us |
| * in clear_inode() and friends.. |
| */ |
| if (!(gfp_mask & __GFP_FS)) |
| return -1; |
| prune_icache(nr); |
| } |
| return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure; |
| } |
| |
| static struct shrinker icache_shrinker = { |
| .shrink = shrink_icache_memory, |
| .seeks = DEFAULT_SEEKS, |
| }; |
| |
| static void __wait_on_freeing_inode(struct inode *inode); |
| /* |
| * Called with the inode lock held. |
| */ |
| static struct inode *find_inode(struct super_block *sb, |
| struct hlist_head *head, |
| int (*test)(struct inode *, void *), |
| void *data) |
| { |
| struct hlist_node *node; |
| struct inode *inode = NULL; |
| |
| repeat: |
| hlist_for_each_entry(inode, node, head, i_hash) { |
| spin_lock(&inode->i_lock); |
| if (inode->i_sb != sb) { |
| spin_unlock(&inode->i_lock); |
| continue; |
| } |
| if (!test(inode, data)) { |
| spin_unlock(&inode->i_lock); |
| continue; |
| } |
| if (inode->i_state & (I_FREEING|I_WILL_FREE)) { |
| __wait_on_freeing_inode(inode); |
| goto repeat; |
| } |
| __iget(inode); |
| spin_unlock(&inode->i_lock); |
| return inode; |
| } |
| return NULL; |
| } |
| |
| /* |
| * find_inode_fast is the fast path version of find_inode, see the comment at |
| * iget_locked for details. |
| */ |
| static struct inode *find_inode_fast(struct super_block *sb, |
| struct hlist_head *head, unsigned long ino) |
| { |
| struct hlist_node *node; |
| struct inode *inode = NULL; |
| |
| repeat: |
| hlist_for_each_entry(inode, node, head, i_hash) { |
| spin_lock(&inode->i_lock); |
| if (inode->i_ino != ino) { |
| spin_unlock(&inode->i_lock); |
| continue; |
| } |
| if (inode->i_sb != sb) { |
| spin_unlock(&inode->i_lock); |
| continue; |
| } |
| if (inode->i_state & (I_FREEING|I_WILL_FREE)) { |
| __wait_on_freeing_inode(inode); |
| goto repeat; |
| } |
| __iget(inode); |
| spin_unlock(&inode->i_lock); |
| return inode; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Each cpu owns a range of LAST_INO_BATCH numbers. |
| * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, |
| * to renew the exhausted range. |
| * |
| * This does not significantly increase overflow rate because every CPU can |
| * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is |
| * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the |
| * 2^32 range, and is a worst-case. Even a 50% wastage would only increase |
| * overflow rate by 2x, which does not seem too significant. |
| * |
| * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW |
| * error if st_ino won't fit in target struct field. Use 32bit counter |
| * here to attempt to avoid that. |
| */ |
| #define LAST_INO_BATCH 1024 |
| static DEFINE_PER_CPU(unsigned int, last_ino); |
| |
| unsigned int get_next_ino(void) |
| { |
| unsigned int *p = &get_cpu_var(last_ino); |
| unsigned int res = *p; |
| |
| #ifdef CONFIG_SMP |
| if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { |
| static atomic_t shared_last_ino; |
| int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); |
| |
| res = next - LAST_INO_BATCH; |
| } |
| #endif |
| |
| *p = ++res; |
| put_cpu_var(last_ino); |
| return res; |
| } |
| EXPORT_SYMBOL(get_next_ino); |
| |
| /** |
| * new_inode - obtain an inode |
| * @sb: superblock |
| * |
| * Allocates a new inode for given superblock. The default gfp_mask |
| * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. |
| * If HIGHMEM pages are unsuitable or it is known that pages allocated |
| * for the page cache are not reclaimable or migratable, |
| * mapping_set_gfp_mask() must be called with suitable flags on the |
| * newly created inode's mapping |
| * |
| */ |
| struct inode *new_inode(struct super_block *sb) |
| { |
| struct inode *inode; |
| |
| spin_lock_prefetch(&inode_sb_list_lock); |
| |
| inode = alloc_inode(sb); |
| if (inode) { |
| spin_lock(&inode->i_lock); |
| inode->i_state = 0; |
| spin_unlock(&inode->i_lock); |
| inode_sb_list_add(inode); |
| } |
| return inode; |
| } |
| EXPORT_SYMBOL(new_inode); |
| |
| /** |
| * unlock_new_inode - clear the I_NEW state and wake up any waiters |
| * @inode: new inode to unlock |
| * |
| * Called when the inode is fully initialised to clear the new state of the |
| * inode and wake up anyone waiting for the inode to finish initialisation. |
| */ |
| void unlock_new_inode(struct inode *inode) |
| { |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| if (S_ISDIR(inode->i_mode)) { |
| struct file_system_type *type = inode->i_sb->s_type; |
| |
| /* Set new key only if filesystem hasn't already changed it */ |
| if (!lockdep_match_class(&inode->i_mutex, |
| &type->i_mutex_key)) { |
| /* |
| * ensure nobody is actually holding i_mutex |
| */ |
| mutex_destroy(&inode->i_mutex); |
| mutex_init(&inode->i_mutex); |
| lockdep_set_class(&inode->i_mutex, |
| &type->i_mutex_dir_key); |
| } |
| } |
| #endif |
| spin_lock(&inode->i_lock); |
| WARN_ON(!(inode->i_state & I_NEW)); |
| inode->i_state &= ~I_NEW; |
| wake_up_bit(&inode->i_state, __I_NEW); |
| spin_unlock(&inode->i_lock); |
| } |
| EXPORT_SYMBOL(unlock_new_inode); |
| |
| /** |
| * iget5_locked - obtain an inode from a mounted file system |
| * @sb: super block of file system |
| * @hashval: hash value (usually inode number) to get |
| * @test: callback used for comparisons between inodes |
| * @set: callback used to initialize a new struct inode |
| * @data: opaque data pointer to pass to @test and @set |
| * |
| * Search for the inode specified by @hashval and @data in the inode cache, |
| * and if present it is return it with an increased reference count. This is |
| * a generalized version of iget_locked() for file systems where the inode |
| * number is not sufficient for unique identification of an inode. |
| * |
| * If the inode is not in cache, allocate a new inode and return it locked, |
| * hashed, and with the I_NEW flag set. The file system gets to fill it in |
| * before unlocking it via unlock_new_inode(). |
| * |
| * Note both @test and @set are called with the inode_hash_lock held, so can't |
| * sleep. |
| */ |
| struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, |
| int (*test)(struct inode *, void *), |
| int (*set)(struct inode *, void *), void *data) |
| { |
| struct hlist_head *head = inode_hashtable + hash(sb, hashval); |
| struct inode *inode; |
| |
| spin_lock(&inode_hash_lock); |
| inode = find_inode(sb, head, test, data); |
| spin_unlock(&inode_hash_lock); |
| |
| if (inode) { |
| wait_on_inode(inode); |
| return inode; |
| } |
| |
| inode = alloc_inode(sb); |
| if (inode) { |
| struct inode *old; |
| |
| spin_lock(&inode_hash_lock); |
| /* We released the lock, so.. */ |
| old = find_inode(sb, head, test, data); |
| if (!old) { |
| if (set(inode, data)) |
| goto set_failed; |
| |
| spin_lock(&inode->i_lock); |
| inode->i_state = I_NEW; |
| hlist_add_head(&inode->i_hash, head); |
| spin_unlock(&inode->i_lock); |
| inode_sb_list_add(inode); |
| spin_unlock(&inode_hash_lock); |
| |
| /* Return the locked inode with I_NEW set, the |
| * caller is responsible for filling in the contents |
| */ |
| return inode; |
| } |
| |
| /* |
| * Uhhuh, somebody else created the same inode under |
| * us. Use the old inode instead of the one we just |
| * allocated. |
| */ |
| spin_unlock(&inode_hash_lock); |
| destroy_inode(inode); |
| inode = old; |
| wait_on_inode(inode); |
| } |
| return inode; |
| |
| set_failed: |
| spin_unlock(&inode_hash_lock); |
| destroy_inode(inode); |
| return NULL; |
| } |
| EXPORT_SYMBOL(iget5_locked); |
| |
| /** |
| * iget_locked - obtain an inode from a mounted file system |
| * @sb: super block of file system |
| * @ino: inode number to get |
| * |
| * Search for the inode specified by @ino in the inode cache and if present |
| * return it with an increased reference count. This is for file systems |
| * where the inode number is sufficient for unique identification of an inode. |
| * |
| * If the inode is not in cache, allocate a new inode and return it locked, |
| * hashed, and with the I_NEW flag set. The file system gets to fill it in |
| * before unlocking it via unlock_new_inode(). |
| */ |
| struct inode *iget_locked(struct super_block *sb, unsigned long ino) |
| { |
| struct hlist_head *head = inode_hashtable + hash(sb, ino); |
| struct inode *inode; |
| |
| spin_lock(&inode_hash_lock); |
| inode = find_inode_fast(sb, head, ino); |
| spin_unlock(&inode_hash_lock); |
| if (inode) { |
| wait_on_inode(inode); |
| return inode; |
| } |
| |
| inode = alloc_inode(sb); |
| if (inode) { |
| struct inode *old; |
| |
| spin_lock(&inode_hash_lock); |
| /* We released the lock, so.. */ |
| old = find_inode_fast(sb, head, ino); |
| if (!old) { |
| inode->i_ino = ino; |
| spin_lock(&inode->i_lock); |
| inode->i_state = I_NEW; |
| hlist_add_head(&inode->i_hash, head); |
| spin_unlock(&inode->i_lock); |
| inode_sb_list_add(inode); |
| spin_unlock(&inode_hash_lock); |
| |
| /* Return the locked inode with I_NEW set, the |
| * caller is responsible for filling in the contents |
| */ |
| return inode; |
| } |
| |
| /* |
| * Uhhuh, somebody else created the same inode under |
| * us. Use the old inode instead of the one we just |
| * allocated. |
| */ |
| spin_unlock(&inode_hash_lock); |
| destroy_inode(inode); |
| inode = old; |
| wait_on_inode(inode); |
| } |
| return inode; |
| } |
| EXPORT_SYMBOL(iget_locked); |
| |
| /* |
| * search the inode cache for a matching inode number. |
| * If we find one, then the inode number we are trying to |
| * allocate is not unique and so we should not use it. |
| * |
| * Returns 1 if the inode number is unique, 0 if it is not. |
| */ |
| static int test_inode_iunique(struct super_block *sb, unsigned long ino) |
| { |
| struct hlist_head *b = inode_hashtable + hash(sb, ino); |
| struct hlist_node *node; |
| struct inode *inode; |
| |
| spin_lock(&inode_hash_lock); |
| hlist_for_each_entry(inode, node, b, i_hash) { |
| if (inode->i_ino == ino && inode->i_sb == sb) { |
| spin_unlock(&inode_hash_lock); |
| return 0; |
| } |
| } |
| spin_unlock(&inode_hash_lock); |
| |
| return 1; |
| } |
| |
| /** |
| * iunique - get a unique inode number |
| * @sb: superblock |
| * @max_reserved: highest reserved inode number |
| * |
| * Obtain an inode number that is unique on the system for a given |
| * superblock. This is used by file systems that have no natural |
| * permanent inode numbering system. An inode number is returned that |
| * is higher than the reserved limit but unique. |
| * |
| * BUGS: |
| * With a large number of inodes live on the file system this function |
| * currently becomes quite slow. |
| */ |
| ino_t iunique(struct super_block *sb, ino_t max_reserved) |
| { |
| /* |
| * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW |
| * error if st_ino won't fit in target struct field. Use 32bit counter |
| * here to attempt to avoid that. |
| */ |
| static DEFINE_SPINLOCK(iunique_lock); |
| static unsigned int counter; |
| ino_t res; |
| |
| spin_lock(&iunique_lock); |
| do { |
| if (counter <= max_reserved) |
| counter = max_reserved + 1; |
| res = counter++; |
| } while (!test_inode_iunique(sb, res)); |
| spin_unlock(&iunique_lock); |
| |
| return res; |
| } |
| EXPORT_SYMBOL(iunique); |
| |
| struct inode *igrab(struct inode *inode) |
| { |
| spin_lock(&inode->i_lock); |
| if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { |
| __iget(inode); |
| spin_unlock(&inode->i_lock); |
| } else { |
| spin_unlock(&inode->i_lock); |
| /* |
| * Handle the case where s_op->clear_inode is not been |
| * called yet, and somebody is calling igrab |
| * while the inode is getting freed. |
| */ |
| inode = NULL; |
| } |
| return inode; |
| } |
| EXPORT_SYMBOL(igrab); |
| |
| /** |
| * ilookup5_nowait - search for an inode in the inode cache |
| * @sb: super block of file system to search |
| * @hashval: hash value (usually inode number) to search for |
| * @test: callback used for comparisons between inodes |
| * @data: opaque data pointer to pass to @test |
| * |
| * Search for the inode specified by @hashval and @data in the inode cache. |
| * If the inode is in the cache, the inode is returned with an incremented |
| * reference count. |
| * |
| * Note: I_NEW is not waited upon so you have to be very careful what you do |
| * with the returned inode. You probably should be using ilookup5() instead. |
| * |
| * Note2: @test is called with the inode_hash_lock held, so can't sleep. |
| */ |
| struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, |
| int (*test)(struct inode *, void *), void *data) |
| { |
| struct hlist_head *head = inode_hashtable + hash(sb, hashval); |
| struct inode *inode; |
| |
| spin_lock(&inode_hash_lock); |
| inode = find_inode(sb, head, test, data); |
| spin_unlock(&inode_hash_lock); |
| |
| return inode; |
| } |
| EXPORT_SYMBOL(ilookup5_nowait); |
| |
| /** |
| * ilookup5 - search for an inode in the inode cache |
| * @sb: super block of file system to search |
| * @hashval: hash value (usually inode number) to search for |
| * @test: callback used for comparisons between inodes |
| * @data: opaque data pointer to pass to @test |
| * |
| * Search for the inode specified by @hashval and @data in the inode cache, |
| * and if the inode is in the cache, return the inode with an incremented |
| * reference count. Waits on I_NEW before returning the inode. |
| * returned with an incremented reference count. |
| * |
| * This is a generalized version of ilookup() for file systems where the |
| * inode number is not sufficient for unique identification of an inode. |
| * |
| * Note: @test is called with the inode_hash_lock held, so can't sleep. |
| */ |
| struct inode *ilookup5(struct super_block *sb, unsigned long hashval, |
| int (*test)(struct inode *, void *), void *data) |
| { |
| struct inode *inode = ilookup5_nowait(sb, hashval, test, data); |
| |
| if (inode) |
| wait_on_inode(inode); |
| return inode; |
| } |
| EXPORT_SYMBOL(ilookup5); |
| |
| /** |
| * ilookup - search for an inode in the inode cache |
| * @sb: super block of file system to search |
| * @ino: inode number to search for |
| * |
| * Search for the inode @ino in the inode cache, and if the inode is in the |
| * cache, the inode is returned with an incremented reference count. |
| */ |
| struct inode *ilookup(struct super_block *sb, unsigned long ino) |
| { |
| struct hlist_head *head = inode_hashtable + hash(sb, ino); |
| struct inode *inode; |
| |
| spin_lock(&inode_hash_lock); |
| inode = find_inode_fast(sb, head, ino); |
| spin_unlock(&inode_hash_lock); |
| |
| if (inode) |
| wait_on_inode(inode); |
| return inode; |
| } |
| EXPORT_SYMBOL(ilookup); |
| |
| int insert_inode_locked(struct inode *inode) |
| { |
| struct super_block *sb = inode->i_sb; |
| ino_t ino = inode->i_ino; |
| struct hlist_head *head = inode_hashtable + hash(sb, ino); |
| |
| while (1) { |
| struct hlist_node *node; |
| struct inode *old = NULL; |
| spin_lock(&inode_hash_lock); |
| hlist_for_each_entry(old, node, head, i_hash) { |
| if (old->i_ino != ino) |
| continue; |
| if (old->i_sb != sb) |
| continue; |
| spin_lock(&old->i_lock); |
| if (old->i_state & (I_FREEING|I_WILL_FREE)) { |
| spin_unlock(&old->i_lock); |
| continue; |
| } |
| break; |
| } |
| if (likely(!node)) { |
| spin_lock(&inode->i_lock); |
| inode->i_state |= I_NEW; |
| hlist_add_head(&inode->i_hash, head); |
| spin_unlock(&inode->i_lock); |
| spin_unlock(&inode_hash_lock); |
| return 0; |
| } |
| __iget(old); |
| spin_unlock(&old->i_lock); |
| spin_unlock(&inode_hash_lock); |
| wait_on_inode(old); |
| if (unlikely(!inode_unhashed(old))) { |
| iput(old); |
| return -EBUSY; |
| } |
| iput(old); |
| } |
| } |
| EXPORT_SYMBOL(insert_inode_locked); |
| |
| int insert_inode_locked4(struct inode *inode, unsigned long hashval, |
| int (*test)(struct inode *, void *), void *data) |
| { |
| struct super_block *sb = inode->i_sb; |
| struct hlist_head *head = inode_hashtable + hash(sb, hashval); |
| |
| while (1) { |
| struct hlist_node *node; |
| struct inode *old = NULL; |
| |
| spin_lock(&inode_hash_lock); |
| hlist_for_each_entry(old, node, head, i_hash) { |
| if (old->i_sb != sb) |
| continue; |
| if (!test(old, data)) |
| continue; |
| spin_lock(&old->i_lock); |
| if (old->i_state & (I_FREEING|I_WILL_FREE)) { |
| spin_unlock(&old->i_lock); |
| continue; |
| } |
| break; |
| } |
| if (likely(!node)) { |
| spin_lock(&inode->i_lock); |
| inode->i_state |= I_NEW; |
| hlist_add_head(&inode->i_hash, head); |
| spin_unlock(&inode->i_lock); |
| spin_unlock(&inode_hash_lock); |
| return 0; |
| } |
| __iget(old); |
| spin_unlock(&old->i_lock); |
| spin_unlock(&inode_hash_lock); |
| wait_on_inode(old); |
| if (unlikely(!inode_unhashed(old))) { |
| iput(old); |
| return -EBUSY; |
| } |
| iput(old); |
| } |
| } |
| EXPORT_SYMBOL(insert_inode_locked4); |
| |
| |
| int generic_delete_inode(struct inode *inode) |
| { |
| return 1; |
| } |
| EXPORT_SYMBOL(generic_delete_inode); |
| |
| /* |
| * Normal UNIX filesystem behaviour: delete the |
| * inode when the usage count drops to zero, and |
| * i_nlink is zero. |
| */ |
| int generic_drop_inode(struct inode *inode) |
| { |
| return !inode->i_nlink || inode_unhashed(inode); |
| } |
| EXPORT_SYMBOL_GPL(generic_drop_inode); |
| |
| /* |
| * Called when we're dropping the last reference |
| * to an inode. |
| * |
| * Call the FS "drop_inode()" function, defaulting to |
| * the legacy UNIX filesystem behaviour. If it tells |
| * us to evict inode, do so. Otherwise, retain inode |
| * in cache if fs is alive, sync and evict if fs is |
| * shutting down. |
| */ |
| static void iput_final(struct inode *inode) |
| { |
| struct super_block *sb = inode->i_sb; |
| const struct super_operations *op = inode->i_sb->s_op; |
| int drop; |
| |
| WARN_ON(inode->i_state & I_NEW); |
| |
| if (op->drop_inode) |
| drop = op->drop_inode(inode); |
| else |
| drop = generic_drop_inode(inode); |
| |
| if (!drop && (sb->s_flags & MS_ACTIVE)) { |
| inode->i_state |= I_REFERENCED; |
| if (!(inode->i_state & (I_DIRTY|I_SYNC))) |
| inode_lru_list_add(inode); |
| spin_unlock(&inode->i_lock); |
| return; |
| } |
| |
| if (!drop) { |
| inode->i_state |= I_WILL_FREE; |
| spin_unlock(&inode->i_lock); |
| write_inode_now(inode, 1); |
| spin_lock(&inode->i_lock); |
| WARN_ON(inode->i_state & I_NEW); |
| inode->i_state &= ~I_WILL_FREE; |
| } |
| |
| inode->i_state |= I_FREEING; |
| inode_lru_list_del(inode); |
| spin_unlock(&inode->i_lock); |
| |
| evict(inode); |
| } |
| |
| /** |
| * iput - put an inode |
| * @inode: inode to put |
| * |
| * Puts an inode, dropping its usage count. If the inode use count hits |
| * zero, the inode is then freed and may also be destroyed. |
| * |
| * Consequently, iput() can sleep. |
| */ |
| void iput(struct inode *inode) |
| { |
| if (inode) { |
| BUG_ON(inode->i_state & I_CLEAR); |
| |
| if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) |
| iput_final(inode); |
| } |
| } |
| EXPORT_SYMBOL(iput); |
| |
| /** |
| * bmap - find a block number in a file |
| * @inode: inode of file |
| * @block: block to find |
| * |
| * Returns the block number on the device holding the inode that |
| * is the disk block number for the block of the file requested. |
| * That is, asked for block 4 of inode 1 the function will return the |
| * disk block relative to the disk start that holds that block of the |
| * file. |
| */ |
| sector_t bmap(struct inode *inode, sector_t block) |
| { |
| sector_t res = 0; |
| if (inode->i_mapping->a_ops->bmap) |
| res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); |
| return res; |
| } |
| EXPORT_SYMBOL(bmap); |
| |
| /* |
| * With relative atime, only update atime if the previous atime is |
| * earlier than either the ctime or mtime or if at least a day has |
| * passed since the last atime update. |
| */ |
| static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, |
| struct timespec now) |
| { |
| |
| if (!(mnt->mnt_flags & MNT_RELATIME)) |
| return 1; |
| /* |
| * Is mtime younger than atime? If yes, update atime: |
| */ |
| if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) |
| return 1; |
| /* |
| * Is ctime younger than atime? If yes, update atime: |
| */ |
| if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) |
| return 1; |
| |
| /* |
| * Is the previous atime value older than a day? If yes, |
| * update atime: |
| */ |
| if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) |
| return 1; |
| /* |
| * Good, we can skip the atime update: |
| */ |
| return 0; |
| } |
| |
| /** |
| * touch_atime - update the access time |
| * @mnt: mount the inode is accessed on |
| * @dentry: dentry accessed |
| * |
| * Update the accessed time on an inode and mark it for writeback. |
| * This function automatically handles read only file systems and media, |
| * as well as the "noatime" flag and inode specific "noatime" markers. |
| */ |
| void touch_atime(struct vfsmount *mnt, struct dentry *dentry) |
| { |
| struct inode *inode = dentry->d_inode; |
| struct timespec now; |
| |
| if (inode->i_flags & S_NOATIME) |
| return; |
| if (IS_NOATIME(inode)) |
| return; |
| if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) |
| return; |
| |
| if (mnt->mnt_flags & MNT_NOATIME) |
| return; |
| if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) |
| return; |
| |
| now = current_fs_time(inode->i_sb); |
| |
| if (!relatime_need_update(mnt, inode, now)) |
| return; |
| |
| if (timespec_equal(&inode->i_atime, &now)) |
| return; |
| |
| if (mnt_want_write(mnt)) |
| return; |
| |
| inode->i_atime = now; |
| mark_inode_dirty_sync(inode); |
| mnt_drop_write(mnt); |
| } |
| EXPORT_SYMBOL(touch_atime); |
| |
| /** |
| * file_update_time - update mtime and ctime time |
| * @file: file accessed |
| * |
| * Update the mtime and ctime members of an inode and mark the inode |
| * for writeback. Note that this function is meant exclusively for |
| * usage in the file write path of filesystems, and filesystems may |
| * choose to explicitly ignore update via this function with the |
| * S_NOCMTIME inode flag, e.g. for network filesystem where these |
| * timestamps are handled by the server. |
| */ |
| |
| void file_update_time(struct file *file) |
| { |
| struct inode *inode = file->f_path.dentry->d_inode; |
| struct timespec now; |
| enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; |
| |
| /* First try to exhaust all avenues to not sync */ |
| if (IS_NOCMTIME(inode)) |
| return; |
| |
| now = current_fs_time(inode->i_sb); |
| if (!timespec_equal(&inode->i_mtime, &now)) |
| sync_it = S_MTIME; |
| |
| if (!timespec_equal(&inode->i_ctime, &now)) |
| sync_it |= S_CTIME; |
| |
| if (IS_I_VERSION(inode)) |
| sync_it |= S_VERSION; |
| |
| if (!sync_it) |
| return; |
| |
| /* Finally allowed to write? Takes lock. */ |
| if (mnt_want_write_file(file)) |
| return; |
| |
| /* Only change inode inside the lock region */ |
| if (sync_it & S_VERSION) |
| inode_inc_iversion(inode); |
| if (sync_it & S_CTIME) |
| inode->i_ctime = now; |
| if (sync_it & S_MTIME) |
| inode->i_mtime = now; |
| mark_inode_dirty_sync(inode); |
| mnt_drop_write(file->f_path.mnt); |
| } |
| EXPORT_SYMBOL(file_update_time); |
| |
| int inode_needs_sync(struct inode *inode) |
| { |
| if (IS_SYNC(inode)) |
| return 1; |
| if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(inode_needs_sync); |
| |
| int inode_wait(void *word) |
| { |
| schedule(); |
| return 0; |
| } |
| EXPORT_SYMBOL(inode_wait); |
| |
| /* |
| * If we try to find an inode in the inode hash while it is being |
| * deleted, we have to wait until the filesystem completes its |
| * deletion before reporting that it isn't found. This function waits |
| * until the deletion _might_ have completed. Callers are responsible |
| * to recheck inode state. |
| * |
| * It doesn't matter if I_NEW is not set initially, a call to |
| * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list |
| * will DTRT. |
| */ |
| static void __wait_on_freeing_inode(struct inode *inode) |
| { |
| wait_queue_head_t *wq; |
| DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); |
| wq = bit_waitqueue(&inode->i_state, __I_NEW); |
| prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); |
| spin_unlock(&inode->i_lock); |
| spin_unlock(&inode_hash_lock); |
| schedule(); |
| finish_wait(wq, &wait.wait); |
| spin_lock(&inode_hash_lock); |
| } |
| |
| static __initdata unsigned long ihash_entries; |
| static int __init set_ihash_entries(char *str) |
| { |
| if (!str) |
| return 0; |
| ihash_entries = simple_strtoul(str, &str, 0); |
| return 1; |
| } |
| __setup("ihash_entries=", set_ihash_entries); |
| |
| /* |
| * Initialize the waitqueues and inode hash table. |
| */ |
| void __init inode_init_early(void) |
| { |
| int loop; |
| |
| /* If hashes are distributed across NUMA nodes, defer |
| * hash allocation until vmalloc space is available. |
| */ |
| if (hashdist) |
| return; |
| |
| inode_hashtable = |
| alloc_large_system_hash("Inode-cache", |
| sizeof(struct hlist_head), |
| ihash_entries, |
| 14, |
| HASH_EARLY, |
| &i_hash_shift, |
| &i_hash_mask, |
| 0); |
| |
| for (loop = 0; loop < (1 << i_hash_shift); loop++) |
| INIT_HLIST_HEAD(&inode_hashtable[loop]); |
| } |
| |
| void __init inode_init(void) |
| { |
| int loop; |
| |
| /* inode slab cache */ |
| inode_cachep = kmem_cache_create("inode_cache", |
| sizeof(struct inode), |
| 0, |
| (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| |
| SLAB_MEM_SPREAD), |
| init_once); |
| register_shrinker(&icache_shrinker); |
| |
| /* Hash may have been set up in inode_init_early */ |
| if (!hashdist) |
| return; |
| |
| inode_hashtable = |
| alloc_large_system_hash("Inode-cache", |
| sizeof(struct hlist_head), |
| ihash_entries, |
| 14, |
| 0, |
| &i_hash_shift, |
| &i_hash_mask, |
| 0); |
| |
| for (loop = 0; loop < (1 << i_hash_shift); loop++) |
| INIT_HLIST_HEAD(&inode_hashtable[loop]); |
| } |
| |
| void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) |
| { |
| inode->i_mode = mode; |
| if (S_ISCHR(mode)) { |
| inode->i_fop = &def_chr_fops; |
| inode->i_rdev = rdev; |
| } else if (S_ISBLK(mode)) { |
| inode->i_fop = &def_blk_fops; |
| inode->i_rdev = rdev; |
| } else if (S_ISFIFO(mode)) |
| inode->i_fop = &def_fifo_fops; |
| else if (S_ISSOCK(mode)) |
| inode->i_fop = &bad_sock_fops; |
| else |
| printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" |
| " inode %s:%lu\n", mode, inode->i_sb->s_id, |
| inode->i_ino); |
| } |
| EXPORT_SYMBOL(init_special_inode); |
| |
| /** |
| * inode_init_owner - Init uid,gid,mode for new inode according to posix standards |
| * @inode: New inode |
| * @dir: Directory inode |
| * @mode: mode of the new inode |
| */ |
| void inode_init_owner(struct inode *inode, const struct inode *dir, |
| mode_t mode) |
| { |
| inode->i_uid = current_fsuid(); |
| if (dir && dir->i_mode & S_ISGID) { |
| inode->i_gid = dir->i_gid; |
| if (S_ISDIR(mode)) |
| mode |= S_ISGID; |
| } else |
| inode->i_gid = current_fsgid(); |
| inode->i_mode = mode; |
| } |
| EXPORT_SYMBOL(inode_init_owner); |
| |
| /** |
| * inode_owner_or_capable - check current task permissions to inode |
| * @inode: inode being checked |
| * |
| * Return true if current either has CAP_FOWNER to the inode, or |
| * owns the file. |
| */ |
| bool inode_owner_or_capable(const struct inode *inode) |
| { |
| struct user_namespace *ns = inode_userns(inode); |
| |
| if (current_user_ns() == ns && current_fsuid() == inode->i_uid) |
| return true; |
| if (ns_capable(ns, CAP_FOWNER)) |
| return true; |
| return false; |
| } |
| EXPORT_SYMBOL(inode_owner_or_capable); |