|  | /* | 
|  | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 
|  | * | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | *  Interactivity improvements by Mike Galbraith | 
|  | *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
|  | * | 
|  | *  Various enhancements by Dmitry Adamushko. | 
|  | *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
|  | * | 
|  | *  Group scheduling enhancements by Srivatsa Vaddagiri | 
|  | *  Copyright IBM Corporation, 2007 | 
|  | *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
|  | * | 
|  | *  Scaled math optimizations by Thomas Gleixner | 
|  | *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
|  | * | 
|  | *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
|  | *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/latencytop.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/task_work.h> | 
|  |  | 
|  | #include <trace/events/sched.h> | 
|  |  | 
|  | #include "sched.h" | 
|  |  | 
|  | /* | 
|  | * Targeted preemption latency for CPU-bound tasks: | 
|  | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | 
|  | * | 
|  | * NOTE: this latency value is not the same as the concept of | 
|  | * 'timeslice length' - timeslices in CFS are of variable length | 
|  | * and have no persistent notion like in traditional, time-slice | 
|  | * based scheduling concepts. | 
|  | * | 
|  | * (to see the precise effective timeslice length of your workload, | 
|  | *  run vmstat and monitor the context-switches (cs) field) | 
|  | */ | 
|  | unsigned int sysctl_sched_latency = 6000000ULL; | 
|  | unsigned int normalized_sysctl_sched_latency = 6000000ULL; | 
|  |  | 
|  | /* | 
|  | * The initial- and re-scaling of tunables is configurable | 
|  | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | 
|  | * | 
|  | * Options are: | 
|  | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | 
|  | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | 
|  | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | 
|  | */ | 
|  | enum sched_tunable_scaling sysctl_sched_tunable_scaling | 
|  | = SCHED_TUNABLESCALING_LOG; | 
|  |  | 
|  | /* | 
|  | * Minimal preemption granularity for CPU-bound tasks: | 
|  | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
|  | */ | 
|  | unsigned int sysctl_sched_min_granularity = 750000ULL; | 
|  | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | 
|  |  | 
|  | /* | 
|  | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 
|  | */ | 
|  | static unsigned int sched_nr_latency = 8; | 
|  |  | 
|  | /* | 
|  | * After fork, child runs first. If set to 0 (default) then | 
|  | * parent will (try to) run first. | 
|  | */ | 
|  | unsigned int sysctl_sched_child_runs_first __read_mostly; | 
|  |  | 
|  | /* | 
|  | * SCHED_OTHER wake-up granularity. | 
|  | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
|  | * | 
|  | * This option delays the preemption effects of decoupled workloads | 
|  | * and reduces their over-scheduling. Synchronous workloads will still | 
|  | * have immediate wakeup/sleep latencies. | 
|  | */ | 
|  | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; | 
|  | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | 
|  |  | 
|  | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | 
|  |  | 
|  | /* | 
|  | * The exponential sliding  window over which load is averaged for shares | 
|  | * distribution. | 
|  | * (default: 10msec) | 
|  | */ | 
|  | unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; | 
|  |  | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  | /* | 
|  | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | 
|  | * each time a cfs_rq requests quota. | 
|  | * | 
|  | * Note: in the case that the slice exceeds the runtime remaining (either due | 
|  | * to consumption or the quota being specified to be smaller than the slice) | 
|  | * we will always only issue the remaining available time. | 
|  | * | 
|  | * default: 5 msec, units: microseconds | 
|  | */ | 
|  | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; | 
|  | #endif | 
|  |  | 
|  | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | 
|  | { | 
|  | lw->weight += inc; | 
|  | lw->inv_weight = 0; | 
|  | } | 
|  |  | 
|  | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | 
|  | { | 
|  | lw->weight -= dec; | 
|  | lw->inv_weight = 0; | 
|  | } | 
|  |  | 
|  | static inline void update_load_set(struct load_weight *lw, unsigned long w) | 
|  | { | 
|  | lw->weight = w; | 
|  | lw->inv_weight = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increase the granularity value when there are more CPUs, | 
|  | * because with more CPUs the 'effective latency' as visible | 
|  | * to users decreases. But the relationship is not linear, | 
|  | * so pick a second-best guess by going with the log2 of the | 
|  | * number of CPUs. | 
|  | * | 
|  | * This idea comes from the SD scheduler of Con Kolivas: | 
|  | */ | 
|  | static int get_update_sysctl_factor(void) | 
|  | { | 
|  | unsigned int cpus = min_t(int, num_online_cpus(), 8); | 
|  | unsigned int factor; | 
|  |  | 
|  | switch (sysctl_sched_tunable_scaling) { | 
|  | case SCHED_TUNABLESCALING_NONE: | 
|  | factor = 1; | 
|  | break; | 
|  | case SCHED_TUNABLESCALING_LINEAR: | 
|  | factor = cpus; | 
|  | break; | 
|  | case SCHED_TUNABLESCALING_LOG: | 
|  | default: | 
|  | factor = 1 + ilog2(cpus); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return factor; | 
|  | } | 
|  |  | 
|  | static void update_sysctl(void) | 
|  | { | 
|  | unsigned int factor = get_update_sysctl_factor(); | 
|  |  | 
|  | #define SET_SYSCTL(name) \ | 
|  | (sysctl_##name = (factor) * normalized_sysctl_##name) | 
|  | SET_SYSCTL(sched_min_granularity); | 
|  | SET_SYSCTL(sched_latency); | 
|  | SET_SYSCTL(sched_wakeup_granularity); | 
|  | #undef SET_SYSCTL | 
|  | } | 
|  |  | 
|  | void sched_init_granularity(void) | 
|  | { | 
|  | update_sysctl(); | 
|  | } | 
|  |  | 
|  | #define WMULT_CONST	(~0U) | 
|  | #define WMULT_SHIFT	32 | 
|  |  | 
|  | static void __update_inv_weight(struct load_weight *lw) | 
|  | { | 
|  | unsigned long w; | 
|  |  | 
|  | if (likely(lw->inv_weight)) | 
|  | return; | 
|  |  | 
|  | w = scale_load_down(lw->weight); | 
|  |  | 
|  | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | 
|  | lw->inv_weight = 1; | 
|  | else if (unlikely(!w)) | 
|  | lw->inv_weight = WMULT_CONST; | 
|  | else | 
|  | lw->inv_weight = WMULT_CONST / w; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * delta_exec * weight / lw.weight | 
|  | *   OR | 
|  | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | 
|  | * | 
|  | * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case | 
|  | * we're guaranteed shift stays positive because inv_weight is guaranteed to | 
|  | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | 
|  | * | 
|  | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | 
|  | * weight/lw.weight <= 1, and therefore our shift will also be positive. | 
|  | */ | 
|  | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) | 
|  | { | 
|  | u64 fact = scale_load_down(weight); | 
|  | int shift = WMULT_SHIFT; | 
|  |  | 
|  | __update_inv_weight(lw); | 
|  |  | 
|  | if (unlikely(fact >> 32)) { | 
|  | while (fact >> 32) { | 
|  | fact >>= 1; | 
|  | shift--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* hint to use a 32x32->64 mul */ | 
|  | fact = (u64)(u32)fact * lw->inv_weight; | 
|  |  | 
|  | while (fact >> 32) { | 
|  | fact >>= 1; | 
|  | shift--; | 
|  | } | 
|  |  | 
|  | return mul_u64_u32_shr(delta_exec, fact, shift); | 
|  | } | 
|  |  | 
|  |  | 
|  | const struct sched_class fair_sched_class; | 
|  |  | 
|  | /************************************************************** | 
|  | * CFS operations on generic schedulable entities: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  |  | 
|  | /* cpu runqueue to which this cfs_rq is attached */ | 
|  | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_rq->rq; | 
|  | } | 
|  |  | 
|  | /* An entity is a task if it doesn't "own" a runqueue */ | 
|  | #define entity_is_task(se)	(!se->my_q) | 
|  |  | 
|  | static inline struct task_struct *task_of(struct sched_entity *se) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | WARN_ON_ONCE(!entity_is_task(se)); | 
|  | #endif | 
|  | return container_of(se, struct task_struct, se); | 
|  | } | 
|  |  | 
|  | /* Walk up scheduling entities hierarchy */ | 
|  | #define for_each_sched_entity(se) \ | 
|  | for (; se; se = se->parent) | 
|  |  | 
|  | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
|  | { | 
|  | return p->se.cfs_rq; | 
|  | } | 
|  |  | 
|  | /* runqueue on which this entity is (to be) queued */ | 
|  | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
|  | { | 
|  | return se->cfs_rq; | 
|  | } | 
|  |  | 
|  | /* runqueue "owned" by this group */ | 
|  | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
|  | { | 
|  | return grp->my_q; | 
|  | } | 
|  |  | 
|  | static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, | 
|  | int force_update); | 
|  |  | 
|  | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (!cfs_rq->on_list) { | 
|  | /* | 
|  | * Ensure we either appear before our parent (if already | 
|  | * enqueued) or force our parent to appear after us when it is | 
|  | * enqueued.  The fact that we always enqueue bottom-up | 
|  | * reduces this to two cases. | 
|  | */ | 
|  | if (cfs_rq->tg->parent && | 
|  | cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { | 
|  | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, | 
|  | &rq_of(cfs_rq)->leaf_cfs_rq_list); | 
|  | } else { | 
|  | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | 
|  | &rq_of(cfs_rq)->leaf_cfs_rq_list); | 
|  | } | 
|  |  | 
|  | cfs_rq->on_list = 1; | 
|  | /* We should have no load, but we need to update last_decay. */ | 
|  | update_cfs_rq_blocked_load(cfs_rq, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (cfs_rq->on_list) { | 
|  | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | 
|  | cfs_rq->on_list = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | 
|  | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
|  | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | 
|  |  | 
|  | /* Do the two (enqueued) entities belong to the same group ? */ | 
|  | static inline struct cfs_rq * | 
|  | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
|  | { | 
|  | if (se->cfs_rq == pse->cfs_rq) | 
|  | return se->cfs_rq; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
|  | { | 
|  | return se->parent; | 
|  | } | 
|  |  | 
|  | static void | 
|  | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
|  | { | 
|  | int se_depth, pse_depth; | 
|  |  | 
|  | /* | 
|  | * preemption test can be made between sibling entities who are in the | 
|  | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | 
|  | * both tasks until we find their ancestors who are siblings of common | 
|  | * parent. | 
|  | */ | 
|  |  | 
|  | /* First walk up until both entities are at same depth */ | 
|  | se_depth = (*se)->depth; | 
|  | pse_depth = (*pse)->depth; | 
|  |  | 
|  | while (se_depth > pse_depth) { | 
|  | se_depth--; | 
|  | *se = parent_entity(*se); | 
|  | } | 
|  |  | 
|  | while (pse_depth > se_depth) { | 
|  | pse_depth--; | 
|  | *pse = parent_entity(*pse); | 
|  | } | 
|  |  | 
|  | while (!is_same_group(*se, *pse)) { | 
|  | *se = parent_entity(*se); | 
|  | *pse = parent_entity(*pse); | 
|  | } | 
|  | } | 
|  |  | 
|  | #else	/* !CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | static inline struct task_struct *task_of(struct sched_entity *se) | 
|  | { | 
|  | return container_of(se, struct task_struct, se); | 
|  | } | 
|  |  | 
|  | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return container_of(cfs_rq, struct rq, cfs); | 
|  | } | 
|  |  | 
|  | #define entity_is_task(se)	1 | 
|  |  | 
|  | #define for_each_sched_entity(se) \ | 
|  | for (; se; se = NULL) | 
|  |  | 
|  | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
|  | { | 
|  | return &task_rq(p)->cfs; | 
|  | } | 
|  |  | 
|  | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
|  | { | 
|  | struct task_struct *p = task_of(se); | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | return &rq->cfs; | 
|  | } | 
|  |  | 
|  | /* runqueue "owned" by this group */ | 
|  | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
|  | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | 
|  |  | 
|  | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | static __always_inline | 
|  | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); | 
|  |  | 
|  | /************************************************************** | 
|  | * Scheduling class tree data structure manipulation methods: | 
|  | */ | 
|  |  | 
|  | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) | 
|  | { | 
|  | s64 delta = (s64)(vruntime - max_vruntime); | 
|  | if (delta > 0) | 
|  | max_vruntime = vruntime; | 
|  |  | 
|  | return max_vruntime; | 
|  | } | 
|  |  | 
|  | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | 
|  | { | 
|  | s64 delta = (s64)(vruntime - min_vruntime); | 
|  | if (delta < 0) | 
|  | min_vruntime = vruntime; | 
|  |  | 
|  | return min_vruntime; | 
|  | } | 
|  |  | 
|  | static inline int entity_before(struct sched_entity *a, | 
|  | struct sched_entity *b) | 
|  | { | 
|  | return (s64)(a->vruntime - b->vruntime) < 0; | 
|  | } | 
|  |  | 
|  | static void update_min_vruntime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | u64 vruntime = cfs_rq->min_vruntime; | 
|  |  | 
|  | if (cfs_rq->curr) | 
|  | vruntime = cfs_rq->curr->vruntime; | 
|  |  | 
|  | if (cfs_rq->rb_leftmost) { | 
|  | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | 
|  | struct sched_entity, | 
|  | run_node); | 
|  |  | 
|  | if (!cfs_rq->curr) | 
|  | vruntime = se->vruntime; | 
|  | else | 
|  | vruntime = min_vruntime(vruntime, se->vruntime); | 
|  | } | 
|  |  | 
|  | /* ensure we never gain time by being placed backwards. */ | 
|  | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | 
|  | #ifndef CONFIG_64BIT | 
|  | smp_wmb(); | 
|  | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enqueue an entity into the rb-tree: | 
|  | */ | 
|  | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct sched_entity *entry; | 
|  | int leftmost = 1; | 
|  |  | 
|  | /* | 
|  | * Find the right place in the rbtree: | 
|  | */ | 
|  | while (*link) { | 
|  | parent = *link; | 
|  | entry = rb_entry(parent, struct sched_entity, run_node); | 
|  | /* | 
|  | * We dont care about collisions. Nodes with | 
|  | * the same key stay together. | 
|  | */ | 
|  | if (entity_before(se, entry)) { | 
|  | link = &parent->rb_left; | 
|  | } else { | 
|  | link = &parent->rb_right; | 
|  | leftmost = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Maintain a cache of leftmost tree entries (it is frequently | 
|  | * used): | 
|  | */ | 
|  | if (leftmost) | 
|  | cfs_rq->rb_leftmost = &se->run_node; | 
|  |  | 
|  | rb_link_node(&se->run_node, parent, link); | 
|  | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | 
|  | } | 
|  |  | 
|  | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | if (cfs_rq->rb_leftmost == &se->run_node) { | 
|  | struct rb_node *next_node; | 
|  |  | 
|  | next_node = rb_next(&se->run_node); | 
|  | cfs_rq->rb_leftmost = next_node; | 
|  | } | 
|  |  | 
|  | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 
|  | } | 
|  |  | 
|  | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rb_node *left = cfs_rq->rb_leftmost; | 
|  |  | 
|  | if (!left) | 
|  | return NULL; | 
|  |  | 
|  | return rb_entry(left, struct sched_entity, run_node); | 
|  | } | 
|  |  | 
|  | static struct sched_entity *__pick_next_entity(struct sched_entity *se) | 
|  | { | 
|  | struct rb_node *next = rb_next(&se->run_node); | 
|  |  | 
|  | if (!next) | 
|  | return NULL; | 
|  |  | 
|  | return rb_entry(next, struct sched_entity, run_node); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | 
|  |  | 
|  | if (!last) | 
|  | return NULL; | 
|  |  | 
|  | return rb_entry(last, struct sched_entity, run_node); | 
|  | } | 
|  |  | 
|  | /************************************************************** | 
|  | * Scheduling class statistics methods: | 
|  | */ | 
|  |  | 
|  | int sched_proc_update_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, | 
|  | loff_t *ppos) | 
|  | { | 
|  | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
|  | int factor = get_update_sysctl_factor(); | 
|  |  | 
|  | if (ret || !write) | 
|  | return ret; | 
|  |  | 
|  | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | 
|  | sysctl_sched_min_granularity); | 
|  |  | 
|  | #define WRT_SYSCTL(name) \ | 
|  | (normalized_sysctl_##name = sysctl_##name / (factor)) | 
|  | WRT_SYSCTL(sched_min_granularity); | 
|  | WRT_SYSCTL(sched_latency); | 
|  | WRT_SYSCTL(sched_wakeup_granularity); | 
|  | #undef WRT_SYSCTL | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * delta /= w | 
|  | */ | 
|  | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) | 
|  | { | 
|  | if (unlikely(se->load.weight != NICE_0_LOAD)) | 
|  | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The idea is to set a period in which each task runs once. | 
|  | * | 
|  | * When there are too many tasks (sched_nr_latency) we have to stretch | 
|  | * this period because otherwise the slices get too small. | 
|  | * | 
|  | * p = (nr <= nl) ? l : l*nr/nl | 
|  | */ | 
|  | static u64 __sched_period(unsigned long nr_running) | 
|  | { | 
|  | u64 period = sysctl_sched_latency; | 
|  | unsigned long nr_latency = sched_nr_latency; | 
|  |  | 
|  | if (unlikely(nr_running > nr_latency)) { | 
|  | period = sysctl_sched_min_granularity; | 
|  | period *= nr_running; | 
|  | } | 
|  |  | 
|  | return period; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We calculate the wall-time slice from the period by taking a part | 
|  | * proportional to the weight. | 
|  | * | 
|  | * s = p*P[w/rw] | 
|  | */ | 
|  | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | struct load_weight *load; | 
|  | struct load_weight lw; | 
|  |  | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | load = &cfs_rq->load; | 
|  |  | 
|  | if (unlikely(!se->on_rq)) { | 
|  | lw = cfs_rq->load; | 
|  |  | 
|  | update_load_add(&lw, se->load.weight); | 
|  | load = &lw; | 
|  | } | 
|  | slice = __calc_delta(slice, se->load.weight, load); | 
|  | } | 
|  | return slice; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We calculate the vruntime slice of a to-be-inserted task. | 
|  | * | 
|  | * vs = s/w | 
|  | */ | 
|  | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | return calc_delta_fair(sched_slice(cfs_rq, se), se); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static unsigned long task_h_load(struct task_struct *p); | 
|  |  | 
|  | static inline void __update_task_entity_contrib(struct sched_entity *se); | 
|  |  | 
|  | /* Give new task start runnable values to heavy its load in infant time */ | 
|  | void init_task_runnable_average(struct task_struct *p) | 
|  | { | 
|  | u32 slice; | 
|  |  | 
|  | p->se.avg.decay_count = 0; | 
|  | slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; | 
|  | p->se.avg.runnable_avg_sum = slice; | 
|  | p->se.avg.runnable_avg_period = slice; | 
|  | __update_task_entity_contrib(&p->se); | 
|  | } | 
|  | #else | 
|  | void init_task_runnable_average(struct task_struct *p) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Update the current task's runtime statistics. | 
|  | */ | 
|  | static void update_curr(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  | u64 now = rq_clock_task(rq_of(cfs_rq)); | 
|  | u64 delta_exec; | 
|  |  | 
|  | if (unlikely(!curr)) | 
|  | return; | 
|  |  | 
|  | delta_exec = now - curr->exec_start; | 
|  | if (unlikely((s64)delta_exec <= 0)) | 
|  | return; | 
|  |  | 
|  | curr->exec_start = now; | 
|  |  | 
|  | schedstat_set(curr->statistics.exec_max, | 
|  | max(delta_exec, curr->statistics.exec_max)); | 
|  |  | 
|  | curr->sum_exec_runtime += delta_exec; | 
|  | schedstat_add(cfs_rq, exec_clock, delta_exec); | 
|  |  | 
|  | curr->vruntime += calc_delta_fair(delta_exec, curr); | 
|  | update_min_vruntime(cfs_rq); | 
|  |  | 
|  | if (entity_is_task(curr)) { | 
|  | struct task_struct *curtask = task_of(curr); | 
|  |  | 
|  | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | 
|  | cpuacct_charge(curtask, delta_exec); | 
|  | account_group_exec_runtime(curtask, delta_exec); | 
|  | } | 
|  |  | 
|  | account_cfs_rq_runtime(cfs_rq, delta_exec); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Task is being enqueued - update stats: | 
|  | */ | 
|  | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * Are we enqueueing a waiting task? (for current tasks | 
|  | * a dequeue/enqueue event is a NOP) | 
|  | */ | 
|  | if (se != cfs_rq->curr) | 
|  | update_stats_wait_start(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | static void | 
|  | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, | 
|  | rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); | 
|  | schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); | 
|  | schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + | 
|  | rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (entity_is_task(se)) { | 
|  | trace_sched_stat_wait(task_of(se), | 
|  | rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); | 
|  | } | 
|  | #endif | 
|  | schedstat_set(se->statistics.wait_start, 0); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * Mark the end of the wait period if dequeueing a | 
|  | * waiting task: | 
|  | */ | 
|  | if (se != cfs_rq->curr) | 
|  | update_stats_wait_end(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are picking a new current task - update its stats: | 
|  | */ | 
|  | static inline void | 
|  | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* | 
|  | * We are starting a new run period: | 
|  | */ | 
|  | se->exec_start = rq_clock_task(rq_of(cfs_rq)); | 
|  | } | 
|  |  | 
|  | /************************************************** | 
|  | * Scheduling class queueing methods: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | /* | 
|  | * Approximate time to scan a full NUMA task in ms. The task scan period is | 
|  | * calculated based on the tasks virtual memory size and | 
|  | * numa_balancing_scan_size. | 
|  | */ | 
|  | unsigned int sysctl_numa_balancing_scan_period_min = 1000; | 
|  | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | 
|  |  | 
|  | /* Portion of address space to scan in MB */ | 
|  | unsigned int sysctl_numa_balancing_scan_size = 256; | 
|  |  | 
|  | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ | 
|  | unsigned int sysctl_numa_balancing_scan_delay = 1000; | 
|  |  | 
|  | static unsigned int task_nr_scan_windows(struct task_struct *p) | 
|  | { | 
|  | unsigned long rss = 0; | 
|  | unsigned long nr_scan_pages; | 
|  |  | 
|  | /* | 
|  | * Calculations based on RSS as non-present and empty pages are skipped | 
|  | * by the PTE scanner and NUMA hinting faults should be trapped based | 
|  | * on resident pages | 
|  | */ | 
|  | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); | 
|  | rss = get_mm_rss(p->mm); | 
|  | if (!rss) | 
|  | rss = nr_scan_pages; | 
|  |  | 
|  | rss = round_up(rss, nr_scan_pages); | 
|  | return rss / nr_scan_pages; | 
|  | } | 
|  |  | 
|  | /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ | 
|  | #define MAX_SCAN_WINDOW 2560 | 
|  |  | 
|  | static unsigned int task_scan_min(struct task_struct *p) | 
|  | { | 
|  | unsigned int scan, floor; | 
|  | unsigned int windows = 1; | 
|  |  | 
|  | if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW) | 
|  | windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size; | 
|  | floor = 1000 / windows; | 
|  |  | 
|  | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | 
|  | return max_t(unsigned int, floor, scan); | 
|  | } | 
|  |  | 
|  | static unsigned int task_scan_max(struct task_struct *p) | 
|  | { | 
|  | unsigned int smin = task_scan_min(p); | 
|  | unsigned int smax; | 
|  |  | 
|  | /* Watch for min being lower than max due to floor calculations */ | 
|  | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | 
|  | return max(smin, smax); | 
|  | } | 
|  |  | 
|  | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | rq->nr_numa_running += (p->numa_preferred_nid != -1); | 
|  | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); | 
|  | } | 
|  |  | 
|  | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | rq->nr_numa_running -= (p->numa_preferred_nid != -1); | 
|  | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); | 
|  | } | 
|  |  | 
|  | struct numa_group { | 
|  | atomic_t refcount; | 
|  |  | 
|  | spinlock_t lock; /* nr_tasks, tasks */ | 
|  | int nr_tasks; | 
|  | pid_t gid; | 
|  | struct list_head task_list; | 
|  |  | 
|  | struct rcu_head rcu; | 
|  | nodemask_t active_nodes; | 
|  | unsigned long total_faults; | 
|  | /* | 
|  | * Faults_cpu is used to decide whether memory should move | 
|  | * towards the CPU. As a consequence, these stats are weighted | 
|  | * more by CPU use than by memory faults. | 
|  | */ | 
|  | unsigned long *faults_cpu; | 
|  | unsigned long faults[0]; | 
|  | }; | 
|  |  | 
|  | /* Shared or private faults. */ | 
|  | #define NR_NUMA_HINT_FAULT_TYPES 2 | 
|  |  | 
|  | /* Memory and CPU locality */ | 
|  | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | 
|  |  | 
|  | /* Averaged statistics, and temporary buffers. */ | 
|  | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | 
|  |  | 
|  | pid_t task_numa_group_id(struct task_struct *p) | 
|  | { | 
|  | return p->numa_group ? p->numa_group->gid : 0; | 
|  | } | 
|  |  | 
|  | static inline int task_faults_idx(int nid, int priv) | 
|  | { | 
|  | return NR_NUMA_HINT_FAULT_TYPES * nid + priv; | 
|  | } | 
|  |  | 
|  | static inline unsigned long task_faults(struct task_struct *p, int nid) | 
|  | { | 
|  | if (!p->numa_faults_memory) | 
|  | return 0; | 
|  |  | 
|  | return p->numa_faults_memory[task_faults_idx(nid, 0)] + | 
|  | p->numa_faults_memory[task_faults_idx(nid, 1)]; | 
|  | } | 
|  |  | 
|  | static inline unsigned long group_faults(struct task_struct *p, int nid) | 
|  | { | 
|  | if (!p->numa_group) | 
|  | return 0; | 
|  |  | 
|  | return p->numa_group->faults[task_faults_idx(nid, 0)] + | 
|  | p->numa_group->faults[task_faults_idx(nid, 1)]; | 
|  | } | 
|  |  | 
|  | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) | 
|  | { | 
|  | return group->faults_cpu[task_faults_idx(nid, 0)] + | 
|  | group->faults_cpu[task_faults_idx(nid, 1)]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These return the fraction of accesses done by a particular task, or | 
|  | * task group, on a particular numa node.  The group weight is given a | 
|  | * larger multiplier, in order to group tasks together that are almost | 
|  | * evenly spread out between numa nodes. | 
|  | */ | 
|  | static inline unsigned long task_weight(struct task_struct *p, int nid) | 
|  | { | 
|  | unsigned long total_faults; | 
|  |  | 
|  | if (!p->numa_faults_memory) | 
|  | return 0; | 
|  |  | 
|  | total_faults = p->total_numa_faults; | 
|  |  | 
|  | if (!total_faults) | 
|  | return 0; | 
|  |  | 
|  | return 1000 * task_faults(p, nid) / total_faults; | 
|  | } | 
|  |  | 
|  | static inline unsigned long group_weight(struct task_struct *p, int nid) | 
|  | { | 
|  | if (!p->numa_group || !p->numa_group->total_faults) | 
|  | return 0; | 
|  |  | 
|  | return 1000 * group_faults(p, nid) / p->numa_group->total_faults; | 
|  | } | 
|  |  | 
|  | bool should_numa_migrate_memory(struct task_struct *p, struct page * page, | 
|  | int src_nid, int dst_cpu) | 
|  | { | 
|  | struct numa_group *ng = p->numa_group; | 
|  | int dst_nid = cpu_to_node(dst_cpu); | 
|  | int last_cpupid, this_cpupid; | 
|  |  | 
|  | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); | 
|  |  | 
|  | /* | 
|  | * Multi-stage node selection is used in conjunction with a periodic | 
|  | * migration fault to build a temporal task<->page relation. By using | 
|  | * a two-stage filter we remove short/unlikely relations. | 
|  | * | 
|  | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | 
|  | * a task's usage of a particular page (n_p) per total usage of this | 
|  | * page (n_t) (in a given time-span) to a probability. | 
|  | * | 
|  | * Our periodic faults will sample this probability and getting the | 
|  | * same result twice in a row, given these samples are fully | 
|  | * independent, is then given by P(n)^2, provided our sample period | 
|  | * is sufficiently short compared to the usage pattern. | 
|  | * | 
|  | * This quadric squishes small probabilities, making it less likely we | 
|  | * act on an unlikely task<->page relation. | 
|  | */ | 
|  | last_cpupid = page_cpupid_xchg_last(page, this_cpupid); | 
|  | if (!cpupid_pid_unset(last_cpupid) && | 
|  | cpupid_to_nid(last_cpupid) != dst_nid) | 
|  | return false; | 
|  |  | 
|  | /* Always allow migrate on private faults */ | 
|  | if (cpupid_match_pid(p, last_cpupid)) | 
|  | return true; | 
|  |  | 
|  | /* A shared fault, but p->numa_group has not been set up yet. */ | 
|  | if (!ng) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Do not migrate if the destination is not a node that | 
|  | * is actively used by this numa group. | 
|  | */ | 
|  | if (!node_isset(dst_nid, ng->active_nodes)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Source is a node that is not actively used by this | 
|  | * numa group, while the destination is. Migrate. | 
|  | */ | 
|  | if (!node_isset(src_nid, ng->active_nodes)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Both source and destination are nodes in active | 
|  | * use by this numa group. Maximize memory bandwidth | 
|  | * by migrating from more heavily used groups, to less | 
|  | * heavily used ones, spreading the load around. | 
|  | * Use a 1/4 hysteresis to avoid spurious page movement. | 
|  | */ | 
|  | return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); | 
|  | } | 
|  |  | 
|  | static unsigned long weighted_cpuload(const int cpu); | 
|  | static unsigned long source_load(int cpu, int type); | 
|  | static unsigned long target_load(int cpu, int type); | 
|  | static unsigned long capacity_of(int cpu); | 
|  | static long effective_load(struct task_group *tg, int cpu, long wl, long wg); | 
|  |  | 
|  | /* Cached statistics for all CPUs within a node */ | 
|  | struct numa_stats { | 
|  | unsigned long nr_running; | 
|  | unsigned long load; | 
|  |  | 
|  | /* Total compute capacity of CPUs on a node */ | 
|  | unsigned long compute_capacity; | 
|  |  | 
|  | /* Approximate capacity in terms of runnable tasks on a node */ | 
|  | unsigned long task_capacity; | 
|  | int has_free_capacity; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * XXX borrowed from update_sg_lb_stats | 
|  | */ | 
|  | static void update_numa_stats(struct numa_stats *ns, int nid) | 
|  | { | 
|  | int cpu, cpus = 0; | 
|  |  | 
|  | memset(ns, 0, sizeof(*ns)); | 
|  | for_each_cpu(cpu, cpumask_of_node(nid)) { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | ns->nr_running += rq->nr_running; | 
|  | ns->load += weighted_cpuload(cpu); | 
|  | ns->compute_capacity += capacity_of(cpu); | 
|  |  | 
|  | cpus++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we raced with hotplug and there are no CPUs left in our mask | 
|  | * the @ns structure is NULL'ed and task_numa_compare() will | 
|  | * not find this node attractive. | 
|  | * | 
|  | * We'll either bail at !has_free_capacity, or we'll detect a huge | 
|  | * imbalance and bail there. | 
|  | */ | 
|  | if (!cpus) | 
|  | return; | 
|  |  | 
|  | ns->load = (ns->load * SCHED_CAPACITY_SCALE) / ns->compute_capacity; | 
|  | ns->task_capacity = | 
|  | DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE); | 
|  | ns->has_free_capacity = (ns->nr_running < ns->task_capacity); | 
|  | } | 
|  |  | 
|  | struct task_numa_env { | 
|  | struct task_struct *p; | 
|  |  | 
|  | int src_cpu, src_nid; | 
|  | int dst_cpu, dst_nid; | 
|  |  | 
|  | struct numa_stats src_stats, dst_stats; | 
|  |  | 
|  | int imbalance_pct; | 
|  |  | 
|  | struct task_struct *best_task; | 
|  | long best_imp; | 
|  | int best_cpu; | 
|  | }; | 
|  |  | 
|  | static void task_numa_assign(struct task_numa_env *env, | 
|  | struct task_struct *p, long imp) | 
|  | { | 
|  | if (env->best_task) | 
|  | put_task_struct(env->best_task); | 
|  | if (p) | 
|  | get_task_struct(p); | 
|  |  | 
|  | env->best_task = p; | 
|  | env->best_imp = imp; | 
|  | env->best_cpu = env->dst_cpu; | 
|  | } | 
|  |  | 
|  | static bool load_too_imbalanced(long orig_src_load, long orig_dst_load, | 
|  | long src_load, long dst_load, | 
|  | struct task_numa_env *env) | 
|  | { | 
|  | long imb, old_imb; | 
|  |  | 
|  | /* We care about the slope of the imbalance, not the direction. */ | 
|  | if (dst_load < src_load) | 
|  | swap(dst_load, src_load); | 
|  |  | 
|  | /* Is the difference below the threshold? */ | 
|  | imb = dst_load * 100 - src_load * env->imbalance_pct; | 
|  | if (imb <= 0) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The imbalance is above the allowed threshold. | 
|  | * Compare it with the old imbalance. | 
|  | */ | 
|  | if (orig_dst_load < orig_src_load) | 
|  | swap(orig_dst_load, orig_src_load); | 
|  |  | 
|  | old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct; | 
|  |  | 
|  | /* Would this change make things worse? */ | 
|  | return (imb > old_imb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This checks if the overall compute and NUMA accesses of the system would | 
|  | * be improved if the source tasks was migrated to the target dst_cpu taking | 
|  | * into account that it might be best if task running on the dst_cpu should | 
|  | * be exchanged with the source task | 
|  | */ | 
|  | static void task_numa_compare(struct task_numa_env *env, | 
|  | long taskimp, long groupimp) | 
|  | { | 
|  | struct rq *src_rq = cpu_rq(env->src_cpu); | 
|  | struct rq *dst_rq = cpu_rq(env->dst_cpu); | 
|  | struct task_struct *cur; | 
|  | long orig_src_load, src_load; | 
|  | long orig_dst_load, dst_load; | 
|  | long load; | 
|  | long imp = (groupimp > 0) ? groupimp : taskimp; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cur = ACCESS_ONCE(dst_rq->curr); | 
|  | if (cur->pid == 0) /* idle */ | 
|  | cur = NULL; | 
|  |  | 
|  | /* | 
|  | * "imp" is the fault differential for the source task between the | 
|  | * source and destination node. Calculate the total differential for | 
|  | * the source task and potential destination task. The more negative | 
|  | * the value is, the more rmeote accesses that would be expected to | 
|  | * be incurred if the tasks were swapped. | 
|  | */ | 
|  | if (cur) { | 
|  | /* Skip this swap candidate if cannot move to the source cpu */ | 
|  | if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * If dst and source tasks are in the same NUMA group, or not | 
|  | * in any group then look only at task weights. | 
|  | */ | 
|  | if (cur->numa_group == env->p->numa_group) { | 
|  | imp = taskimp + task_weight(cur, env->src_nid) - | 
|  | task_weight(cur, env->dst_nid); | 
|  | /* | 
|  | * Add some hysteresis to prevent swapping the | 
|  | * tasks within a group over tiny differences. | 
|  | */ | 
|  | if (cur->numa_group) | 
|  | imp -= imp/16; | 
|  | } else { | 
|  | /* | 
|  | * Compare the group weights. If a task is all by | 
|  | * itself (not part of a group), use the task weight | 
|  | * instead. | 
|  | */ | 
|  | if (env->p->numa_group) | 
|  | imp = groupimp; | 
|  | else | 
|  | imp = taskimp; | 
|  |  | 
|  | if (cur->numa_group) | 
|  | imp += group_weight(cur, env->src_nid) - | 
|  | group_weight(cur, env->dst_nid); | 
|  | else | 
|  | imp += task_weight(cur, env->src_nid) - | 
|  | task_weight(cur, env->dst_nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (imp < env->best_imp) | 
|  | goto unlock; | 
|  |  | 
|  | if (!cur) { | 
|  | /* Is there capacity at our destination? */ | 
|  | if (env->src_stats.has_free_capacity && | 
|  | !env->dst_stats.has_free_capacity) | 
|  | goto unlock; | 
|  |  | 
|  | goto balance; | 
|  | } | 
|  |  | 
|  | /* Balance doesn't matter much if we're running a task per cpu */ | 
|  | if (src_rq->nr_running == 1 && dst_rq->nr_running == 1) | 
|  | goto assign; | 
|  |  | 
|  | /* | 
|  | * In the overloaded case, try and keep the load balanced. | 
|  | */ | 
|  | balance: | 
|  | orig_dst_load = env->dst_stats.load; | 
|  | orig_src_load = env->src_stats.load; | 
|  |  | 
|  | /* XXX missing capacity terms */ | 
|  | load = task_h_load(env->p); | 
|  | dst_load = orig_dst_load + load; | 
|  | src_load = orig_src_load - load; | 
|  |  | 
|  | if (cur) { | 
|  | load = task_h_load(cur); | 
|  | dst_load -= load; | 
|  | src_load += load; | 
|  | } | 
|  |  | 
|  | if (load_too_imbalanced(orig_src_load, orig_dst_load, | 
|  | src_load, dst_load, env)) | 
|  | goto unlock; | 
|  |  | 
|  | assign: | 
|  | task_numa_assign(env, cur, imp); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void task_numa_find_cpu(struct task_numa_env *env, | 
|  | long taskimp, long groupimp) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { | 
|  | /* Skip this CPU if the source task cannot migrate */ | 
|  | if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) | 
|  | continue; | 
|  |  | 
|  | env->dst_cpu = cpu; | 
|  | task_numa_compare(env, taskimp, groupimp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int task_numa_migrate(struct task_struct *p) | 
|  | { | 
|  | struct task_numa_env env = { | 
|  | .p = p, | 
|  |  | 
|  | .src_cpu = task_cpu(p), | 
|  | .src_nid = task_node(p), | 
|  |  | 
|  | .imbalance_pct = 112, | 
|  |  | 
|  | .best_task = NULL, | 
|  | .best_imp = 0, | 
|  | .best_cpu = -1 | 
|  | }; | 
|  | struct sched_domain *sd; | 
|  | unsigned long taskweight, groupweight; | 
|  | int nid, ret; | 
|  | long taskimp, groupimp; | 
|  |  | 
|  | /* | 
|  | * Pick the lowest SD_NUMA domain, as that would have the smallest | 
|  | * imbalance and would be the first to start moving tasks about. | 
|  | * | 
|  | * And we want to avoid any moving of tasks about, as that would create | 
|  | * random movement of tasks -- counter the numa conditions we're trying | 
|  | * to satisfy here. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); | 
|  | if (sd) | 
|  | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Cpusets can break the scheduler domain tree into smaller | 
|  | * balance domains, some of which do not cross NUMA boundaries. | 
|  | * Tasks that are "trapped" in such domains cannot be migrated | 
|  | * elsewhere, so there is no point in (re)trying. | 
|  | */ | 
|  | if (unlikely(!sd)) { | 
|  | p->numa_preferred_nid = task_node(p); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | taskweight = task_weight(p, env.src_nid); | 
|  | groupweight = group_weight(p, env.src_nid); | 
|  | update_numa_stats(&env.src_stats, env.src_nid); | 
|  | env.dst_nid = p->numa_preferred_nid; | 
|  | taskimp = task_weight(p, env.dst_nid) - taskweight; | 
|  | groupimp = group_weight(p, env.dst_nid) - groupweight; | 
|  | update_numa_stats(&env.dst_stats, env.dst_nid); | 
|  |  | 
|  | /* If the preferred nid has free capacity, try to use it. */ | 
|  | if (env.dst_stats.has_free_capacity) | 
|  | task_numa_find_cpu(&env, taskimp, groupimp); | 
|  |  | 
|  | /* No space available on the preferred nid. Look elsewhere. */ | 
|  | if (env.best_cpu == -1) { | 
|  | for_each_online_node(nid) { | 
|  | if (nid == env.src_nid || nid == p->numa_preferred_nid) | 
|  | continue; | 
|  |  | 
|  | /* Only consider nodes where both task and groups benefit */ | 
|  | taskimp = task_weight(p, nid) - taskweight; | 
|  | groupimp = group_weight(p, nid) - groupweight; | 
|  | if (taskimp < 0 && groupimp < 0) | 
|  | continue; | 
|  |  | 
|  | env.dst_nid = nid; | 
|  | update_numa_stats(&env.dst_stats, env.dst_nid); | 
|  | task_numa_find_cpu(&env, taskimp, groupimp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No better CPU than the current one was found. */ | 
|  | if (env.best_cpu == -1) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * If the task is part of a workload that spans multiple NUMA nodes, | 
|  | * and is migrating into one of the workload's active nodes, remember | 
|  | * this node as the task's preferred numa node, so the workload can | 
|  | * settle down. | 
|  | * A task that migrated to a second choice node will be better off | 
|  | * trying for a better one later. Do not set the preferred node here. | 
|  | */ | 
|  | if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes)) | 
|  | sched_setnuma(p, env.dst_nid); | 
|  |  | 
|  | /* | 
|  | * Reset the scan period if the task is being rescheduled on an | 
|  | * alternative node to recheck if the tasks is now properly placed. | 
|  | */ | 
|  | p->numa_scan_period = task_scan_min(p); | 
|  |  | 
|  | if (env.best_task == NULL) { | 
|  | ret = migrate_task_to(p, env.best_cpu); | 
|  | if (ret != 0) | 
|  | trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = migrate_swap(p, env.best_task); | 
|  | if (ret != 0) | 
|  | trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); | 
|  | put_task_struct(env.best_task); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Attempt to migrate a task to a CPU on the preferred node. */ | 
|  | static void numa_migrate_preferred(struct task_struct *p) | 
|  | { | 
|  | unsigned long interval = HZ; | 
|  |  | 
|  | /* This task has no NUMA fault statistics yet */ | 
|  | if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory)) | 
|  | return; | 
|  |  | 
|  | /* Periodically retry migrating the task to the preferred node */ | 
|  | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); | 
|  | p->numa_migrate_retry = jiffies + interval; | 
|  |  | 
|  | /* Success if task is already running on preferred CPU */ | 
|  | if (task_node(p) == p->numa_preferred_nid) | 
|  | return; | 
|  |  | 
|  | /* Otherwise, try migrate to a CPU on the preferred node */ | 
|  | task_numa_migrate(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the nodes on which the workload is actively running. We do this by | 
|  | * tracking the nodes from which NUMA hinting faults are triggered. This can | 
|  | * be different from the set of nodes where the workload's memory is currently | 
|  | * located. | 
|  | * | 
|  | * The bitmask is used to make smarter decisions on when to do NUMA page | 
|  | * migrations, To prevent flip-flopping, and excessive page migrations, nodes | 
|  | * are added when they cause over 6/16 of the maximum number of faults, but | 
|  | * only removed when they drop below 3/16. | 
|  | */ | 
|  | static void update_numa_active_node_mask(struct numa_group *numa_group) | 
|  | { | 
|  | unsigned long faults, max_faults = 0; | 
|  | int nid; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | faults = group_faults_cpu(numa_group, nid); | 
|  | if (faults > max_faults) | 
|  | max_faults = faults; | 
|  | } | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | faults = group_faults_cpu(numa_group, nid); | 
|  | if (!node_isset(nid, numa_group->active_nodes)) { | 
|  | if (faults > max_faults * 6 / 16) | 
|  | node_set(nid, numa_group->active_nodes); | 
|  | } else if (faults < max_faults * 3 / 16) | 
|  | node_clear(nid, numa_group->active_nodes); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | 
|  | * increments. The more local the fault statistics are, the higher the scan | 
|  | * period will be for the next scan window. If local/remote ratio is below | 
|  | * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the | 
|  | * scan period will decrease | 
|  | */ | 
|  | #define NUMA_PERIOD_SLOTS 10 | 
|  | #define NUMA_PERIOD_THRESHOLD 3 | 
|  |  | 
|  | /* | 
|  | * Increase the scan period (slow down scanning) if the majority of | 
|  | * our memory is already on our local node, or if the majority of | 
|  | * the page accesses are shared with other processes. | 
|  | * Otherwise, decrease the scan period. | 
|  | */ | 
|  | static void update_task_scan_period(struct task_struct *p, | 
|  | unsigned long shared, unsigned long private) | 
|  | { | 
|  | unsigned int period_slot; | 
|  | int ratio; | 
|  | int diff; | 
|  |  | 
|  | unsigned long remote = p->numa_faults_locality[0]; | 
|  | unsigned long local = p->numa_faults_locality[1]; | 
|  |  | 
|  | /* | 
|  | * If there were no record hinting faults then either the task is | 
|  | * completely idle or all activity is areas that are not of interest | 
|  | * to automatic numa balancing. Scan slower | 
|  | */ | 
|  | if (local + shared == 0) { | 
|  | p->numa_scan_period = min(p->numa_scan_period_max, | 
|  | p->numa_scan_period << 1); | 
|  |  | 
|  | p->mm->numa_next_scan = jiffies + | 
|  | msecs_to_jiffies(p->numa_scan_period); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare to scale scan period relative to the current period. | 
|  | *	 == NUMA_PERIOD_THRESHOLD scan period stays the same | 
|  | *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | 
|  | *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | 
|  | */ | 
|  | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | 
|  | ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); | 
|  | if (ratio >= NUMA_PERIOD_THRESHOLD) { | 
|  | int slot = ratio - NUMA_PERIOD_THRESHOLD; | 
|  | if (!slot) | 
|  | slot = 1; | 
|  | diff = slot * period_slot; | 
|  | } else { | 
|  | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | 
|  |  | 
|  | /* | 
|  | * Scale scan rate increases based on sharing. There is an | 
|  | * inverse relationship between the degree of sharing and | 
|  | * the adjustment made to the scanning period. Broadly | 
|  | * speaking the intent is that there is little point | 
|  | * scanning faster if shared accesses dominate as it may | 
|  | * simply bounce migrations uselessly | 
|  | */ | 
|  | ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); | 
|  | diff = (diff * ratio) / NUMA_PERIOD_SLOTS; | 
|  | } | 
|  |  | 
|  | p->numa_scan_period = clamp(p->numa_scan_period + diff, | 
|  | task_scan_min(p), task_scan_max(p)); | 
|  | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the fraction of time the task has been running since the last | 
|  | * NUMA placement cycle. The scheduler keeps similar statistics, but | 
|  | * decays those on a 32ms period, which is orders of magnitude off | 
|  | * from the dozens-of-seconds NUMA balancing period. Use the scheduler | 
|  | * stats only if the task is so new there are no NUMA statistics yet. | 
|  | */ | 
|  | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | 
|  | { | 
|  | u64 runtime, delta, now; | 
|  | /* Use the start of this time slice to avoid calculations. */ | 
|  | now = p->se.exec_start; | 
|  | runtime = p->se.sum_exec_runtime; | 
|  |  | 
|  | if (p->last_task_numa_placement) { | 
|  | delta = runtime - p->last_sum_exec_runtime; | 
|  | *period = now - p->last_task_numa_placement; | 
|  | } else { | 
|  | delta = p->se.avg.runnable_avg_sum; | 
|  | *period = p->se.avg.runnable_avg_period; | 
|  | } | 
|  |  | 
|  | p->last_sum_exec_runtime = runtime; | 
|  | p->last_task_numa_placement = now; | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | static void task_numa_placement(struct task_struct *p) | 
|  | { | 
|  | int seq, nid, max_nid = -1, max_group_nid = -1; | 
|  | unsigned long max_faults = 0, max_group_faults = 0; | 
|  | unsigned long fault_types[2] = { 0, 0 }; | 
|  | unsigned long total_faults; | 
|  | u64 runtime, period; | 
|  | spinlock_t *group_lock = NULL; | 
|  |  | 
|  | seq = ACCESS_ONCE(p->mm->numa_scan_seq); | 
|  | if (p->numa_scan_seq == seq) | 
|  | return; | 
|  | p->numa_scan_seq = seq; | 
|  | p->numa_scan_period_max = task_scan_max(p); | 
|  |  | 
|  | total_faults = p->numa_faults_locality[0] + | 
|  | p->numa_faults_locality[1]; | 
|  | runtime = numa_get_avg_runtime(p, &period); | 
|  |  | 
|  | /* If the task is part of a group prevent parallel updates to group stats */ | 
|  | if (p->numa_group) { | 
|  | group_lock = &p->numa_group->lock; | 
|  | spin_lock_irq(group_lock); | 
|  | } | 
|  |  | 
|  | /* Find the node with the highest number of faults */ | 
|  | for_each_online_node(nid) { | 
|  | unsigned long faults = 0, group_faults = 0; | 
|  | int priv, i; | 
|  |  | 
|  | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { | 
|  | long diff, f_diff, f_weight; | 
|  |  | 
|  | i = task_faults_idx(nid, priv); | 
|  |  | 
|  | /* Decay existing window, copy faults since last scan */ | 
|  | diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2; | 
|  | fault_types[priv] += p->numa_faults_buffer_memory[i]; | 
|  | p->numa_faults_buffer_memory[i] = 0; | 
|  |  | 
|  | /* | 
|  | * Normalize the faults_from, so all tasks in a group | 
|  | * count according to CPU use, instead of by the raw | 
|  | * number of faults. Tasks with little runtime have | 
|  | * little over-all impact on throughput, and thus their | 
|  | * faults are less important. | 
|  | */ | 
|  | f_weight = div64_u64(runtime << 16, period + 1); | 
|  | f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) / | 
|  | (total_faults + 1); | 
|  | f_diff = f_weight - p->numa_faults_cpu[i] / 2; | 
|  | p->numa_faults_buffer_cpu[i] = 0; | 
|  |  | 
|  | p->numa_faults_memory[i] += diff; | 
|  | p->numa_faults_cpu[i] += f_diff; | 
|  | faults += p->numa_faults_memory[i]; | 
|  | p->total_numa_faults += diff; | 
|  | if (p->numa_group) { | 
|  | /* safe because we can only change our own group */ | 
|  | p->numa_group->faults[i] += diff; | 
|  | p->numa_group->faults_cpu[i] += f_diff; | 
|  | p->numa_group->total_faults += diff; | 
|  | group_faults += p->numa_group->faults[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (faults > max_faults) { | 
|  | max_faults = faults; | 
|  | max_nid = nid; | 
|  | } | 
|  |  | 
|  | if (group_faults > max_group_faults) { | 
|  | max_group_faults = group_faults; | 
|  | max_group_nid = nid; | 
|  | } | 
|  | } | 
|  |  | 
|  | update_task_scan_period(p, fault_types[0], fault_types[1]); | 
|  |  | 
|  | if (p->numa_group) { | 
|  | update_numa_active_node_mask(p->numa_group); | 
|  | /* | 
|  | * If the preferred task and group nids are different, | 
|  | * iterate over the nodes again to find the best place. | 
|  | */ | 
|  | if (max_nid != max_group_nid) { | 
|  | unsigned long weight, max_weight = 0; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | weight = task_weight(p, nid) + group_weight(p, nid); | 
|  | if (weight > max_weight) { | 
|  | max_weight = weight; | 
|  | max_nid = nid; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(group_lock); | 
|  | } | 
|  |  | 
|  | /* Preferred node as the node with the most faults */ | 
|  | if (max_faults && max_nid != p->numa_preferred_nid) { | 
|  | /* Update the preferred nid and migrate task if possible */ | 
|  | sched_setnuma(p, max_nid); | 
|  | numa_migrate_preferred(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int get_numa_group(struct numa_group *grp) | 
|  | { | 
|  | return atomic_inc_not_zero(&grp->refcount); | 
|  | } | 
|  |  | 
|  | static inline void put_numa_group(struct numa_group *grp) | 
|  | { | 
|  | if (atomic_dec_and_test(&grp->refcount)) | 
|  | kfree_rcu(grp, rcu); | 
|  | } | 
|  |  | 
|  | static void task_numa_group(struct task_struct *p, int cpupid, int flags, | 
|  | int *priv) | 
|  | { | 
|  | struct numa_group *grp, *my_grp; | 
|  | struct task_struct *tsk; | 
|  | bool join = false; | 
|  | int cpu = cpupid_to_cpu(cpupid); | 
|  | int i; | 
|  |  | 
|  | if (unlikely(!p->numa_group)) { | 
|  | unsigned int size = sizeof(struct numa_group) + | 
|  | 4*nr_node_ids*sizeof(unsigned long); | 
|  |  | 
|  | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!grp) | 
|  | return; | 
|  |  | 
|  | atomic_set(&grp->refcount, 1); | 
|  | spin_lock_init(&grp->lock); | 
|  | INIT_LIST_HEAD(&grp->task_list); | 
|  | grp->gid = p->pid; | 
|  | /* Second half of the array tracks nids where faults happen */ | 
|  | grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * | 
|  | nr_node_ids; | 
|  |  | 
|  | node_set(task_node(current), grp->active_nodes); | 
|  |  | 
|  | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
|  | grp->faults[i] = p->numa_faults_memory[i]; | 
|  |  | 
|  | grp->total_faults = p->total_numa_faults; | 
|  |  | 
|  | list_add(&p->numa_entry, &grp->task_list); | 
|  | grp->nr_tasks++; | 
|  | rcu_assign_pointer(p->numa_group, grp); | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); | 
|  |  | 
|  | if (!cpupid_match_pid(tsk, cpupid)) | 
|  | goto no_join; | 
|  |  | 
|  | grp = rcu_dereference(tsk->numa_group); | 
|  | if (!grp) | 
|  | goto no_join; | 
|  |  | 
|  | my_grp = p->numa_group; | 
|  | if (grp == my_grp) | 
|  | goto no_join; | 
|  |  | 
|  | /* | 
|  | * Only join the other group if its bigger; if we're the bigger group, | 
|  | * the other task will join us. | 
|  | */ | 
|  | if (my_grp->nr_tasks > grp->nr_tasks) | 
|  | goto no_join; | 
|  |  | 
|  | /* | 
|  | * Tie-break on the grp address. | 
|  | */ | 
|  | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | 
|  | goto no_join; | 
|  |  | 
|  | /* Always join threads in the same process. */ | 
|  | if (tsk->mm == current->mm) | 
|  | join = true; | 
|  |  | 
|  | /* Simple filter to avoid false positives due to PID collisions */ | 
|  | if (flags & TNF_SHARED) | 
|  | join = true; | 
|  |  | 
|  | /* Update priv based on whether false sharing was detected */ | 
|  | *priv = !join; | 
|  |  | 
|  | if (join && !get_numa_group(grp)) | 
|  | goto no_join; | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!join) | 
|  | return; | 
|  |  | 
|  | BUG_ON(irqs_disabled()); | 
|  | double_lock_irq(&my_grp->lock, &grp->lock); | 
|  |  | 
|  | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { | 
|  | my_grp->faults[i] -= p->numa_faults_memory[i]; | 
|  | grp->faults[i] += p->numa_faults_memory[i]; | 
|  | } | 
|  | my_grp->total_faults -= p->total_numa_faults; | 
|  | grp->total_faults += p->total_numa_faults; | 
|  |  | 
|  | list_move(&p->numa_entry, &grp->task_list); | 
|  | my_grp->nr_tasks--; | 
|  | grp->nr_tasks++; | 
|  |  | 
|  | spin_unlock(&my_grp->lock); | 
|  | spin_unlock_irq(&grp->lock); | 
|  |  | 
|  | rcu_assign_pointer(p->numa_group, grp); | 
|  |  | 
|  | put_numa_group(my_grp); | 
|  | return; | 
|  |  | 
|  | no_join: | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void task_numa_free(struct task_struct *p) | 
|  | { | 
|  | struct numa_group *grp = p->numa_group; | 
|  | void *numa_faults = p->numa_faults_memory; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | if (grp) { | 
|  | spin_lock_irqsave(&grp->lock, flags); | 
|  | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
|  | grp->faults[i] -= p->numa_faults_memory[i]; | 
|  | grp->total_faults -= p->total_numa_faults; | 
|  |  | 
|  | list_del(&p->numa_entry); | 
|  | grp->nr_tasks--; | 
|  | spin_unlock_irqrestore(&grp->lock, flags); | 
|  | rcu_assign_pointer(p->numa_group, NULL); | 
|  | put_numa_group(grp); | 
|  | } | 
|  |  | 
|  | p->numa_faults_memory = NULL; | 
|  | p->numa_faults_buffer_memory = NULL; | 
|  | p->numa_faults_cpu= NULL; | 
|  | p->numa_faults_buffer_cpu = NULL; | 
|  | kfree(numa_faults); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Got a PROT_NONE fault for a page on @node. | 
|  | */ | 
|  | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) | 
|  | { | 
|  | struct task_struct *p = current; | 
|  | bool migrated = flags & TNF_MIGRATED; | 
|  | int cpu_node = task_node(current); | 
|  | int local = !!(flags & TNF_FAULT_LOCAL); | 
|  | int priv; | 
|  |  | 
|  | if (!numabalancing_enabled) | 
|  | return; | 
|  |  | 
|  | /* for example, ksmd faulting in a user's mm */ | 
|  | if (!p->mm) | 
|  | return; | 
|  |  | 
|  | /* Do not worry about placement if exiting */ | 
|  | if (p->state == TASK_DEAD) | 
|  | return; | 
|  |  | 
|  | /* Allocate buffer to track faults on a per-node basis */ | 
|  | if (unlikely(!p->numa_faults_memory)) { | 
|  | int size = sizeof(*p->numa_faults_memory) * | 
|  | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; | 
|  |  | 
|  | p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); | 
|  | if (!p->numa_faults_memory) | 
|  | return; | 
|  |  | 
|  | BUG_ON(p->numa_faults_buffer_memory); | 
|  | /* | 
|  | * The averaged statistics, shared & private, memory & cpu, | 
|  | * occupy the first half of the array. The second half of the | 
|  | * array is for current counters, which are averaged into the | 
|  | * first set by task_numa_placement. | 
|  | */ | 
|  | p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids); | 
|  | p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids); | 
|  | p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids); | 
|  | p->total_numa_faults = 0; | 
|  | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First accesses are treated as private, otherwise consider accesses | 
|  | * to be private if the accessing pid has not changed | 
|  | */ | 
|  | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | 
|  | priv = 1; | 
|  | } else { | 
|  | priv = cpupid_match_pid(p, last_cpupid); | 
|  | if (!priv && !(flags & TNF_NO_GROUP)) | 
|  | task_numa_group(p, last_cpupid, flags, &priv); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a workload spans multiple NUMA nodes, a shared fault that | 
|  | * occurs wholly within the set of nodes that the workload is | 
|  | * actively using should be counted as local. This allows the | 
|  | * scan rate to slow down when a workload has settled down. | 
|  | */ | 
|  | if (!priv && !local && p->numa_group && | 
|  | node_isset(cpu_node, p->numa_group->active_nodes) && | 
|  | node_isset(mem_node, p->numa_group->active_nodes)) | 
|  | local = 1; | 
|  |  | 
|  | task_numa_placement(p); | 
|  |  | 
|  | /* | 
|  | * Retry task to preferred node migration periodically, in case it | 
|  | * case it previously failed, or the scheduler moved us. | 
|  | */ | 
|  | if (time_after(jiffies, p->numa_migrate_retry)) | 
|  | numa_migrate_preferred(p); | 
|  |  | 
|  | if (migrated) | 
|  | p->numa_pages_migrated += pages; | 
|  |  | 
|  | p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages; | 
|  | p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages; | 
|  | p->numa_faults_locality[local] += pages; | 
|  | } | 
|  |  | 
|  | static void reset_ptenuma_scan(struct task_struct *p) | 
|  | { | 
|  | ACCESS_ONCE(p->mm->numa_scan_seq)++; | 
|  | p->mm->numa_scan_offset = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The expensive part of numa migration is done from task_work context. | 
|  | * Triggered from task_tick_numa(). | 
|  | */ | 
|  | void task_numa_work(struct callback_head *work) | 
|  | { | 
|  | unsigned long migrate, next_scan, now = jiffies; | 
|  | struct task_struct *p = current; | 
|  | struct mm_struct *mm = p->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long start, end; | 
|  | unsigned long nr_pte_updates = 0; | 
|  | long pages; | 
|  |  | 
|  | WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); | 
|  |  | 
|  | work->next = work; /* protect against double add */ | 
|  | /* | 
|  | * Who cares about NUMA placement when they're dying. | 
|  | * | 
|  | * NOTE: make sure not to dereference p->mm before this check, | 
|  | * exit_task_work() happens _after_ exit_mm() so we could be called | 
|  | * without p->mm even though we still had it when we enqueued this | 
|  | * work. | 
|  | */ | 
|  | if (p->flags & PF_EXITING) | 
|  | return; | 
|  |  | 
|  | if (!mm->numa_next_scan) { | 
|  | mm->numa_next_scan = now + | 
|  | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enforce maximal scan/migration frequency.. | 
|  | */ | 
|  | migrate = mm->numa_next_scan; | 
|  | if (time_before(now, migrate)) | 
|  | return; | 
|  |  | 
|  | if (p->numa_scan_period == 0) { | 
|  | p->numa_scan_period_max = task_scan_max(p); | 
|  | p->numa_scan_period = task_scan_min(p); | 
|  | } | 
|  |  | 
|  | next_scan = now + msecs_to_jiffies(p->numa_scan_period); | 
|  | if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Delay this task enough that another task of this mm will likely win | 
|  | * the next time around. | 
|  | */ | 
|  | p->node_stamp += 2 * TICK_NSEC; | 
|  |  | 
|  | start = mm->numa_scan_offset; | 
|  | pages = sysctl_numa_balancing_scan_size; | 
|  | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | 
|  | if (!pages) | 
|  | return; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | vma = find_vma(mm, start); | 
|  | if (!vma) { | 
|  | reset_ptenuma_scan(p); | 
|  | start = 0; | 
|  | vma = mm->mmap; | 
|  | } | 
|  | for (; vma; vma = vma->vm_next) { | 
|  | if (!vma_migratable(vma) || !vma_policy_mof(p, vma)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Shared library pages mapped by multiple processes are not | 
|  | * migrated as it is expected they are cache replicated. Avoid | 
|  | * hinting faults in read-only file-backed mappings or the vdso | 
|  | * as migrating the pages will be of marginal benefit. | 
|  | */ | 
|  | if (!vma->vm_mm || | 
|  | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Skip inaccessible VMAs to avoid any confusion between | 
|  | * PROT_NONE and NUMA hinting ptes | 
|  | */ | 
|  | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | 
|  | continue; | 
|  |  | 
|  | do { | 
|  | start = max(start, vma->vm_start); | 
|  | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | 
|  | end = min(end, vma->vm_end); | 
|  | nr_pte_updates += change_prot_numa(vma, start, end); | 
|  |  | 
|  | /* | 
|  | * Scan sysctl_numa_balancing_scan_size but ensure that | 
|  | * at least one PTE is updated so that unused virtual | 
|  | * address space is quickly skipped. | 
|  | */ | 
|  | if (nr_pte_updates) | 
|  | pages -= (end - start) >> PAGE_SHIFT; | 
|  |  | 
|  | start = end; | 
|  | if (pages <= 0) | 
|  | goto out; | 
|  |  | 
|  | cond_resched(); | 
|  | } while (end != vma->vm_end); | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * It is possible to reach the end of the VMA list but the last few | 
|  | * VMAs are not guaranteed to the vma_migratable. If they are not, we | 
|  | * would find the !migratable VMA on the next scan but not reset the | 
|  | * scanner to the start so check it now. | 
|  | */ | 
|  | if (vma) | 
|  | mm->numa_scan_offset = start; | 
|  | else | 
|  | reset_ptenuma_scan(p); | 
|  | up_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drive the periodic memory faults.. | 
|  | */ | 
|  | void task_tick_numa(struct rq *rq, struct task_struct *curr) | 
|  | { | 
|  | struct callback_head *work = &curr->numa_work; | 
|  | u64 period, now; | 
|  |  | 
|  | /* | 
|  | * We don't care about NUMA placement if we don't have memory. | 
|  | */ | 
|  | if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Using runtime rather than walltime has the dual advantage that | 
|  | * we (mostly) drive the selection from busy threads and that the | 
|  | * task needs to have done some actual work before we bother with | 
|  | * NUMA placement. | 
|  | */ | 
|  | now = curr->se.sum_exec_runtime; | 
|  | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | 
|  |  | 
|  | if (now - curr->node_stamp > period) { | 
|  | if (!curr->node_stamp) | 
|  | curr->numa_scan_period = task_scan_min(curr); | 
|  | curr->node_stamp += period; | 
|  |  | 
|  | if (!time_before(jiffies, curr->mm->numa_next_scan)) { | 
|  | init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ | 
|  | task_work_add(curr, work, true); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | static void | 
|  | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | update_load_add(&cfs_rq->load, se->load.weight); | 
|  | if (!parent_entity(se)) | 
|  | update_load_add(&rq_of(cfs_rq)->load, se->load.weight); | 
|  | #ifdef CONFIG_SMP | 
|  | if (entity_is_task(se)) { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  |  | 
|  | account_numa_enqueue(rq, task_of(se)); | 
|  | list_add(&se->group_node, &rq->cfs_tasks); | 
|  | } | 
|  | #endif | 
|  | cfs_rq->nr_running++; | 
|  | } | 
|  |  | 
|  | static void | 
|  | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | update_load_sub(&cfs_rq->load, se->load.weight); | 
|  | if (!parent_entity(se)) | 
|  | update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); | 
|  | if (entity_is_task(se)) { | 
|  | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); | 
|  | list_del_init(&se->group_node); | 
|  | } | 
|  | cfs_rq->nr_running--; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | # ifdef CONFIG_SMP | 
|  | static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) | 
|  | { | 
|  | long tg_weight; | 
|  |  | 
|  | /* | 
|  | * Use this CPU's actual weight instead of the last load_contribution | 
|  | * to gain a more accurate current total weight. See | 
|  | * update_cfs_rq_load_contribution(). | 
|  | */ | 
|  | tg_weight = atomic_long_read(&tg->load_avg); | 
|  | tg_weight -= cfs_rq->tg_load_contrib; | 
|  | tg_weight += cfs_rq->load.weight; | 
|  |  | 
|  | return tg_weight; | 
|  | } | 
|  |  | 
|  | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | 
|  | { | 
|  | long tg_weight, load, shares; | 
|  |  | 
|  | tg_weight = calc_tg_weight(tg, cfs_rq); | 
|  | load = cfs_rq->load.weight; | 
|  |  | 
|  | shares = (tg->shares * load); | 
|  | if (tg_weight) | 
|  | shares /= tg_weight; | 
|  |  | 
|  | if (shares < MIN_SHARES) | 
|  | shares = MIN_SHARES; | 
|  | if (shares > tg->shares) | 
|  | shares = tg->shares; | 
|  |  | 
|  | return shares; | 
|  | } | 
|  | # else /* CONFIG_SMP */ | 
|  | static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | 
|  | { | 
|  | return tg->shares; | 
|  | } | 
|  | # endif /* CONFIG_SMP */ | 
|  | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | 
|  | unsigned long weight) | 
|  | { | 
|  | if (se->on_rq) { | 
|  | /* commit outstanding execution time */ | 
|  | if (cfs_rq->curr == se) | 
|  | update_curr(cfs_rq); | 
|  | account_entity_dequeue(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | update_load_set(&se->load, weight); | 
|  |  | 
|  | if (se->on_rq) | 
|  | account_entity_enqueue(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | static void update_cfs_shares(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct task_group *tg; | 
|  | struct sched_entity *se; | 
|  | long shares; | 
|  |  | 
|  | tg = cfs_rq->tg; | 
|  | se = tg->se[cpu_of(rq_of(cfs_rq))]; | 
|  | if (!se || throttled_hierarchy(cfs_rq)) | 
|  | return; | 
|  | #ifndef CONFIG_SMP | 
|  | if (likely(se->load.weight == tg->shares)) | 
|  | return; | 
|  | #endif | 
|  | shares = calc_cfs_shares(cfs_rq, tg); | 
|  |  | 
|  | reweight_entity(cfs_rq_of(se), se, shares); | 
|  | } | 
|  | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
|  | static inline void update_cfs_shares(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * We choose a half-life close to 1 scheduling period. | 
|  | * Note: The tables below are dependent on this value. | 
|  | */ | 
|  | #define LOAD_AVG_PERIOD 32 | 
|  | #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ | 
|  | #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ | 
|  |  | 
|  | /* Precomputed fixed inverse multiplies for multiplication by y^n */ | 
|  | static const u32 runnable_avg_yN_inv[] = { | 
|  | 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, | 
|  | 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, | 
|  | 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, | 
|  | 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, | 
|  | 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, | 
|  | 0x85aac367, 0x82cd8698, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent | 
|  | * over-estimates when re-combining. | 
|  | */ | 
|  | static const u32 runnable_avg_yN_sum[] = { | 
|  | 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, | 
|  | 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, | 
|  | 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Approximate: | 
|  | *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period) | 
|  | */ | 
|  | static __always_inline u64 decay_load(u64 val, u64 n) | 
|  | { | 
|  | unsigned int local_n; | 
|  |  | 
|  | if (!n) | 
|  | return val; | 
|  | else if (unlikely(n > LOAD_AVG_PERIOD * 63)) | 
|  | return 0; | 
|  |  | 
|  | /* after bounds checking we can collapse to 32-bit */ | 
|  | local_n = n; | 
|  |  | 
|  | /* | 
|  | * As y^PERIOD = 1/2, we can combine | 
|  | *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) | 
|  | * With a look-up table which covers k^n (n<PERIOD) | 
|  | * | 
|  | * To achieve constant time decay_load. | 
|  | */ | 
|  | if (unlikely(local_n >= LOAD_AVG_PERIOD)) { | 
|  | val >>= local_n / LOAD_AVG_PERIOD; | 
|  | local_n %= LOAD_AVG_PERIOD; | 
|  | } | 
|  |  | 
|  | val *= runnable_avg_yN_inv[local_n]; | 
|  | /* We don't use SRR here since we always want to round down. */ | 
|  | return val >> 32; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For updates fully spanning n periods, the contribution to runnable | 
|  | * average will be: \Sum 1024*y^n | 
|  | * | 
|  | * We can compute this reasonably efficiently by combining: | 
|  | *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD} | 
|  | */ | 
|  | static u32 __compute_runnable_contrib(u64 n) | 
|  | { | 
|  | u32 contrib = 0; | 
|  |  | 
|  | if (likely(n <= LOAD_AVG_PERIOD)) | 
|  | return runnable_avg_yN_sum[n]; | 
|  | else if (unlikely(n >= LOAD_AVG_MAX_N)) | 
|  | return LOAD_AVG_MAX; | 
|  |  | 
|  | /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ | 
|  | do { | 
|  | contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ | 
|  | contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; | 
|  |  | 
|  | n -= LOAD_AVG_PERIOD; | 
|  | } while (n > LOAD_AVG_PERIOD); | 
|  |  | 
|  | contrib = decay_load(contrib, n); | 
|  | return contrib + runnable_avg_yN_sum[n]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can represent the historical contribution to runnable average as the | 
|  | * coefficients of a geometric series.  To do this we sub-divide our runnable | 
|  | * history into segments of approximately 1ms (1024us); label the segment that | 
|  | * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. | 
|  | * | 
|  | * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... | 
|  | *      p0            p1           p2 | 
|  | *     (now)       (~1ms ago)  (~2ms ago) | 
|  | * | 
|  | * Let u_i denote the fraction of p_i that the entity was runnable. | 
|  | * | 
|  | * We then designate the fractions u_i as our co-efficients, yielding the | 
|  | * following representation of historical load: | 
|  | *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... | 
|  | * | 
|  | * We choose y based on the with of a reasonably scheduling period, fixing: | 
|  | *   y^32 = 0.5 | 
|  | * | 
|  | * This means that the contribution to load ~32ms ago (u_32) will be weighted | 
|  | * approximately half as much as the contribution to load within the last ms | 
|  | * (u_0). | 
|  | * | 
|  | * When a period "rolls over" and we have new u_0`, multiplying the previous | 
|  | * sum again by y is sufficient to update: | 
|  | *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) | 
|  | *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] | 
|  | */ | 
|  | static __always_inline int __update_entity_runnable_avg(u64 now, | 
|  | struct sched_avg *sa, | 
|  | int runnable) | 
|  | { | 
|  | u64 delta, periods; | 
|  | u32 runnable_contrib; | 
|  | int delta_w, decayed = 0; | 
|  |  | 
|  | delta = now - sa->last_runnable_update; | 
|  | /* | 
|  | * This should only happen when time goes backwards, which it | 
|  | * unfortunately does during sched clock init when we swap over to TSC. | 
|  | */ | 
|  | if ((s64)delta < 0) { | 
|  | sa->last_runnable_update = now; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use 1024ns as the unit of measurement since it's a reasonable | 
|  | * approximation of 1us and fast to compute. | 
|  | */ | 
|  | delta >>= 10; | 
|  | if (!delta) | 
|  | return 0; | 
|  | sa->last_runnable_update = now; | 
|  |  | 
|  | /* delta_w is the amount already accumulated against our next period */ | 
|  | delta_w = sa->runnable_avg_period % 1024; | 
|  | if (delta + delta_w >= 1024) { | 
|  | /* period roll-over */ | 
|  | decayed = 1; | 
|  |  | 
|  | /* | 
|  | * Now that we know we're crossing a period boundary, figure | 
|  | * out how much from delta we need to complete the current | 
|  | * period and accrue it. | 
|  | */ | 
|  | delta_w = 1024 - delta_w; | 
|  | if (runnable) | 
|  | sa->runnable_avg_sum += delta_w; | 
|  | sa->runnable_avg_period += delta_w; | 
|  |  | 
|  | delta -= delta_w; | 
|  |  | 
|  | /* Figure out how many additional periods this update spans */ | 
|  | periods = delta / 1024; | 
|  | delta %= 1024; | 
|  |  | 
|  | sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, | 
|  | periods + 1); | 
|  | sa->runnable_avg_period = decay_load(sa->runnable_avg_period, | 
|  | periods + 1); | 
|  |  | 
|  | /* Efficiently calculate \sum (1..n_period) 1024*y^i */ | 
|  | runnable_contrib = __compute_runnable_contrib(periods); | 
|  | if (runnable) | 
|  | sa->runnable_avg_sum += runnable_contrib; | 
|  | sa->runnable_avg_period += runnable_contrib; | 
|  | } | 
|  |  | 
|  | /* Remainder of delta accrued against u_0` */ | 
|  | if (runnable) | 
|  | sa->runnable_avg_sum += delta; | 
|  | sa->runnable_avg_period += delta; | 
|  |  | 
|  | return decayed; | 
|  | } | 
|  |  | 
|  | /* Synchronize an entity's decay with its parenting cfs_rq.*/ | 
|  | static inline u64 __synchronize_entity_decay(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | u64 decays = atomic64_read(&cfs_rq->decay_counter); | 
|  |  | 
|  | decays -= se->avg.decay_count; | 
|  | if (!decays) | 
|  | return 0; | 
|  |  | 
|  | se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); | 
|  | se->avg.decay_count = 0; | 
|  |  | 
|  | return decays; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, | 
|  | int force_update) | 
|  | { | 
|  | struct task_group *tg = cfs_rq->tg; | 
|  | long tg_contrib; | 
|  |  | 
|  | tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; | 
|  | tg_contrib -= cfs_rq->tg_load_contrib; | 
|  |  | 
|  | if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { | 
|  | atomic_long_add(tg_contrib, &tg->load_avg); | 
|  | cfs_rq->tg_load_contrib += tg_contrib; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Aggregate cfs_rq runnable averages into an equivalent task_group | 
|  | * representation for computing load contributions. | 
|  | */ | 
|  | static inline void __update_tg_runnable_avg(struct sched_avg *sa, | 
|  | struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct task_group *tg = cfs_rq->tg; | 
|  | long contrib; | 
|  |  | 
|  | /* The fraction of a cpu used by this cfs_rq */ | 
|  | contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, | 
|  | sa->runnable_avg_period + 1); | 
|  | contrib -= cfs_rq->tg_runnable_contrib; | 
|  |  | 
|  | if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { | 
|  | atomic_add(contrib, &tg->runnable_avg); | 
|  | cfs_rq->tg_runnable_contrib += contrib; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __update_group_entity_contrib(struct sched_entity *se) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = group_cfs_rq(se); | 
|  | struct task_group *tg = cfs_rq->tg; | 
|  | int runnable_avg; | 
|  |  | 
|  | u64 contrib; | 
|  |  | 
|  | contrib = cfs_rq->tg_load_contrib * tg->shares; | 
|  | se->avg.load_avg_contrib = div_u64(contrib, | 
|  | atomic_long_read(&tg->load_avg) + 1); | 
|  |  | 
|  | /* | 
|  | * For group entities we need to compute a correction term in the case | 
|  | * that they are consuming <1 cpu so that we would contribute the same | 
|  | * load as a task of equal weight. | 
|  | * | 
|  | * Explicitly co-ordinating this measurement would be expensive, but | 
|  | * fortunately the sum of each cpus contribution forms a usable | 
|  | * lower-bound on the true value. | 
|  | * | 
|  | * Consider the aggregate of 2 contributions.  Either they are disjoint | 
|  | * (and the sum represents true value) or they are disjoint and we are | 
|  | * understating by the aggregate of their overlap. | 
|  | * | 
|  | * Extending this to N cpus, for a given overlap, the maximum amount we | 
|  | * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of | 
|  | * cpus that overlap for this interval and w_i is the interval width. | 
|  | * | 
|  | * On a small machine; the first term is well-bounded which bounds the | 
|  | * total error since w_i is a subset of the period.  Whereas on a | 
|  | * larger machine, while this first term can be larger, if w_i is the | 
|  | * of consequential size guaranteed to see n_i*w_i quickly converge to | 
|  | * our upper bound of 1-cpu. | 
|  | */ | 
|  | runnable_avg = atomic_read(&tg->runnable_avg); | 
|  | if (runnable_avg < NICE_0_LOAD) { | 
|  | se->avg.load_avg_contrib *= runnable_avg; | 
|  | se->avg.load_avg_contrib >>= NICE_0_SHIFT; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void update_rq_runnable_avg(struct rq *rq, int runnable) | 
|  | { | 
|  | __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); | 
|  | __update_tg_runnable_avg(&rq->avg, &rq->cfs); | 
|  | } | 
|  | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
|  | static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, | 
|  | int force_update) {} | 
|  | static inline void __update_tg_runnable_avg(struct sched_avg *sa, | 
|  | struct cfs_rq *cfs_rq) {} | 
|  | static inline void __update_group_entity_contrib(struct sched_entity *se) {} | 
|  | static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | static inline void __update_task_entity_contrib(struct sched_entity *se) | 
|  | { | 
|  | u32 contrib; | 
|  |  | 
|  | /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ | 
|  | contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); | 
|  | contrib /= (se->avg.runnable_avg_period + 1); | 
|  | se->avg.load_avg_contrib = scale_load(contrib); | 
|  | } | 
|  |  | 
|  | /* Compute the current contribution to load_avg by se, return any delta */ | 
|  | static long __update_entity_load_avg_contrib(struct sched_entity *se) | 
|  | { | 
|  | long old_contrib = se->avg.load_avg_contrib; | 
|  |  | 
|  | if (entity_is_task(se)) { | 
|  | __update_task_entity_contrib(se); | 
|  | } else { | 
|  | __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); | 
|  | __update_group_entity_contrib(se); | 
|  | } | 
|  |  | 
|  | return se->avg.load_avg_contrib - old_contrib; | 
|  | } | 
|  |  | 
|  | static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, | 
|  | long load_contrib) | 
|  | { | 
|  | if (likely(load_contrib < cfs_rq->blocked_load_avg)) | 
|  | cfs_rq->blocked_load_avg -= load_contrib; | 
|  | else | 
|  | cfs_rq->blocked_load_avg = 0; | 
|  | } | 
|  |  | 
|  | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | /* Update a sched_entity's runnable average */ | 
|  | static inline void update_entity_load_avg(struct sched_entity *se, | 
|  | int update_cfs_rq) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | long contrib_delta; | 
|  | u64 now; | 
|  |  | 
|  | /* | 
|  | * For a group entity we need to use their owned cfs_rq_clock_task() in | 
|  | * case they are the parent of a throttled hierarchy. | 
|  | */ | 
|  | if (entity_is_task(se)) | 
|  | now = cfs_rq_clock_task(cfs_rq); | 
|  | else | 
|  | now = cfs_rq_clock_task(group_cfs_rq(se)); | 
|  |  | 
|  | if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) | 
|  | return; | 
|  |  | 
|  | contrib_delta = __update_entity_load_avg_contrib(se); | 
|  |  | 
|  | if (!update_cfs_rq) | 
|  | return; | 
|  |  | 
|  | if (se->on_rq) | 
|  | cfs_rq->runnable_load_avg += contrib_delta; | 
|  | else | 
|  | subtract_blocked_load_contrib(cfs_rq, -contrib_delta); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decay the load contributed by all blocked children and account this so that | 
|  | * their contribution may appropriately discounted when they wake up. | 
|  | */ | 
|  | static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) | 
|  | { | 
|  | u64 now = cfs_rq_clock_task(cfs_rq) >> 20; | 
|  | u64 decays; | 
|  |  | 
|  | decays = now - cfs_rq->last_decay; | 
|  | if (!decays && !force_update) | 
|  | return; | 
|  |  | 
|  | if (atomic_long_read(&cfs_rq->removed_load)) { | 
|  | unsigned long removed_load; | 
|  | removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); | 
|  | subtract_blocked_load_contrib(cfs_rq, removed_load); | 
|  | } | 
|  |  | 
|  | if (decays) { | 
|  | cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, | 
|  | decays); | 
|  | atomic64_add(decays, &cfs_rq->decay_counter); | 
|  | cfs_rq->last_decay = now; | 
|  | } | 
|  |  | 
|  | __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); | 
|  | } | 
|  |  | 
|  | /* Add the load generated by se into cfs_rq's child load-average */ | 
|  | static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, | 
|  | struct sched_entity *se, | 
|  | int wakeup) | 
|  | { | 
|  | /* | 
|  | * We track migrations using entity decay_count <= 0, on a wake-up | 
|  | * migration we use a negative decay count to track the remote decays | 
|  | * accumulated while sleeping. | 
|  | * | 
|  | * Newly forked tasks are enqueued with se->avg.decay_count == 0, they | 
|  | * are seen by enqueue_entity_load_avg() as a migration with an already | 
|  | * constructed load_avg_contrib. | 
|  | */ | 
|  | if (unlikely(se->avg.decay_count <= 0)) { | 
|  | se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); | 
|  | if (se->avg.decay_count) { | 
|  | /* | 
|  | * In a wake-up migration we have to approximate the | 
|  | * time sleeping.  This is because we can't synchronize | 
|  | * clock_task between the two cpus, and it is not | 
|  | * guaranteed to be read-safe.  Instead, we can | 
|  | * approximate this using our carried decays, which are | 
|  | * explicitly atomically readable. | 
|  | */ | 
|  | se->avg.last_runnable_update -= (-se->avg.decay_count) | 
|  | << 20; | 
|  | update_entity_load_avg(se, 0); | 
|  | /* Indicate that we're now synchronized and on-rq */ | 
|  | se->avg.decay_count = 0; | 
|  | } | 
|  | wakeup = 0; | 
|  | } else { | 
|  | __synchronize_entity_decay(se); | 
|  | } | 
|  |  | 
|  | /* migrated tasks did not contribute to our blocked load */ | 
|  | if (wakeup) { | 
|  | subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); | 
|  | update_entity_load_avg(se, 0); | 
|  | } | 
|  |  | 
|  | cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; | 
|  | /* we force update consideration on load-balancer moves */ | 
|  | update_cfs_rq_blocked_load(cfs_rq, !wakeup); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove se's load from this cfs_rq child load-average, if the entity is | 
|  | * transitioning to a blocked state we track its projected decay using | 
|  | * blocked_load_avg. | 
|  | */ | 
|  | static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, | 
|  | struct sched_entity *se, | 
|  | int sleep) | 
|  | { | 
|  | update_entity_load_avg(se, 1); | 
|  | /* we force update consideration on load-balancer moves */ | 
|  | update_cfs_rq_blocked_load(cfs_rq, !sleep); | 
|  |  | 
|  | cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; | 
|  | if (sleep) { | 
|  | cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; | 
|  | se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); | 
|  | } /* migrations, e.g. sleep=0 leave decay_count == 0 */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the rq's load with the elapsed running time before entering | 
|  | * idle. if the last scheduled task is not a CFS task, idle_enter will | 
|  | * be the only way to update the runnable statistic. | 
|  | */ | 
|  | void idle_enter_fair(struct rq *this_rq) | 
|  | { | 
|  | update_rq_runnable_avg(this_rq, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the rq's load with the elapsed idle time before a task is | 
|  | * scheduled. if the newly scheduled task is not a CFS task, idle_exit will | 
|  | * be the only way to update the runnable statistic. | 
|  | */ | 
|  | void idle_exit_fair(struct rq *this_rq) | 
|  | { | 
|  | update_rq_runnable_avg(this_rq, 0); | 
|  | } | 
|  |  | 
|  | static int idle_balance(struct rq *this_rq); | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | static inline void update_entity_load_avg(struct sched_entity *se, | 
|  | int update_cfs_rq) {} | 
|  | static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} | 
|  | static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, | 
|  | struct sched_entity *se, | 
|  | int wakeup) {} | 
|  | static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, | 
|  | struct sched_entity *se, | 
|  | int sleep) {} | 
|  | static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, | 
|  | int force_update) {} | 
|  |  | 
|  | static inline int idle_balance(struct rq *rq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | struct task_struct *tsk = NULL; | 
|  |  | 
|  | if (entity_is_task(se)) | 
|  | tsk = task_of(se); | 
|  |  | 
|  | if (se->statistics.sleep_start) { | 
|  | u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; | 
|  |  | 
|  | if ((s64)delta < 0) | 
|  | delta = 0; | 
|  |  | 
|  | if (unlikely(delta > se->statistics.sleep_max)) | 
|  | se->statistics.sleep_max = delta; | 
|  |  | 
|  | se->statistics.sleep_start = 0; | 
|  | se->statistics.sum_sleep_runtime += delta; | 
|  |  | 
|  | if (tsk) { | 
|  | account_scheduler_latency(tsk, delta >> 10, 1); | 
|  | trace_sched_stat_sleep(tsk, delta); | 
|  | } | 
|  | } | 
|  | if (se->statistics.block_start) { | 
|  | u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; | 
|  |  | 
|  | if ((s64)delta < 0) | 
|  | delta = 0; | 
|  |  | 
|  | if (unlikely(delta > se->statistics.block_max)) | 
|  | se->statistics.block_max = delta; | 
|  |  | 
|  | se->statistics.block_start = 0; | 
|  | se->statistics.sum_sleep_runtime += delta; | 
|  |  | 
|  | if (tsk) { | 
|  | if (tsk->in_iowait) { | 
|  | se->statistics.iowait_sum += delta; | 
|  | se->statistics.iowait_count++; | 
|  | trace_sched_stat_iowait(tsk, delta); | 
|  | } | 
|  |  | 
|  | trace_sched_stat_blocked(tsk, delta); | 
|  |  | 
|  | /* | 
|  | * Blocking time is in units of nanosecs, so shift by | 
|  | * 20 to get a milliseconds-range estimation of the | 
|  | * amount of time that the task spent sleeping: | 
|  | */ | 
|  | if (unlikely(prof_on == SLEEP_PROFILING)) { | 
|  | profile_hits(SLEEP_PROFILING, | 
|  | (void *)get_wchan(tsk), | 
|  | delta >> 20); | 
|  | } | 
|  | account_scheduler_latency(tsk, delta >> 10, 0); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | s64 d = se->vruntime - cfs_rq->min_vruntime; | 
|  |  | 
|  | if (d < 0) | 
|  | d = -d; | 
|  |  | 
|  | if (d > 3*sysctl_sched_latency) | 
|  | schedstat_inc(cfs_rq, nr_spread_over); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void | 
|  | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | 
|  | { | 
|  | u64 vruntime = cfs_rq->min_vruntime; | 
|  |  | 
|  | /* | 
|  | * The 'current' period is already promised to the current tasks, | 
|  | * however the extra weight of the new task will slow them down a | 
|  | * little, place the new task so that it fits in the slot that | 
|  | * stays open at the end. | 
|  | */ | 
|  | if (initial && sched_feat(START_DEBIT)) | 
|  | vruntime += sched_vslice(cfs_rq, se); | 
|  |  | 
|  | /* sleeps up to a single latency don't count. */ | 
|  | if (!initial) { | 
|  | unsigned long thresh = sysctl_sched_latency; | 
|  |  | 
|  | /* | 
|  | * Halve their sleep time's effect, to allow | 
|  | * for a gentler effect of sleepers: | 
|  | */ | 
|  | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | 
|  | thresh >>= 1; | 
|  |  | 
|  | vruntime -= thresh; | 
|  | } | 
|  |  | 
|  | /* ensure we never gain time by being placed backwards. */ | 
|  | se->vruntime = max_vruntime(se->vruntime, vruntime); | 
|  | } | 
|  |  | 
|  | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | static void | 
|  | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|  | { | 
|  | /* | 
|  | * Update the normalized vruntime before updating min_vruntime | 
|  | * through calling update_curr(). | 
|  | */ | 
|  | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) | 
|  | se->vruntime += cfs_rq->min_vruntime; | 
|  |  | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  | enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); | 
|  | account_entity_enqueue(cfs_rq, se); | 
|  | update_cfs_shares(cfs_rq); | 
|  |  | 
|  | if (flags & ENQUEUE_WAKEUP) { | 
|  | place_entity(cfs_rq, se, 0); | 
|  | enqueue_sleeper(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | update_stats_enqueue(cfs_rq, se); | 
|  | check_spread(cfs_rq, se); | 
|  | if (se != cfs_rq->curr) | 
|  | __enqueue_entity(cfs_rq, se); | 
|  | se->on_rq = 1; | 
|  |  | 
|  | if (cfs_rq->nr_running == 1) { | 
|  | list_add_leaf_cfs_rq(cfs_rq); | 
|  | check_enqueue_throttle(cfs_rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __clear_buddies_last(struct sched_entity *se) | 
|  | { | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | if (cfs_rq->last != se) | 
|  | break; | 
|  |  | 
|  | cfs_rq->last = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __clear_buddies_next(struct sched_entity *se) | 
|  | { | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | if (cfs_rq->next != se) | 
|  | break; | 
|  |  | 
|  | cfs_rq->next = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __clear_buddies_skip(struct sched_entity *se) | 
|  | { | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | if (cfs_rq->skip != se) | 
|  | break; | 
|  |  | 
|  | cfs_rq->skip = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | if (cfs_rq->last == se) | 
|  | __clear_buddies_last(se); | 
|  |  | 
|  | if (cfs_rq->next == se) | 
|  | __clear_buddies_next(se); | 
|  |  | 
|  | if (cfs_rq->skip == se) | 
|  | __clear_buddies_skip(se); | 
|  | } | 
|  |  | 
|  | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | static void | 
|  | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|  | { | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  | dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); | 
|  |  | 
|  | update_stats_dequeue(cfs_rq, se); | 
|  | if (flags & DEQUEUE_SLEEP) { | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (entity_is_task(se)) { | 
|  | struct task_struct *tsk = task_of(se); | 
|  |  | 
|  | if (tsk->state & TASK_INTERRUPTIBLE) | 
|  | se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); | 
|  | if (tsk->state & TASK_UNINTERRUPTIBLE) | 
|  | se->statistics.block_start = rq_clock(rq_of(cfs_rq)); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | clear_buddies(cfs_rq, se); | 
|  |  | 
|  | if (se != cfs_rq->curr) | 
|  | __dequeue_entity(cfs_rq, se); | 
|  | se->on_rq = 0; | 
|  | account_entity_dequeue(cfs_rq, se); | 
|  |  | 
|  | /* | 
|  | * Normalize the entity after updating the min_vruntime because the | 
|  | * update can refer to the ->curr item and we need to reflect this | 
|  | * movement in our normalized position. | 
|  | */ | 
|  | if (!(flags & DEQUEUE_SLEEP)) | 
|  | se->vruntime -= cfs_rq->min_vruntime; | 
|  |  | 
|  | /* return excess runtime on last dequeue */ | 
|  | return_cfs_rq_runtime(cfs_rq); | 
|  |  | 
|  | update_min_vruntime(cfs_rq); | 
|  | update_cfs_shares(cfs_rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void | 
|  | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
|  | { | 
|  | unsigned long ideal_runtime, delta_exec; | 
|  | struct sched_entity *se; | 
|  | s64 delta; | 
|  |  | 
|  | ideal_runtime = sched_slice(cfs_rq, curr); | 
|  | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 
|  | if (delta_exec > ideal_runtime) { | 
|  | resched_task(rq_of(cfs_rq)->curr); | 
|  | /* | 
|  | * The current task ran long enough, ensure it doesn't get | 
|  | * re-elected due to buddy favours. | 
|  | */ | 
|  | clear_buddies(cfs_rq, curr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that a task that missed wakeup preemption by a | 
|  | * narrow margin doesn't have to wait for a full slice. | 
|  | * This also mitigates buddy induced latencies under load. | 
|  | */ | 
|  | if (delta_exec < sysctl_sched_min_granularity) | 
|  | return; | 
|  |  | 
|  | se = __pick_first_entity(cfs_rq); | 
|  | delta = curr->vruntime - se->vruntime; | 
|  |  | 
|  | if (delta < 0) | 
|  | return; | 
|  |  | 
|  | if (delta > ideal_runtime) | 
|  | resched_task(rq_of(cfs_rq)->curr); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|  | { | 
|  | /* 'current' is not kept within the tree. */ | 
|  | if (se->on_rq) { | 
|  | /* | 
|  | * Any task has to be enqueued before it get to execute on | 
|  | * a CPU. So account for the time it spent waiting on the | 
|  | * runqueue. | 
|  | */ | 
|  | update_stats_wait_end(cfs_rq, se); | 
|  | __dequeue_entity(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | update_stats_curr_start(cfs_rq, se); | 
|  | cfs_rq->curr = se; | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* | 
|  | * Track our maximum slice length, if the CPU's load is at | 
|  | * least twice that of our own weight (i.e. dont track it | 
|  | * when there are only lesser-weight tasks around): | 
|  | */ | 
|  | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | 
|  | se->statistics.slice_max = max(se->statistics.slice_max, | 
|  | se->sum_exec_runtime - se->prev_sum_exec_runtime); | 
|  | } | 
|  | #endif | 
|  | se->prev_sum_exec_runtime = se->sum_exec_runtime; | 
|  | } | 
|  |  | 
|  | static int | 
|  | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | 
|  |  | 
|  | /* | 
|  | * Pick the next process, keeping these things in mind, in this order: | 
|  | * 1) keep things fair between processes/task groups | 
|  | * 2) pick the "next" process, since someone really wants that to run | 
|  | * 3) pick the "last" process, for cache locality | 
|  | * 4) do not run the "skip" process, if something else is available | 
|  | */ | 
|  | static struct sched_entity * | 
|  | pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
|  | { | 
|  | struct sched_entity *left = __pick_first_entity(cfs_rq); | 
|  | struct sched_entity *se; | 
|  |  | 
|  | /* | 
|  | * If curr is set we have to see if its left of the leftmost entity | 
|  | * still in the tree, provided there was anything in the tree at all. | 
|  | */ | 
|  | if (!left || (curr && entity_before(curr, left))) | 
|  | left = curr; | 
|  |  | 
|  | se = left; /* ideally we run the leftmost entity */ | 
|  |  | 
|  | /* | 
|  | * Avoid running the skip buddy, if running something else can | 
|  | * be done without getting too unfair. | 
|  | */ | 
|  | if (cfs_rq->skip == se) { | 
|  | struct sched_entity *second; | 
|  |  | 
|  | if (se == curr) { | 
|  | second = __pick_first_entity(cfs_rq); | 
|  | } else { | 
|  | second = __pick_next_entity(se); | 
|  | if (!second || (curr && entity_before(curr, second))) | 
|  | second = curr; | 
|  | } | 
|  |  | 
|  | if (second && wakeup_preempt_entity(second, left) < 1) | 
|  | se = second; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prefer last buddy, try to return the CPU to a preempted task. | 
|  | */ | 
|  | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | 
|  | se = cfs_rq->last; | 
|  |  | 
|  | /* | 
|  | * Someone really wants this to run. If it's not unfair, run it. | 
|  | */ | 
|  | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | 
|  | se = cfs_rq->next; | 
|  |  | 
|  | clear_buddies(cfs_rq, se); | 
|  |  | 
|  | return se; | 
|  | } | 
|  |  | 
|  | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
|  |  | 
|  | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 
|  | { | 
|  | /* | 
|  | * If still on the runqueue then deactivate_task() | 
|  | * was not called and update_curr() has to be done: | 
|  | */ | 
|  | if (prev->on_rq) | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | /* throttle cfs_rqs exceeding runtime */ | 
|  | check_cfs_rq_runtime(cfs_rq); | 
|  |  | 
|  | check_spread(cfs_rq, prev); | 
|  | if (prev->on_rq) { | 
|  | update_stats_wait_start(cfs_rq, prev); | 
|  | /* Put 'current' back into the tree. */ | 
|  | __enqueue_entity(cfs_rq, prev); | 
|  | /* in !on_rq case, update occurred at dequeue */ | 
|  | update_entity_load_avg(prev, 1); | 
|  | } | 
|  | cfs_rq->curr = NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | 
|  | { | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | /* | 
|  | * Ensure that runnable average is periodically updated. | 
|  | */ | 
|  | update_entity_load_avg(curr, 1); | 
|  | update_cfs_rq_blocked_load(cfs_rq, 1); | 
|  | update_cfs_shares(cfs_rq); | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | /* | 
|  | * queued ticks are scheduled to match the slice, so don't bother | 
|  | * validating it and just reschedule. | 
|  | */ | 
|  | if (queued) { | 
|  | resched_task(rq_of(cfs_rq)->curr); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * don't let the period tick interfere with the hrtick preemption | 
|  | */ | 
|  | if (!sched_feat(DOUBLE_TICK) && | 
|  | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | if (cfs_rq->nr_running > 1) | 
|  | check_preempt_tick(cfs_rq, curr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************** | 
|  | * CFS bandwidth control machinery | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_CFS_BANDWIDTH | 
|  |  | 
|  | #ifdef HAVE_JUMP_LABEL | 
|  | static struct static_key __cfs_bandwidth_used; | 
|  |  | 
|  | static inline bool cfs_bandwidth_used(void) | 
|  | { | 
|  | return static_key_false(&__cfs_bandwidth_used); | 
|  | } | 
|  |  | 
|  | void cfs_bandwidth_usage_inc(void) | 
|  | { | 
|  | static_key_slow_inc(&__cfs_bandwidth_used); | 
|  | } | 
|  |  | 
|  | void cfs_bandwidth_usage_dec(void) | 
|  | { | 
|  | static_key_slow_dec(&__cfs_bandwidth_used); | 
|  | } | 
|  | #else /* HAVE_JUMP_LABEL */ | 
|  | static bool cfs_bandwidth_used(void) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void cfs_bandwidth_usage_inc(void) {} | 
|  | void cfs_bandwidth_usage_dec(void) {} | 
|  | #endif /* HAVE_JUMP_LABEL */ | 
|  |  | 
|  | /* | 
|  | * default period for cfs group bandwidth. | 
|  | * default: 0.1s, units: nanoseconds | 
|  | */ | 
|  | static inline u64 default_cfs_period(void) | 
|  | { | 
|  | return 100000000ULL; | 
|  | } | 
|  |  | 
|  | static inline u64 sched_cfs_bandwidth_slice(void) | 
|  | { | 
|  | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Replenish runtime according to assigned quota and update expiration time. | 
|  | * We use sched_clock_cpu directly instead of rq->clock to avoid adding | 
|  | * additional synchronization around rq->lock. | 
|  | * | 
|  | * requires cfs_b->lock | 
|  | */ | 
|  | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | u64 now; | 
|  |  | 
|  | if (cfs_b->quota == RUNTIME_INF) | 
|  | return; | 
|  |  | 
|  | now = sched_clock_cpu(smp_processor_id()); | 
|  | cfs_b->runtime = cfs_b->quota; | 
|  | cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); | 
|  | } | 
|  |  | 
|  | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
|  | { | 
|  | return &tg->cfs_bandwidth; | 
|  | } | 
|  |  | 
|  | /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ | 
|  | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (unlikely(cfs_rq->throttle_count)) | 
|  | return cfs_rq->throttled_clock_task; | 
|  |  | 
|  | return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; | 
|  | } | 
|  |  | 
|  | /* returns 0 on failure to allocate runtime */ | 
|  | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct task_group *tg = cfs_rq->tg; | 
|  | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | 
|  | u64 amount = 0, min_amount, expires; | 
|  |  | 
|  | /* note: this is a positive sum as runtime_remaining <= 0 */ | 
|  | min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | if (cfs_b->quota == RUNTIME_INF) | 
|  | amount = min_amount; | 
|  | else { | 
|  | /* | 
|  | * If the bandwidth pool has become inactive, then at least one | 
|  | * period must have elapsed since the last consumption. | 
|  | * Refresh the global state and ensure bandwidth timer becomes | 
|  | * active. | 
|  | */ | 
|  | if (!cfs_b->timer_active) { | 
|  | __refill_cfs_bandwidth_runtime(cfs_b); | 
|  | __start_cfs_bandwidth(cfs_b, false); | 
|  | } | 
|  |  | 
|  | if (cfs_b->runtime > 0) { | 
|  | amount = min(cfs_b->runtime, min_amount); | 
|  | cfs_b->runtime -= amount; | 
|  | cfs_b->idle = 0; | 
|  | } | 
|  | } | 
|  | expires = cfs_b->runtime_expires; | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | cfs_rq->runtime_remaining += amount; | 
|  | /* | 
|  | * we may have advanced our local expiration to account for allowed | 
|  | * spread between our sched_clock and the one on which runtime was | 
|  | * issued. | 
|  | */ | 
|  | if ((s64)(expires - cfs_rq->runtime_expires) > 0) | 
|  | cfs_rq->runtime_expires = expires; | 
|  |  | 
|  | return cfs_rq->runtime_remaining > 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: This depends on the synchronization provided by sched_clock and the | 
|  | * fact that rq->clock snapshots this value. | 
|  | */ | 
|  | static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|  |  | 
|  | /* if the deadline is ahead of our clock, nothing to do */ | 
|  | if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) | 
|  | return; | 
|  |  | 
|  | if (cfs_rq->runtime_remaining < 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If the local deadline has passed we have to consider the | 
|  | * possibility that our sched_clock is 'fast' and the global deadline | 
|  | * has not truly expired. | 
|  | * | 
|  | * Fortunately we can check determine whether this the case by checking | 
|  | * whether the global deadline has advanced. It is valid to compare | 
|  | * cfs_b->runtime_expires without any locks since we only care about | 
|  | * exact equality, so a partial write will still work. | 
|  | */ | 
|  |  | 
|  | if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { | 
|  | /* extend local deadline, drift is bounded above by 2 ticks */ | 
|  | cfs_rq->runtime_expires += TICK_NSEC; | 
|  | } else { | 
|  | /* global deadline is ahead, expiration has passed */ | 
|  | cfs_rq->runtime_remaining = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) | 
|  | { | 
|  | /* dock delta_exec before expiring quota (as it could span periods) */ | 
|  | cfs_rq->runtime_remaining -= delta_exec; | 
|  | expire_cfs_rq_runtime(cfs_rq); | 
|  |  | 
|  | if (likely(cfs_rq->runtime_remaining > 0)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * if we're unable to extend our runtime we resched so that the active | 
|  | * hierarchy can be throttled | 
|  | */ | 
|  | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | 
|  | resched_task(rq_of(cfs_rq)->curr); | 
|  | } | 
|  |  | 
|  | static __always_inline | 
|  | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) | 
|  | { | 
|  | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) | 
|  | return; | 
|  |  | 
|  | __account_cfs_rq_runtime(cfs_rq, delta_exec); | 
|  | } | 
|  |  | 
|  | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_bandwidth_used() && cfs_rq->throttled; | 
|  | } | 
|  |  | 
|  | /* check whether cfs_rq, or any parent, is throttled */ | 
|  | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return cfs_bandwidth_used() && cfs_rq->throttle_count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that neither of the group entities corresponding to src_cpu or | 
|  | * dest_cpu are members of a throttled hierarchy when performing group | 
|  | * load-balance operations. | 
|  | */ | 
|  | static inline int throttled_lb_pair(struct task_group *tg, | 
|  | int src_cpu, int dest_cpu) | 
|  | { | 
|  | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | 
|  |  | 
|  | src_cfs_rq = tg->cfs_rq[src_cpu]; | 
|  | dest_cfs_rq = tg->cfs_rq[dest_cpu]; | 
|  |  | 
|  | return throttled_hierarchy(src_cfs_rq) || | 
|  | throttled_hierarchy(dest_cfs_rq); | 
|  | } | 
|  |  | 
|  | /* updated child weight may affect parent so we have to do this bottom up */ | 
|  | static int tg_unthrottle_up(struct task_group *tg, void *data) | 
|  | { | 
|  | struct rq *rq = data; | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|  |  | 
|  | cfs_rq->throttle_count--; | 
|  | #ifdef CONFIG_SMP | 
|  | if (!cfs_rq->throttle_count) { | 
|  | /* adjust cfs_rq_clock_task() */ | 
|  | cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - | 
|  | cfs_rq->throttled_clock_task; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tg_throttle_down(struct task_group *tg, void *data) | 
|  | { | 
|  | struct rq *rq = data; | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|  |  | 
|  | /* group is entering throttled state, stop time */ | 
|  | if (!cfs_rq->throttle_count) | 
|  | cfs_rq->throttled_clock_task = rq_clock_task(rq); | 
|  | cfs_rq->throttle_count++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void throttle_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|  | struct sched_entity *se; | 
|  | long task_delta, dequeue = 1; | 
|  |  | 
|  | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | 
|  |  | 
|  | /* freeze hierarchy runnable averages while throttled */ | 
|  | rcu_read_lock(); | 
|  | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | task_delta = cfs_rq->h_nr_running; | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | 
|  | /* throttled entity or throttle-on-deactivate */ | 
|  | if (!se->on_rq) | 
|  | break; | 
|  |  | 
|  | if (dequeue) | 
|  | dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); | 
|  | qcfs_rq->h_nr_running -= task_delta; | 
|  |  | 
|  | if (qcfs_rq->load.weight) | 
|  | dequeue = 0; | 
|  | } | 
|  |  | 
|  | if (!se) | 
|  | sub_nr_running(rq, task_delta); | 
|  |  | 
|  | cfs_rq->throttled = 1; | 
|  | cfs_rq->throttled_clock = rq_clock(rq); | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); | 
|  | if (!cfs_b->timer_active) | 
|  | __start_cfs_bandwidth(cfs_b, false); | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  | } | 
|  |  | 
|  | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|  | struct sched_entity *se; | 
|  | int enqueue = 1; | 
|  | long task_delta; | 
|  |  | 
|  | se = cfs_rq->tg->se[cpu_of(rq)]; | 
|  |  | 
|  | cfs_rq->throttled = 0; | 
|  |  | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; | 
|  | list_del_rcu(&cfs_rq->throttled_list); | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | /* update hierarchical throttle state */ | 
|  | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | 
|  |  | 
|  | if (!cfs_rq->load.weight) | 
|  | return; | 
|  |  | 
|  | task_delta = cfs_rq->h_nr_running; | 
|  | for_each_sched_entity(se) { | 
|  | if (se->on_rq) | 
|  | enqueue = 0; | 
|  |  | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | if (enqueue) | 
|  | enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); | 
|  | cfs_rq->h_nr_running += task_delta; | 
|  |  | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!se) | 
|  | add_nr_running(rq, task_delta); | 
|  |  | 
|  | /* determine whether we need to wake up potentially idle cpu */ | 
|  | if (rq->curr == rq->idle && rq->cfs.nr_running) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  |  | 
|  | static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, | 
|  | u64 remaining, u64 expires) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | u64 runtime = remaining; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | 
|  | throttled_list) { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  |  | 
|  | raw_spin_lock(&rq->lock); | 
|  | if (!cfs_rq_throttled(cfs_rq)) | 
|  | goto next; | 
|  |  | 
|  | runtime = -cfs_rq->runtime_remaining + 1; | 
|  | if (runtime > remaining) | 
|  | runtime = remaining; | 
|  | remaining -= runtime; | 
|  |  | 
|  | cfs_rq->runtime_remaining += runtime; | 
|  | cfs_rq->runtime_expires = expires; | 
|  |  | 
|  | /* we check whether we're throttled above */ | 
|  | if (cfs_rq->runtime_remaining > 0) | 
|  | unthrottle_cfs_rq(cfs_rq); | 
|  |  | 
|  | next: | 
|  | raw_spin_unlock(&rq->lock); | 
|  |  | 
|  | if (!remaining) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return remaining; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Responsible for refilling a task_group's bandwidth and unthrottling its | 
|  | * cfs_rqs as appropriate. If there has been no activity within the last | 
|  | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | 
|  | * used to track this state. | 
|  | */ | 
|  | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) | 
|  | { | 
|  | u64 runtime, runtime_expires; | 
|  | int throttled; | 
|  |  | 
|  | /* no need to continue the timer with no bandwidth constraint */ | 
|  | if (cfs_b->quota == RUNTIME_INF) | 
|  | goto out_deactivate; | 
|  |  | 
|  | throttled = !list_empty(&cfs_b->throttled_cfs_rq); | 
|  | cfs_b->nr_periods += overrun; | 
|  |  | 
|  | /* | 
|  | * idle depends on !throttled (for the case of a large deficit), and if | 
|  | * we're going inactive then everything else can be deferred | 
|  | */ | 
|  | if (cfs_b->idle && !throttled) | 
|  | goto out_deactivate; | 
|  |  | 
|  | /* | 
|  | * if we have relooped after returning idle once, we need to update our | 
|  | * status as actually running, so that other cpus doing | 
|  | * __start_cfs_bandwidth will stop trying to cancel us. | 
|  | */ | 
|  | cfs_b->timer_active = 1; | 
|  |  | 
|  | __refill_cfs_bandwidth_runtime(cfs_b); | 
|  |  | 
|  | if (!throttled) { | 
|  | /* mark as potentially idle for the upcoming period */ | 
|  | cfs_b->idle = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* account preceding periods in which throttling occurred */ | 
|  | cfs_b->nr_throttled += overrun; | 
|  |  | 
|  | /* | 
|  | * There are throttled entities so we must first use the new bandwidth | 
|  | * to unthrottle them before making it generally available.  This | 
|  | * ensures that all existing debts will be paid before a new cfs_rq is | 
|  | * allowed to run. | 
|  | */ | 
|  | runtime = cfs_b->runtime; | 
|  | runtime_expires = cfs_b->runtime_expires; | 
|  | cfs_b->runtime = 0; | 
|  |  | 
|  | /* | 
|  | * This check is repeated as we are holding onto the new bandwidth | 
|  | * while we unthrottle.  This can potentially race with an unthrottled | 
|  | * group trying to acquire new bandwidth from the global pool. | 
|  | */ | 
|  | while (throttled && runtime > 0) { | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  | /* we can't nest cfs_b->lock while distributing bandwidth */ | 
|  | runtime = distribute_cfs_runtime(cfs_b, runtime, | 
|  | runtime_expires); | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  |  | 
|  | throttled = !list_empty(&cfs_b->throttled_cfs_rq); | 
|  | } | 
|  |  | 
|  | /* return (any) remaining runtime */ | 
|  | cfs_b->runtime = runtime; | 
|  | /* | 
|  | * While we are ensured activity in the period following an | 
|  | * unthrottle, this also covers the case in which the new bandwidth is | 
|  | * insufficient to cover the existing bandwidth deficit.  (Forcing the | 
|  | * timer to remain active while there are any throttled entities.) | 
|  | */ | 
|  | cfs_b->idle = 0; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_deactivate: | 
|  | cfs_b->timer_active = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* a cfs_rq won't donate quota below this amount */ | 
|  | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | 
|  | /* minimum remaining period time to redistribute slack quota */ | 
|  | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | 
|  | /* how long we wait to gather additional slack before distributing */ | 
|  | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | 
|  |  | 
|  | /* | 
|  | * Are we near the end of the current quota period? | 
|  | * | 
|  | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | 
|  | * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of | 
|  | * migrate_hrtimers, base is never cleared, so we are fine. | 
|  | */ | 
|  | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) | 
|  | { | 
|  | struct hrtimer *refresh_timer = &cfs_b->period_timer; | 
|  | u64 remaining; | 
|  |  | 
|  | /* if the call-back is running a quota refresh is already occurring */ | 
|  | if (hrtimer_callback_running(refresh_timer)) | 
|  | return 1; | 
|  |  | 
|  | /* is a quota refresh about to occur? */ | 
|  | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | 
|  | if (remaining < min_expire) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | 
|  |  | 
|  | /* if there's a quota refresh soon don't bother with slack */ | 
|  | if (runtime_refresh_within(cfs_b, min_left)) | 
|  | return; | 
|  |  | 
|  | start_bandwidth_timer(&cfs_b->slack_timer, | 
|  | ns_to_ktime(cfs_bandwidth_slack_period)); | 
|  | } | 
|  |  | 
|  | /* we know any runtime found here is valid as update_curr() precedes return */ | 
|  | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|  | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | 
|  |  | 
|  | if (slack_runtime <= 0) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | if (cfs_b->quota != RUNTIME_INF && | 
|  | cfs_rq->runtime_expires == cfs_b->runtime_expires) { | 
|  | cfs_b->runtime += slack_runtime; | 
|  |  | 
|  | /* we are under rq->lock, defer unthrottling using a timer */ | 
|  | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | 
|  | !list_empty(&cfs_b->throttled_cfs_rq)) | 
|  | start_cfs_slack_bandwidth(cfs_b); | 
|  | } | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | /* even if it's not valid for return we don't want to try again */ | 
|  | cfs_rq->runtime_remaining -= slack_runtime; | 
|  | } | 
|  |  | 
|  | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (!cfs_bandwidth_used()) | 
|  | return; | 
|  |  | 
|  | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) | 
|  | return; | 
|  |  | 
|  | __return_cfs_rq_runtime(cfs_rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is done with a timer (instead of inline with bandwidth return) since | 
|  | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | 
|  | */ | 
|  | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | 
|  | u64 expires; | 
|  |  | 
|  | /* confirm we're still not at a refresh boundary */ | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { | 
|  | runtime = cfs_b->runtime; | 
|  | cfs_b->runtime = 0; | 
|  | } | 
|  | expires = cfs_b->runtime_expires; | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | if (!runtime) | 
|  | return; | 
|  |  | 
|  | runtime = distribute_cfs_runtime(cfs_b, runtime, expires); | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | if (expires == cfs_b->runtime_expires) | 
|  | cfs_b->runtime = runtime; | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a group wakes up we want to make sure that its quota is not already | 
|  | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | 
|  | * runtime as update_curr() throttling can not not trigger until it's on-rq. | 
|  | */ | 
|  | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (!cfs_bandwidth_used()) | 
|  | return; | 
|  |  | 
|  | /* an active group must be handled by the update_curr()->put() path */ | 
|  | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | 
|  | return; | 
|  |  | 
|  | /* ensure the group is not already throttled */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | return; | 
|  |  | 
|  | /* update runtime allocation */ | 
|  | account_cfs_rq_runtime(cfs_rq, 0); | 
|  | if (cfs_rq->runtime_remaining <= 0) | 
|  | throttle_cfs_rq(cfs_rq); | 
|  | } | 
|  |  | 
|  | /* conditionally throttle active cfs_rq's from put_prev_entity() */ | 
|  | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | if (!cfs_bandwidth_used()) | 
|  | return false; | 
|  |  | 
|  | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * it's possible for a throttled entity to be forced into a running | 
|  | * state (e.g. set_curr_task), in this case we're finished. | 
|  | */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | return true; | 
|  |  | 
|  | throttle_cfs_rq(cfs_rq); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) | 
|  | { | 
|  | struct cfs_bandwidth *cfs_b = | 
|  | container_of(timer, struct cfs_bandwidth, slack_timer); | 
|  | do_sched_cfs_slack_timer(cfs_b); | 
|  |  | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | 
|  | { | 
|  | struct cfs_bandwidth *cfs_b = | 
|  | container_of(timer, struct cfs_bandwidth, period_timer); | 
|  | ktime_t now; | 
|  | int overrun; | 
|  | int idle = 0; | 
|  |  | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | for (;;) { | 
|  | now = hrtimer_cb_get_time(timer); | 
|  | overrun = hrtimer_forward(timer, now, cfs_b->period); | 
|  |  | 
|  | if (!overrun) | 
|  | break; | 
|  |  | 
|  | idle = do_sched_cfs_period_timer(cfs_b, overrun); | 
|  | } | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  |  | 
|  | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
|  | } | 
|  |  | 
|  | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | raw_spin_lock_init(&cfs_b->lock); | 
|  | cfs_b->runtime = 0; | 
|  | cfs_b->quota = RUNTIME_INF; | 
|  | cfs_b->period = ns_to_ktime(default_cfs_period()); | 
|  |  | 
|  | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | 
|  | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | cfs_b->period_timer.function = sched_cfs_period_timer; | 
|  | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | cfs_b->slack_timer.function = sched_cfs_slack_timer; | 
|  | } | 
|  |  | 
|  | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | cfs_rq->runtime_enabled = 0; | 
|  | INIT_LIST_HEAD(&cfs_rq->throttled_list); | 
|  | } | 
|  |  | 
|  | /* requires cfs_b->lock, may release to reprogram timer */ | 
|  | void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force) | 
|  | { | 
|  | /* | 
|  | * The timer may be active because we're trying to set a new bandwidth | 
|  | * period or because we're racing with the tear-down path | 
|  | * (timer_active==0 becomes visible before the hrtimer call-back | 
|  | * terminates).  In either case we ensure that it's re-programmed | 
|  | */ | 
|  | while (unlikely(hrtimer_active(&cfs_b->period_timer)) && | 
|  | hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { | 
|  | /* bounce the lock to allow do_sched_cfs_period_timer to run */ | 
|  | raw_spin_unlock(&cfs_b->lock); | 
|  | cpu_relax(); | 
|  | raw_spin_lock(&cfs_b->lock); | 
|  | /* if someone else restarted the timer then we're done */ | 
|  | if (!force && cfs_b->timer_active) | 
|  | return; | 
|  | } | 
|  |  | 
|  | cfs_b->timer_active = 1; | 
|  | start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); | 
|  | } | 
|  |  | 
|  | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
|  | { | 
|  | hrtimer_cancel(&cfs_b->period_timer); | 
|  | hrtimer_cancel(&cfs_b->slack_timer); | 
|  | } | 
|  |  | 
|  | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | for_each_leaf_cfs_rq(rq, cfs_rq) { | 
|  | if (!cfs_rq->runtime_enabled) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * clock_task is not advancing so we just need to make sure | 
|  | * there's some valid quota amount | 
|  | */ | 
|  | cfs_rq->runtime_remaining = 1; | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | unthrottle_cfs_rq(cfs_rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_CFS_BANDWIDTH */ | 
|  | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return rq_clock_task(rq_of(cfs_rq)); | 
|  | } | 
|  |  | 
|  | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} | 
|  | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } | 
|  | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} | 
|  | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
|  |  | 
|  | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int throttled_lb_pair(struct task_group *tg, | 
|  | int src_cpu, int dest_cpu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
|  | #endif | 
|  |  | 
|  | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | 
|  | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} | 
|  |  | 
|  | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|  |  | 
|  | /************************************************** | 
|  | * CFS operations on tasks: | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | WARN_ON(task_rq(p) != rq); | 
|  |  | 
|  | if (cfs_rq->nr_running > 1) { | 
|  | u64 slice = sched_slice(cfs_rq, se); | 
|  | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
|  | s64 delta = slice - ran; | 
|  |  | 
|  | if (delta < 0) { | 
|  | if (rq->curr == p) | 
|  | resched_task(p); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't schedule slices shorter than 10000ns, that just | 
|  | * doesn't make sense. Rely on vruntime for fairness. | 
|  | */ | 
|  | if (rq->curr != p) | 
|  | delta = max_t(s64, 10000LL, delta); | 
|  |  | 
|  | hrtick_start(rq, delta); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called from enqueue/dequeue and updates the hrtick when the | 
|  | * current task is from our class and nr_running is low enough | 
|  | * to matter. | 
|  | */ | 
|  | static void hrtick_update(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  |  | 
|  | if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) | 
|  | return; | 
|  |  | 
|  | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | 
|  | hrtick_start_fair(rq, curr); | 
|  | } | 
|  | #else /* !CONFIG_SCHED_HRTICK */ | 
|  | static inline void | 
|  | hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void hrtick_update(struct rq *rq) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The enqueue_task method is called before nr_running is | 
|  | * increased. Here we update the fair scheduling stats and | 
|  | * then put the task into the rbtree: | 
|  | */ | 
|  | static void | 
|  | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | if (se->on_rq) | 
|  | break; | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | enqueue_entity(cfs_rq, se, flags); | 
|  |  | 
|  | /* | 
|  | * end evaluation on encountering a throttled cfs_rq | 
|  | * | 
|  | * note: in the case of encountering a throttled cfs_rq we will | 
|  | * post the final h_nr_running increment below. | 
|  | */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | break; | 
|  | cfs_rq->h_nr_running++; | 
|  |  | 
|  | flags = ENQUEUE_WAKEUP; | 
|  | } | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | cfs_rq->h_nr_running++; | 
|  |  | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | break; | 
|  |  | 
|  | update_cfs_shares(cfs_rq); | 
|  | update_entity_load_avg(se, 1); | 
|  | } | 
|  |  | 
|  | if (!se) { | 
|  | update_rq_runnable_avg(rq, rq->nr_running); | 
|  | add_nr_running(rq, 1); | 
|  | } | 
|  | hrtick_update(rq); | 
|  | } | 
|  |  | 
|  | static void set_next_buddy(struct sched_entity *se); | 
|  |  | 
|  | /* | 
|  | * The dequeue_task method is called before nr_running is | 
|  | * decreased. We remove the task from the rbtree and | 
|  | * update the fair scheduling stats: | 
|  | */ | 
|  | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &p->se; | 
|  | int task_sleep = flags & DEQUEUE_SLEEP; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | dequeue_entity(cfs_rq, se, flags); | 
|  |  | 
|  | /* | 
|  | * end evaluation on encountering a throttled cfs_rq | 
|  | * | 
|  | * note: in the case of encountering a throttled cfs_rq we will | 
|  | * post the final h_nr_running decrement below. | 
|  | */ | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | break; | 
|  | cfs_rq->h_nr_running--; | 
|  |  | 
|  | /* Don't dequeue parent if it has other entities besides us */ | 
|  | if (cfs_rq->load.weight) { | 
|  | /* | 
|  | * Bias pick_next to pick a task from this cfs_rq, as | 
|  | * p is sleeping when it is within its sched_slice. | 
|  | */ | 
|  | if (task_sleep && parent_entity(se)) | 
|  | set_next_buddy(parent_entity(se)); | 
|  |  | 
|  | /* avoid re-evaluating load for this entity */ | 
|  | se = parent_entity(se); | 
|  | break; | 
|  | } | 
|  | flags |= DEQUEUE_SLEEP; | 
|  | } | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | cfs_rq->h_nr_running--; | 
|  |  | 
|  | if (cfs_rq_throttled(cfs_rq)) | 
|  | break; | 
|  |  | 
|  | update_cfs_shares(cfs_rq); | 
|  | update_entity_load_avg(se, 1); | 
|  | } | 
|  |  | 
|  | if (!se) { | 
|  | sub_nr_running(rq, 1); | 
|  | update_rq_runnable_avg(rq, 1); | 
|  | } | 
|  | hrtick_update(rq); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* Used instead of source_load when we know the type == 0 */ | 
|  | static unsigned long weighted_cpuload(const int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->cfs.runnable_load_avg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a low guess at the load of a migration-source cpu weighted | 
|  | * according to the scheduling class and "nice" value. | 
|  | * | 
|  | * We want to under-estimate the load of migration sources, to | 
|  | * balance conservatively. | 
|  | */ | 
|  | static unsigned long source_load(int cpu, int type) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long total = weighted_cpuload(cpu); | 
|  |  | 
|  | if (type == 0 || !sched_feat(LB_BIAS)) | 
|  | return total; | 
|  |  | 
|  | return min(rq->cpu_load[type-1], total); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a high guess at the load of a migration-target cpu weighted | 
|  | * according to the scheduling class and "nice" value. | 
|  | */ | 
|  | static unsigned long target_load(int cpu, int type) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long total = weighted_cpuload(cpu); | 
|  |  | 
|  | if (type == 0 || !sched_feat(LB_BIAS)) | 
|  | return total; | 
|  |  | 
|  | return max(rq->cpu_load[type-1], total); | 
|  | } | 
|  |  | 
|  | static unsigned long capacity_of(int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->cpu_capacity; | 
|  | } | 
|  |  | 
|  | static unsigned long cpu_avg_load_per_task(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); | 
|  | unsigned long load_avg = rq->cfs.runnable_load_avg; | 
|  |  | 
|  | if (nr_running) | 
|  | return load_avg / nr_running; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void record_wakee(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * Rough decay (wiping) for cost saving, don't worry | 
|  | * about the boundary, really active task won't care | 
|  | * about the loss. | 
|  | */ | 
|  | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | 
|  | current->wakee_flips >>= 1; | 
|  | current->wakee_flip_decay_ts = jiffies; | 
|  | } | 
|  |  | 
|  | if (current->last_wakee != p) { | 
|  | current->last_wakee = p; | 
|  | current->wakee_flips++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void task_waking_fair(struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  | u64 min_vruntime; | 
|  |  | 
|  | #ifndef CONFIG_64BIT | 
|  | u64 min_vruntime_copy; | 
|  |  | 
|  | do { | 
|  | min_vruntime_copy = cfs_rq->min_vruntime_copy; | 
|  | smp_rmb(); | 
|  | min_vruntime = cfs_rq->min_vruntime; | 
|  | } while (min_vruntime != min_vruntime_copy); | 
|  | #else | 
|  | min_vruntime = cfs_rq->min_vruntime; | 
|  | #endif | 
|  |  | 
|  | se->vruntime -= min_vruntime; | 
|  | record_wakee(p); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* | 
|  | * effective_load() calculates the load change as seen from the root_task_group | 
|  | * | 
|  | * Adding load to a group doesn't make a group heavier, but can cause movement | 
|  | * of group shares between cpus. Assuming the shares were perfectly aligned one | 
|  | * can calculate the shift in shares. | 
|  | * | 
|  | * Calculate the effective load difference if @wl is added (subtracted) to @tg | 
|  | * on this @cpu and results in a total addition (subtraction) of @wg to the | 
|  | * total group weight. | 
|  | * | 
|  | * Given a runqueue weight distribution (rw_i) we can compute a shares | 
|  | * distribution (s_i) using: | 
|  | * | 
|  | *   s_i = rw_i / \Sum rw_j						(1) | 
|  | * | 
|  | * Suppose we have 4 CPUs and our @tg is a direct child of the root group and | 
|  | * has 7 equal weight tasks, distributed as below (rw_i), with the resulting | 
|  | * shares distribution (s_i): | 
|  | * | 
|  | *   rw_i = {   2,   4,   1,   0 } | 
|  | *   s_i  = { 2/7, 4/7, 1/7,   0 } | 
|  | * | 
|  | * As per wake_affine() we're interested in the load of two CPUs (the CPU the | 
|  | * task used to run on and the CPU the waker is running on), we need to | 
|  | * compute the effect of waking a task on either CPU and, in case of a sync | 
|  | * wakeup, compute the effect of the current task going to sleep. | 
|  | * | 
|  | * So for a change of @wl to the local @cpu with an overall group weight change | 
|  | * of @wl we can compute the new shares distribution (s'_i) using: | 
|  | * | 
|  | *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2) | 
|  | * | 
|  | * Suppose we're interested in CPUs 0 and 1, and want to compute the load | 
|  | * differences in waking a task to CPU 0. The additional task changes the | 
|  | * weight and shares distributions like: | 
|  | * | 
|  | *   rw'_i = {   3,   4,   1,   0 } | 
|  | *   s'_i  = { 3/8, 4/8, 1/8,   0 } | 
|  | * | 
|  | * We can then compute the difference in effective weight by using: | 
|  | * | 
|  | *   dw_i = S * (s'_i - s_i)						(3) | 
|  | * | 
|  | * Where 'S' is the group weight as seen by its parent. | 
|  | * | 
|  | * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) | 
|  | * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - | 
|  | * 4/7) times the weight of the group. | 
|  | */ | 
|  | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) | 
|  | { | 
|  | struct sched_entity *se = tg->se[cpu]; | 
|  |  | 
|  | if (!tg->parent)	/* the trivial, non-cgroup case */ | 
|  | return wl; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | long w, W; | 
|  |  | 
|  | tg = se->my_q->tg; | 
|  |  | 
|  | /* | 
|  | * W = @wg + \Sum rw_j | 
|  | */ | 
|  | W = wg + calc_tg_weight(tg, se->my_q); | 
|  |  | 
|  | /* | 
|  | * w = rw_i + @wl | 
|  | */ | 
|  | w = se->my_q->load.weight + wl; | 
|  |  | 
|  | /* | 
|  | * wl = S * s'_i; see (2) | 
|  | */ | 
|  | if (W > 0 && w < W) | 
|  | wl = (w * tg->shares) / W; | 
|  | else | 
|  | wl = tg->shares; | 
|  |  | 
|  | /* | 
|  | * Per the above, wl is the new se->load.weight value; since | 
|  | * those are clipped to [MIN_SHARES, ...) do so now. See | 
|  | * calc_cfs_shares(). | 
|  | */ | 
|  | if (wl < MIN_SHARES) | 
|  | wl = MIN_SHARES; | 
|  |  | 
|  | /* | 
|  | * wl = dw_i = S * (s'_i - s_i); see (3) | 
|  | */ | 
|  | wl -= se->load.weight; | 
|  |  | 
|  | /* | 
|  | * Recursively apply this logic to all parent groups to compute | 
|  | * the final effective load change on the root group. Since | 
|  | * only the @tg group gets extra weight, all parent groups can | 
|  | * only redistribute existing shares. @wl is the shift in shares | 
|  | * resulting from this level per the above. | 
|  | */ | 
|  | wg = 0; | 
|  | } | 
|  |  | 
|  | return wl; | 
|  | } | 
|  | #else | 
|  |  | 
|  | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) | 
|  | { | 
|  | return wl; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int wake_wide(struct task_struct *p) | 
|  | { | 
|  | int factor = this_cpu_read(sd_llc_size); | 
|  |  | 
|  | /* | 
|  | * Yeah, it's the switching-frequency, could means many wakee or | 
|  | * rapidly switch, use factor here will just help to automatically | 
|  | * adjust the loose-degree, so bigger node will lead to more pull. | 
|  | */ | 
|  | if (p->wakee_flips > factor) { | 
|  | /* | 
|  | * wakee is somewhat hot, it needs certain amount of cpu | 
|  | * resource, so if waker is far more hot, prefer to leave | 
|  | * it alone. | 
|  | */ | 
|  | if (current->wakee_flips > (factor * p->wakee_flips)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | 
|  | { | 
|  | s64 this_load, load; | 
|  | int idx, this_cpu, prev_cpu; | 
|  | unsigned long tl_per_task; | 
|  | struct task_group *tg; | 
|  | unsigned long weight; | 
|  | int balanced; | 
|  |  | 
|  | /* | 
|  | * If we wake multiple tasks be careful to not bounce | 
|  | * ourselves around too much. | 
|  | */ | 
|  | if (wake_wide(p)) | 
|  | return 0; | 
|  |  | 
|  | idx	  = sd->wake_idx; | 
|  | this_cpu  = smp_processor_id(); | 
|  | prev_cpu  = task_cpu(p); | 
|  | load	  = source_load(prev_cpu, idx); | 
|  | this_load = target_load(this_cpu, idx); | 
|  |  | 
|  | /* | 
|  | * If sync wakeup then subtract the (maximum possible) | 
|  | * effect of the currently running task from the load | 
|  | * of the current CPU: | 
|  | */ | 
|  | if (sync) { | 
|  | tg = task_group(current); | 
|  | weight = current->se.load.weight; | 
|  |  | 
|  | this_load += effective_load(tg, this_cpu, -weight, -weight); | 
|  | load += effective_load(tg, prev_cpu, 0, -weight); | 
|  | } | 
|  |  | 
|  | tg = task_group(p); | 
|  | weight = p->se.load.weight; | 
|  |  | 
|  | /* | 
|  | * In low-load situations, where prev_cpu is idle and this_cpu is idle | 
|  | * due to the sync cause above having dropped this_load to 0, we'll | 
|  | * always have an imbalance, but there's really nothing you can do | 
|  | * about that, so that's good too. | 
|  | * | 
|  | * Otherwise check if either cpus are near enough in load to allow this | 
|  | * task to be woken on this_cpu. | 
|  | */ | 
|  | if (this_load > 0) { | 
|  | s64 this_eff_load, prev_eff_load; | 
|  |  | 
|  | this_eff_load = 100; | 
|  | this_eff_load *= capacity_of(prev_cpu); | 
|  | this_eff_load *= this_load + | 
|  | effective_load(tg, this_cpu, weight, weight); | 
|  |  | 
|  | prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; | 
|  | prev_eff_load *= capacity_of(this_cpu); | 
|  | prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); | 
|  |  | 
|  | balanced = this_eff_load <= prev_eff_load; | 
|  | } else | 
|  | balanced = true; | 
|  |  | 
|  | /* | 
|  | * If the currently running task will sleep within | 
|  | * a reasonable amount of time then attract this newly | 
|  | * woken task: | 
|  | */ | 
|  | if (sync && balanced) | 
|  | return 1; | 
|  |  | 
|  | schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); | 
|  | tl_per_task = cpu_avg_load_per_task(this_cpu); | 
|  |  | 
|  | if (balanced || | 
|  | (this_load <= load && | 
|  | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | 
|  | /* | 
|  | * This domain has SD_WAKE_AFFINE and | 
|  | * p is cache cold in this domain, and | 
|  | * there is no bad imbalance. | 
|  | */ | 
|  | schedstat_inc(sd, ttwu_move_affine); | 
|  | schedstat_inc(p, se.statistics.nr_wakeups_affine); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_idlest_group finds and returns the least busy CPU group within the | 
|  | * domain. | 
|  | */ | 
|  | static struct sched_group * | 
|  | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | 
|  | int this_cpu, int sd_flag) | 
|  | { | 
|  | struct sched_group *idlest = NULL, *group = sd->groups; | 
|  | unsigned long min_load = ULONG_MAX, this_load = 0; | 
|  | int load_idx = sd->forkexec_idx; | 
|  | int imbalance = 100 + (sd->imbalance_pct-100)/2; | 
|  |  | 
|  | if (sd_flag & SD_BALANCE_WAKE) | 
|  | load_idx = sd->wake_idx; | 
|  |  | 
|  | do { | 
|  | unsigned long load, avg_load; | 
|  | int local_group; | 
|  | int i; | 
|  |  | 
|  | /* Skip over this group if it has no CPUs allowed */ | 
|  | if (!cpumask_intersects(sched_group_cpus(group), | 
|  | tsk_cpus_allowed(p))) | 
|  | continue; | 
|  |  | 
|  | local_group = cpumask_test_cpu(this_cpu, | 
|  | sched_group_cpus(group)); | 
|  |  | 
|  | /* Tally up the load of all CPUs in the group */ | 
|  | avg_load = 0; | 
|  |  | 
|  | for_each_cpu(i, sched_group_cpus(group)) { | 
|  | /* Bias balancing toward cpus of our domain */ | 
|  | if (local_group) | 
|  | load = source_load(i, load_idx); | 
|  | else | 
|  | load = target_load(i, load_idx); | 
|  |  | 
|  | avg_load += load; | 
|  | } | 
|  |  | 
|  | /* Adjust by relative CPU capacity of the group */ | 
|  | avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; | 
|  |  | 
|  | if (local_group) { | 
|  | this_load = avg_load; | 
|  | } else if (avg_load < min_load) { | 
|  | min_load = avg_load; | 
|  | idlest = group; | 
|  | } | 
|  | } while (group = group->next, group != sd->groups); | 
|  |  | 
|  | if (!idlest || 100*this_load < imbalance*min_load) | 
|  | return NULL; | 
|  | return idlest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_idlest_cpu - find the idlest cpu among the cpus in group. | 
|  | */ | 
|  | static int | 
|  | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
|  | { | 
|  | unsigned long load, min_load = ULONG_MAX; | 
|  | int idlest = -1; | 
|  | int i; | 
|  |  | 
|  | /* Traverse only the allowed CPUs */ | 
|  | for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { | 
|  | load = weighted_cpuload(i); | 
|  |  | 
|  | if (load < min_load || (load == min_load && i == this_cpu)) { | 
|  | min_load = load; | 
|  | idlest = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return idlest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try and locate an idle CPU in the sched_domain. | 
|  | */ | 
|  | static int select_idle_sibling(struct task_struct *p, int target) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  | struct sched_group *sg; | 
|  | int i = task_cpu(p); | 
|  |  | 
|  | if (idle_cpu(target)) | 
|  | return target; | 
|  |  | 
|  | /* | 
|  | * If the prevous cpu is cache affine and idle, don't be stupid. | 
|  | */ | 
|  | if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) | 
|  | return i; | 
|  |  | 
|  | /* | 
|  | * Otherwise, iterate the domains and find an elegible idle cpu. | 
|  | */ | 
|  | sd = rcu_dereference(per_cpu(sd_llc, target)); | 
|  | for_each_lower_domain(sd) { | 
|  | sg = sd->groups; | 
|  | do { | 
|  | if (!cpumask_intersects(sched_group_cpus(sg), | 
|  | tsk_cpus_allowed(p))) | 
|  | goto next; | 
|  |  | 
|  | for_each_cpu(i, sched_group_cpus(sg)) { | 
|  | if (i == target || !idle_cpu(i)) | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | target = cpumask_first_and(sched_group_cpus(sg), | 
|  | tsk_cpus_allowed(p)); | 
|  | goto done; | 
|  | next: | 
|  | sg = sg->next; | 
|  | } while (sg != sd->groups); | 
|  | } | 
|  | done: | 
|  | return target; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * select_task_rq_fair: Select target runqueue for the waking task in domains | 
|  | * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, | 
|  | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. | 
|  | * | 
|  | * Balances load by selecting the idlest cpu in the idlest group, or under | 
|  | * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. | 
|  | * | 
|  | * Returns the target cpu number. | 
|  | * | 
|  | * preempt must be disabled. | 
|  | */ | 
|  | static int | 
|  | select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) | 
|  | { | 
|  | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | 
|  | int cpu = smp_processor_id(); | 
|  | int new_cpu = cpu; | 
|  | int want_affine = 0; | 
|  | int sync = wake_flags & WF_SYNC; | 
|  |  | 
|  | if (p->nr_cpus_allowed == 1) | 
|  | return prev_cpu; | 
|  |  | 
|  | if (sd_flag & SD_BALANCE_WAKE) { | 
|  | if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) | 
|  | want_affine = 1; | 
|  | new_cpu = prev_cpu; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_domain(cpu, tmp) { | 
|  | if (!(tmp->flags & SD_LOAD_BALANCE)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If both cpu and prev_cpu are part of this domain, | 
|  | * cpu is a valid SD_WAKE_AFFINE target. | 
|  | */ | 
|  | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | 
|  | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | 
|  | affine_sd = tmp; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (tmp->flags & sd_flag) | 
|  | sd = tmp; | 
|  | } | 
|  |  | 
|  | if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) | 
|  | prev_cpu = cpu; | 
|  |  | 
|  | if (sd_flag & SD_BALANCE_WAKE) { | 
|  | new_cpu = select_idle_sibling(p, prev_cpu); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | while (sd) { | 
|  | struct sched_group *group; | 
|  | int weight; | 
|  |  | 
|  | if (!(sd->flags & sd_flag)) { | 
|  | sd = sd->child; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | group = find_idlest_group(sd, p, cpu, sd_flag); | 
|  | if (!group) { | 
|  | sd = sd->child; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | new_cpu = find_idlest_cpu(group, p, cpu); | 
|  | if (new_cpu == -1 || new_cpu == cpu) { | 
|  | /* Now try balancing at a lower domain level of cpu */ | 
|  | sd = sd->child; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Now try balancing at a lower domain level of new_cpu */ | 
|  | cpu = new_cpu; | 
|  | weight = sd->span_weight; | 
|  | sd = NULL; | 
|  | for_each_domain(cpu, tmp) { | 
|  | if (weight <= tmp->span_weight) | 
|  | break; | 
|  | if (tmp->flags & sd_flag) | 
|  | sd = tmp; | 
|  | } | 
|  | /* while loop will break here if sd == NULL */ | 
|  | } | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return new_cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called immediately before a task is migrated to a new cpu; task_cpu(p) and | 
|  | * cfs_rq_of(p) references at time of call are still valid and identify the | 
|  | * previous cpu.  However, the caller only guarantees p->pi_lock is held; no | 
|  | * other assumptions, including the state of rq->lock, should be made. | 
|  | */ | 
|  | static void | 
|  | migrate_task_rq_fair(struct task_struct *p, int next_cpu) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | /* | 
|  | * Load tracking: accumulate removed load so that it can be processed | 
|  | * when we next update owning cfs_rq under rq->lock.  Tasks contribute | 
|  | * to blocked load iff they have a positive decay-count.  It can never | 
|  | * be negative here since on-rq tasks have decay-count == 0. | 
|  | */ | 
|  | if (se->avg.decay_count) { | 
|  | se->avg.decay_count = -__synchronize_entity_decay(se); | 
|  | atomic_long_add(se->avg.load_avg_contrib, | 
|  | &cfs_rq->removed_load); | 
|  | } | 
|  |  | 
|  | /* We have migrated, no longer consider this task hot */ | 
|  | se->exec_start = 0; | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static unsigned long | 
|  | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | 
|  | { | 
|  | unsigned long gran = sysctl_sched_wakeup_granularity; | 
|  |  | 
|  | /* | 
|  | * Since its curr running now, convert the gran from real-time | 
|  | * to virtual-time in his units. | 
|  | * | 
|  | * By using 'se' instead of 'curr' we penalize light tasks, so | 
|  | * they get preempted easier. That is, if 'se' < 'curr' then | 
|  | * the resulting gran will be larger, therefore penalizing the | 
|  | * lighter, if otoh 'se' > 'curr' then the resulting gran will | 
|  | * be smaller, again penalizing the lighter task. | 
|  | * | 
|  | * This is especially important for buddies when the leftmost | 
|  | * task is higher priority than the buddy. | 
|  | */ | 
|  | return calc_delta_fair(gran, se); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should 'se' preempt 'curr'. | 
|  | * | 
|  | *             |s1 | 
|  | *        |s2 | 
|  | *   |s3 | 
|  | *         g | 
|  | *      |<--->|c | 
|  | * | 
|  | *  w(c, s1) = -1 | 
|  | *  w(c, s2) =  0 | 
|  | *  w(c, s3) =  1 | 
|  | * | 
|  | */ | 
|  | static int | 
|  | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | 
|  | { | 
|  | s64 gran, vdiff = curr->vruntime - se->vruntime; | 
|  |  | 
|  | if (vdiff <= 0) | 
|  | return -1; | 
|  |  | 
|  | gran = wakeup_gran(curr, se); | 
|  | if (vdiff > gran) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void set_last_buddy(struct sched_entity *se) | 
|  | { | 
|  | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | 
|  | return; | 
|  |  | 
|  | for_each_sched_entity(se) | 
|  | cfs_rq_of(se)->last = se; | 
|  | } | 
|  |  | 
|  | static void set_next_buddy(struct sched_entity *se) | 
|  | { | 
|  | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | 
|  | return; | 
|  |  | 
|  | for_each_sched_entity(se) | 
|  | cfs_rq_of(se)->next = se; | 
|  | } | 
|  |  | 
|  | static void set_skip_buddy(struct sched_entity *se) | 
|  | { | 
|  | for_each_sched_entity(se) | 
|  | cfs_rq_of(se)->skip = se; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct sched_entity *se = &curr->se, *pse = &p->se; | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
|  | int scale = cfs_rq->nr_running >= sched_nr_latency; | 
|  | int next_buddy_marked = 0; | 
|  |  | 
|  | if (unlikely(se == pse)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This is possible from callers such as move_task(), in which we | 
|  | * unconditionally check_prempt_curr() after an enqueue (which may have | 
|  | * lead to a throttle).  This both saves work and prevents false | 
|  | * next-buddy nomination below. | 
|  | */ | 
|  | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | 
|  | return; | 
|  |  | 
|  | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { | 
|  | set_next_buddy(pse); | 
|  | next_buddy_marked = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can come here with TIF_NEED_RESCHED already set from new task | 
|  | * wake up path. | 
|  | * | 
|  | * Note: this also catches the edge-case of curr being in a throttled | 
|  | * group (e.g. via set_curr_task), since update_curr() (in the | 
|  | * enqueue of curr) will have resulted in resched being set.  This | 
|  | * prevents us from potentially nominating it as a false LAST_BUDDY | 
|  | * below. | 
|  | */ | 
|  | if (test_tsk_need_resched(curr)) | 
|  | return; | 
|  |  | 
|  | /* Idle tasks are by definition preempted by non-idle tasks. */ | 
|  | if (unlikely(curr->policy == SCHED_IDLE) && | 
|  | likely(p->policy != SCHED_IDLE)) | 
|  | goto preempt; | 
|  |  | 
|  | /* | 
|  | * Batch and idle tasks do not preempt non-idle tasks (their preemption | 
|  | * is driven by the tick): | 
|  | */ | 
|  | if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) | 
|  | return; | 
|  |  | 
|  | find_matching_se(&se, &pse); | 
|  | update_curr(cfs_rq_of(se)); | 
|  | BUG_ON(!pse); | 
|  | if (wakeup_preempt_entity(se, pse) == 1) { | 
|  | /* | 
|  | * Bias pick_next to pick the sched entity that is | 
|  | * triggering this preemption. | 
|  | */ | 
|  | if (!next_buddy_marked) | 
|  | set_next_buddy(pse); | 
|  | goto preempt; | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | preempt: | 
|  | resched_task(curr); | 
|  | /* | 
|  | * Only set the backward buddy when the current task is still | 
|  | * on the rq. This can happen when a wakeup gets interleaved | 
|  | * with schedule on the ->pre_schedule() or idle_balance() | 
|  | * point, either of which can * drop the rq lock. | 
|  | * | 
|  | * Also, during early boot the idle thread is in the fair class, | 
|  | * for obvious reasons its a bad idea to schedule back to it. | 
|  | */ | 
|  | if (unlikely(!se->on_rq || curr == rq->idle)) | 
|  | return; | 
|  |  | 
|  | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | 
|  | set_last_buddy(se); | 
|  | } | 
|  |  | 
|  | static struct task_struct * | 
|  | pick_next_task_fair(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = &rq->cfs; | 
|  | struct sched_entity *se; | 
|  | struct task_struct *p; | 
|  | int new_tasks; | 
|  |  | 
|  | again: | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | if (!cfs_rq->nr_running) | 
|  | goto idle; | 
|  |  | 
|  | if (prev->sched_class != &fair_sched_class) | 
|  | goto simple; | 
|  |  | 
|  | /* | 
|  | * Because of the set_next_buddy() in dequeue_task_fair() it is rather | 
|  | * likely that a next task is from the same cgroup as the current. | 
|  | * | 
|  | * Therefore attempt to avoid putting and setting the entire cgroup | 
|  | * hierarchy, only change the part that actually changes. | 
|  | */ | 
|  |  | 
|  | do { | 
|  | struct sched_entity *curr = cfs_rq->curr; | 
|  |  | 
|  | /* | 
|  | * Since we got here without doing put_prev_entity() we also | 
|  | * have to consider cfs_rq->curr. If it is still a runnable | 
|  | * entity, update_curr() will update its vruntime, otherwise | 
|  | * forget we've ever seen it. | 
|  | */ | 
|  | if (curr && curr->on_rq) | 
|  | update_curr(cfs_rq); | 
|  | else | 
|  | curr = NULL; | 
|  |  | 
|  | /* | 
|  | * This call to check_cfs_rq_runtime() will do the throttle and | 
|  | * dequeue its entity in the parent(s). Therefore the 'simple' | 
|  | * nr_running test will indeed be correct. | 
|  | */ | 
|  | if (unlikely(check_cfs_rq_runtime(cfs_rq))) | 
|  | goto simple; | 
|  |  | 
|  | se = pick_next_entity(cfs_rq, curr); | 
|  | cfs_rq = group_cfs_rq(se); | 
|  | } while (cfs_rq); | 
|  |  | 
|  | p = task_of(se); | 
|  |  | 
|  | /* | 
|  | * Since we haven't yet done put_prev_entity and if the selected task | 
|  | * is a different task than we started out with, try and touch the | 
|  | * least amount of cfs_rqs. | 
|  | */ | 
|  | if (prev != p) { | 
|  | struct sched_entity *pse = &prev->se; | 
|  |  | 
|  | while (!(cfs_rq = is_same_group(se, pse))) { | 
|  | int se_depth = se->depth; | 
|  | int pse_depth = pse->depth; | 
|  |  | 
|  | if (se_depth <= pse_depth) { | 
|  | put_prev_entity(cfs_rq_of(pse), pse); | 
|  | pse = parent_entity(pse); | 
|  | } | 
|  | if (se_depth >= pse_depth) { | 
|  | set_next_entity(cfs_rq_of(se), se); | 
|  | se = parent_entity(se); | 
|  | } | 
|  | } | 
|  |  | 
|  | put_prev_entity(cfs_rq, pse); | 
|  | set_next_entity(cfs_rq, se); | 
|  | } | 
|  |  | 
|  | if (hrtick_enabled(rq)) | 
|  | hrtick_start_fair(rq, p); | 
|  |  | 
|  | return p; | 
|  | simple: | 
|  | cfs_rq = &rq->cfs; | 
|  | #endif | 
|  |  | 
|  | if (!cfs_rq->nr_running) | 
|  | goto idle; | 
|  |  | 
|  | put_prev_task(rq, prev); | 
|  |  | 
|  | do { | 
|  | se = pick_next_entity(cfs_rq, NULL); | 
|  | set_next_entity(cfs_rq, se); | 
|  | cfs_rq = group_cfs_rq(se); | 
|  | } while (cfs_rq); | 
|  |  | 
|  | p = task_of(se); | 
|  |  | 
|  | if (hrtick_enabled(rq)) | 
|  | hrtick_start_fair(rq, p); | 
|  |  | 
|  | return p; | 
|  |  | 
|  | idle: | 
|  | new_tasks = idle_balance(rq); | 
|  | /* | 
|  | * Because idle_balance() releases (and re-acquires) rq->lock, it is | 
|  | * possible for any higher priority task to appear. In that case we | 
|  | * must re-start the pick_next_entity() loop. | 
|  | */ | 
|  | if (new_tasks < 0) | 
|  | return RETRY_TASK; | 
|  |  | 
|  | if (new_tasks > 0) | 
|  | goto again; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for a descheduled task: | 
|  | */ | 
|  | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | struct sched_entity *se = &prev->se; | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | put_prev_entity(cfs_rq, se); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_yield() is very simple | 
|  | * | 
|  | * The magic of dealing with the ->skip buddy is in pick_next_entity. | 
|  | */ | 
|  | static void yield_task_fair(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
|  | struct sched_entity *se = &curr->se; | 
|  |  | 
|  | /* | 
|  | * Are we the only task in the tree? | 
|  | */ | 
|  | if (unlikely(rq->nr_running == 1)) | 
|  | return; | 
|  |  | 
|  | clear_buddies(cfs_rq, se); | 
|  |  | 
|  | if (curr->policy != SCHED_BATCH) { | 
|  | update_rq_clock(rq); | 
|  | /* | 
|  | * Update run-time statistics of the 'current'. | 
|  | */ | 
|  | update_curr(cfs_rq); | 
|  | /* | 
|  | * Tell update_rq_clock() that we've just updated, | 
|  | * so we don't do microscopic update in schedule() | 
|  | * and double the fastpath cost. | 
|  | */ | 
|  | rq->skip_clock_update = 1; | 
|  | } | 
|  |  | 
|  | set_skip_buddy(se); | 
|  | } | 
|  |  | 
|  | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  |  | 
|  | /* throttled hierarchies are not runnable */ | 
|  | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | 
|  | return false; | 
|  |  | 
|  | /* Tell the scheduler that we'd really like pse to run next. */ | 
|  | set_next_buddy(se); | 
|  |  | 
|  | yield_task_fair(rq); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /************************************************** | 
|  | * Fair scheduling class load-balancing methods. | 
|  | * | 
|  | * BASICS | 
|  | * | 
|  | * The purpose of load-balancing is to achieve the same basic fairness the | 
|  | * per-cpu scheduler provides, namely provide a proportional amount of compute | 
|  | * time to each task. This is expressed in the following equation: | 
|  | * | 
|  | *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1) | 
|  | * | 
|  | * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight | 
|  | * W_i,0 is defined as: | 
|  | * | 
|  | *   W_i,0 = \Sum_j w_i,j                                             (2) | 
|  | * | 
|  | * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight | 
|  | * is derived from the nice value as per prio_to_weight[]. | 
|  | * | 
|  | * The weight average is an exponential decay average of the instantaneous | 
|  | * weight: | 
|  | * | 
|  | *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3) | 
|  | * | 
|  | * C_i is the compute capacity of cpu i, typically it is the | 
|  | * fraction of 'recent' time available for SCHED_OTHER task execution. But it | 
|  | * can also include other factors [XXX]. | 
|  | * | 
|  | * To achieve this balance we define a measure of imbalance which follows | 
|  | * directly from (1): | 
|  | * | 
|  | *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4) | 
|  | * | 
|  | * We them move tasks around to minimize the imbalance. In the continuous | 
|  | * function space it is obvious this converges, in the discrete case we get | 
|  | * a few fun cases generally called infeasible weight scenarios. | 
|  | * | 
|  | * [XXX expand on: | 
|  | *     - infeasible weights; | 
|  | *     - local vs global optima in the discrete case. ] | 
|  | * | 
|  | * | 
|  | * SCHED DOMAINS | 
|  | * | 
|  | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | 
|  | * for all i,j solution, we create a tree of cpus that follows the hardware | 
|  | * topology where each level pairs two lower groups (or better). This results | 
|  | * in O(log n) layers. Furthermore we reduce the number of cpus going up the | 
|  | * tree to only the first of the previous level and we decrease the frequency | 
|  | * of load-balance at each level inv. proportional to the number of cpus in | 
|  | * the groups. | 
|  | * | 
|  | * This yields: | 
|  | * | 
|  | *     log_2 n     1     n | 
|  | *   \Sum       { --- * --- * 2^i } = O(n)                            (5) | 
|  | *     i = 0      2^i   2^i | 
|  | *                               `- size of each group | 
|  | *         |         |     `- number of cpus doing load-balance | 
|  | *         |         `- freq | 
|  | *         `- sum over all levels | 
|  | * | 
|  | * Coupled with a limit on how many tasks we can migrate every balance pass, | 
|  | * this makes (5) the runtime complexity of the balancer. | 
|  | * | 
|  | * An important property here is that each CPU is still (indirectly) connected | 
|  | * to every other cpu in at most O(log n) steps: | 
|  | * | 
|  | * The adjacency matrix of the resulting graph is given by: | 
|  | * | 
|  | *             log_2 n | 
|  | *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6) | 
|  | *             k = 0 | 
|  | * | 
|  | * And you'll find that: | 
|  | * | 
|  | *   A^(log_2 n)_i,j != 0  for all i,j                                (7) | 
|  | * | 
|  | * Showing there's indeed a path between every cpu in at most O(log n) steps. | 
|  | * The task movement gives a factor of O(m), giving a convergence complexity | 
|  | * of: | 
|  | * | 
|  | *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8) | 
|  | * | 
|  | * | 
|  | * WORK CONSERVING | 
|  | * | 
|  | * In order to avoid CPUs going idle while there's still work to do, new idle | 
|  | * balancing is more aggressive and has the newly idle cpu iterate up the domain | 
|  | * tree itself instead of relying on other CPUs to bring it work. | 
|  | * | 
|  | * This adds some complexity to both (5) and (8) but it reduces the total idle | 
|  | * time. | 
|  | * | 
|  | * [XXX more?] | 
|  | * | 
|  | * | 
|  | * CGROUPS | 
|  | * | 
|  | * Cgroups make a horror show out of (2), instead of a simple sum we get: | 
|  | * | 
|  | *                                s_k,i | 
|  | *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9) | 
|  | *                                 S_k | 
|  | * | 
|  | * Where | 
|  | * | 
|  | *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10) | 
|  | * | 
|  | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. | 
|  | * | 
|  | * The big problem is S_k, its a global sum needed to compute a local (W_i) | 
|  | * property. | 
|  | * | 
|  | * [XXX write more on how we solve this.. _after_ merging pjt's patches that | 
|  | *      rewrite all of this once again.] | 
|  | */ | 
|  |  | 
|  | static unsigned long __read_mostly max_load_balance_interval = HZ/10; | 
|  |  | 
|  | enum fbq_type { regular, remote, all }; | 
|  |  | 
|  | #define LBF_ALL_PINNED	0x01 | 
|  | #define LBF_NEED_BREAK	0x02 | 
|  | #define LBF_DST_PINNED  0x04 | 
|  | #define LBF_SOME_PINNED	0x08 | 
|  |  | 
|  | struct lb_env { | 
|  | struct sched_domain	*sd; | 
|  |  | 
|  | struct rq		*src_rq; | 
|  | int			src_cpu; | 
|  |  | 
|  | int			dst_cpu; | 
|  | struct rq		*dst_rq; | 
|  |  | 
|  | struct cpumask		*dst_grpmask; | 
|  | int			new_dst_cpu; | 
|  | enum cpu_idle_type	idle; | 
|  | long			imbalance; | 
|  | /* The set of CPUs under consideration for load-balancing */ | 
|  | struct cpumask		*cpus; | 
|  |  | 
|  | unsigned int		flags; | 
|  |  | 
|  | unsigned int		loop; | 
|  | unsigned int		loop_break; | 
|  | unsigned int		loop_max; | 
|  |  | 
|  | enum fbq_type		fbq_type; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * move_task - move a task from one runqueue to another runqueue. | 
|  | * Both runqueues must be locked. | 
|  | */ | 
|  | static void move_task(struct task_struct *p, struct lb_env *env) | 
|  | { | 
|  | deactivate_task(env->src_rq, p, 0); | 
|  | set_task_cpu(p, env->dst_cpu); | 
|  | activate_task(env->dst_rq, p, 0); | 
|  | check_preempt_curr(env->dst_rq, p, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is this task likely cache-hot: | 
|  | */ | 
|  | static int | 
|  | task_hot(struct task_struct *p, u64 now) | 
|  | { | 
|  | s64 delta; | 
|  |  | 
|  | if (p->sched_class != &fair_sched_class) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(p->policy == SCHED_IDLE)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Buddy candidates are cache hot: | 
|  | */ | 
|  | if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && | 
|  | (&p->se == cfs_rq_of(&p->se)->next || | 
|  | &p->se == cfs_rq_of(&p->se)->last)) | 
|  | return 1; | 
|  |  | 
|  | if (sysctl_sched_migration_cost == -1) | 
|  | return 1; | 
|  | if (sysctl_sched_migration_cost == 0) | 
|  | return 0; | 
|  |  | 
|  | delta = now - p->se.exec_start; | 
|  |  | 
|  | return delta < (s64)sysctl_sched_migration_cost; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | /* Returns true if the destination node has incurred more faults */ | 
|  | static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) | 
|  | { | 
|  | struct numa_group *numa_group = rcu_dereference(p->numa_group); | 
|  | int src_nid, dst_nid; | 
|  |  | 
|  | if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory || | 
|  | !(env->sd->flags & SD_NUMA)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | src_nid = cpu_to_node(env->src_cpu); | 
|  | dst_nid = cpu_to_node(env->dst_cpu); | 
|  |  | 
|  | if (src_nid == dst_nid) | 
|  | return false; | 
|  |  | 
|  | if (numa_group) { | 
|  | /* Task is already in the group's interleave set. */ | 
|  | if (node_isset(src_nid, numa_group->active_nodes)) | 
|  | return false; | 
|  |  | 
|  | /* Task is moving into the group's interleave set. */ | 
|  | if (node_isset(dst_nid, numa_group->active_nodes)) | 
|  | return true; | 
|  |  | 
|  | return group_faults(p, dst_nid) > group_faults(p, src_nid); | 
|  | } | 
|  |  | 
|  | /* Encourage migration to the preferred node. */ | 
|  | if (dst_nid == p->numa_preferred_nid) | 
|  | return true; | 
|  |  | 
|  | return task_faults(p, dst_nid) > task_faults(p, src_nid); | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) | 
|  | { | 
|  | struct numa_group *numa_group = rcu_dereference(p->numa_group); | 
|  | int src_nid, dst_nid; | 
|  |  | 
|  | if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) | 
|  | return false; | 
|  |  | 
|  | if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA)) | 
|  | return false; | 
|  |  | 
|  | src_nid = cpu_to_node(env->src_cpu); | 
|  | dst_nid = cpu_to_node(env->dst_cpu); | 
|  |  | 
|  | if (src_nid == dst_nid) | 
|  | return false; | 
|  |  | 
|  | if (numa_group) { | 
|  | /* Task is moving within/into the group's interleave set. */ | 
|  | if (node_isset(dst_nid, numa_group->active_nodes)) | 
|  | return false; | 
|  |  | 
|  | /* Task is moving out of the group's interleave set. */ | 
|  | if (node_isset(src_nid, numa_group->active_nodes)) | 
|  | return true; | 
|  |  | 
|  | return group_faults(p, dst_nid) < group_faults(p, src_nid); | 
|  | } | 
|  |  | 
|  | /* Migrating away from the preferred node is always bad. */ | 
|  | if (src_nid == p->numa_preferred_nid) | 
|  | return true; | 
|  |  | 
|  | return task_faults(p, dst_nid) < task_faults(p, src_nid); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline bool migrate_improves_locality(struct task_struct *p, | 
|  | struct lb_env *env) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool migrate_degrades_locality(struct task_struct *p, | 
|  | struct lb_env *env) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
|  | */ | 
|  | static | 
|  | int can_migrate_task(struct task_struct *p, struct lb_env *env) | 
|  | { | 
|  | int tsk_cache_hot = 0; | 
|  | /* | 
|  | * We do not migrate tasks that are: | 
|  | * 1) throttled_lb_pair, or | 
|  | * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
|  | * 3) running (obviously), or | 
|  | * 4) are cache-hot on their current CPU. | 
|  | */ | 
|  | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) | 
|  | return 0; | 
|  |  | 
|  | if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { | 
|  | int cpu; | 
|  |  | 
|  | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); | 
|  |  | 
|  | env->flags |= LBF_SOME_PINNED; | 
|  |  | 
|  | /* | 
|  | * Remember if this task can be migrated to any other cpu in | 
|  | * our sched_group. We may want to revisit it if we couldn't | 
|  | * meet load balance goals by pulling other tasks on src_cpu. | 
|  | * | 
|  | * Also avoid computing new_dst_cpu if we have already computed | 
|  | * one in current iteration. | 
|  | */ | 
|  | if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) | 
|  | return 0; | 
|  |  | 
|  | /* Prevent to re-select dst_cpu via env's cpus */ | 
|  | for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { | 
|  | if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { | 
|  | env->flags |= LBF_DST_PINNED; | 
|  | env->new_dst_cpu = cpu; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Record that we found atleast one task that could run on dst_cpu */ | 
|  | env->flags &= ~LBF_ALL_PINNED; | 
|  |  | 
|  | if (task_running(env->src_rq, p)) { | 
|  | schedstat_inc(p, se.statistics.nr_failed_migrations_running); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Aggressive migration if: | 
|  | * 1) destination numa is preferred | 
|  | * 2) task is cache cold, or | 
|  | * 3) too many balance attempts have failed. | 
|  | */ | 
|  | tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq)); | 
|  | if (!tsk_cache_hot) | 
|  | tsk_cache_hot = migrate_degrades_locality(p, env); | 
|  |  | 
|  | if (migrate_improves_locality(p, env)) { | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (tsk_cache_hot) { | 
|  | schedstat_inc(env->sd, lb_hot_gained[env->idle]); | 
|  | schedstat_inc(p, se.statistics.nr_forced_migrations); | 
|  | } | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!tsk_cache_hot || | 
|  | env->sd->nr_balance_failed > env->sd->cache_nice_tries) { | 
|  |  | 
|  | if (tsk_cache_hot) { | 
|  | schedstat_inc(env->sd, lb_hot_gained[env->idle]); | 
|  | schedstat_inc(p, se.statistics.nr_forced_migrations); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | schedstat_inc(p, se.statistics.nr_failed_migrations_hot); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * move_one_task tries to move exactly one task from busiest to this_rq, as | 
|  | * part of active balancing operations within "domain". | 
|  | * Returns 1 if successful and 0 otherwise. | 
|  | * | 
|  | * Called with both runqueues locked. | 
|  | */ | 
|  | static int move_one_task(struct lb_env *env) | 
|  | { | 
|  | struct task_struct *p, *n; | 
|  |  | 
|  | list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { | 
|  | if (!can_migrate_task(p, env)) | 
|  | continue; | 
|  |  | 
|  | move_task(p, env); | 
|  | /* | 
|  | * Right now, this is only the second place move_task() | 
|  | * is called, so we can safely collect move_task() | 
|  | * stats here rather than inside move_task(). | 
|  | */ | 
|  | schedstat_inc(env->sd, lb_gained[env->idle]); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const unsigned int sched_nr_migrate_break = 32; | 
|  |  | 
|  | /* | 
|  | * move_tasks tries to move up to imbalance weighted load from busiest to | 
|  | * this_rq, as part of a balancing operation within domain "sd". | 
|  | * Returns 1 if successful and 0 otherwise. | 
|  | * | 
|  | * Called with both runqueues locked. | 
|  | */ | 
|  | static int move_tasks(struct lb_env *env) | 
|  | { | 
|  | struct list_head *tasks = &env->src_rq->cfs_tasks; | 
|  | struct task_struct *p; | 
|  | unsigned long load; | 
|  | int pulled = 0; | 
|  |  | 
|  | if (env->imbalance <= 0) | 
|  | return 0; | 
|  |  | 
|  | while (!list_empty(tasks)) { | 
|  | p = list_first_entry(tasks, struct task_struct, se.group_node); | 
|  |  | 
|  | env->loop++; | 
|  | /* We've more or less seen every task there is, call it quits */ | 
|  | if (env->loop > env->loop_max) | 
|  | break; | 
|  |  | 
|  | /* take a breather every nr_migrate tasks */ | 
|  | if (env->loop > env->loop_break) { | 
|  | env->loop_break += sched_nr_migrate_break; | 
|  | env->flags |= LBF_NEED_BREAK; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!can_migrate_task(p, env)) | 
|  | goto next; | 
|  |  | 
|  | load = task_h_load(p); | 
|  |  | 
|  | if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) | 
|  | goto next; | 
|  |  | 
|  | if ((load / 2) > env->imbalance) | 
|  | goto next; | 
|  |  | 
|  | move_task(p, env); | 
|  | pulled++; | 
|  | env->imbalance -= load; | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* | 
|  | * NEWIDLE balancing is a source of latency, so preemptible | 
|  | * kernels will stop after the first task is pulled to minimize | 
|  | * the critical section. | 
|  | */ | 
|  | if (env->idle == CPU_NEWLY_IDLE) | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We only want to steal up to the prescribed amount of | 
|  | * weighted load. | 
|  | */ | 
|  | if (env->imbalance <= 0) | 
|  | break; | 
|  |  | 
|  | continue; | 
|  | next: | 
|  | list_move_tail(&p->se.group_node, tasks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Right now, this is one of only two places move_task() is called, | 
|  | * so we can safely collect move_task() stats here rather than | 
|  | * inside move_task(). | 
|  | */ | 
|  | schedstat_add(env->sd, lb_gained[env->idle], pulled); | 
|  |  | 
|  | return pulled; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* | 
|  | * update tg->load_weight by folding this cpu's load_avg | 
|  | */ | 
|  | static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) | 
|  | { | 
|  | struct sched_entity *se = tg->se[cpu]; | 
|  | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; | 
|  |  | 
|  | /* throttled entities do not contribute to load */ | 
|  | if (throttled_hierarchy(cfs_rq)) | 
|  | return; | 
|  |  | 
|  | update_cfs_rq_blocked_load(cfs_rq, 1); | 
|  |  | 
|  | if (se) { | 
|  | update_entity_load_avg(se, 1); | 
|  | /* | 
|  | * We pivot on our runnable average having decayed to zero for | 
|  | * list removal.  This generally implies that all our children | 
|  | * have also been removed (modulo rounding error or bandwidth | 
|  | * control); however, such cases are rare and we can fix these | 
|  | * at enqueue. | 
|  | * | 
|  | * TODO: fix up out-of-order children on enqueue. | 
|  | */ | 
|  | if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) | 
|  | list_del_leaf_cfs_rq(cfs_rq); | 
|  | } else { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | update_rq_runnable_avg(rq, rq->nr_running); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_blocked_averages(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct cfs_rq *cfs_rq; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rq->lock, flags); | 
|  | update_rq_clock(rq); | 
|  | /* | 
|  | * Iterates the task_group tree in a bottom up fashion, see | 
|  | * list_add_leaf_cfs_rq() for details. | 
|  | */ | 
|  | for_each_leaf_cfs_rq(rq, cfs_rq) { | 
|  | /* | 
|  | * Note: We may want to consider periodically releasing | 
|  | * rq->lock about these updates so that creating many task | 
|  | * groups does not result in continually extending hold time. | 
|  | */ | 
|  | __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the hierarchical load factor for cfs_rq and all its ascendants. | 
|  | * This needs to be done in a top-down fashion because the load of a child | 
|  | * group is a fraction of its parents load. | 
|  | */ | 
|  | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | struct rq *rq = rq_of(cfs_rq); | 
|  | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | 
|  | unsigned long now = jiffies; | 
|  | unsigned long load; | 
|  |  | 
|  | if (cfs_rq->last_h_load_update == now) | 
|  | return; | 
|  |  | 
|  | cfs_rq->h_load_next = NULL; | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | cfs_rq->h_load_next = se; | 
|  | if (cfs_rq->last_h_load_update == now) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!se) { | 
|  | cfs_rq->h_load = cfs_rq->runnable_load_avg; | 
|  | cfs_rq->last_h_load_update = now; | 
|  | } | 
|  |  | 
|  | while ((se = cfs_rq->h_load_next) != NULL) { | 
|  | load = cfs_rq->h_load; | 
|  | load = div64_ul(load * se->avg.load_avg_contrib, | 
|  | cfs_rq->runnable_load_avg + 1); | 
|  | cfs_rq = group_cfs_rq(se); | 
|  | cfs_rq->h_load = load; | 
|  | cfs_rq->last_h_load_update = now; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long task_h_load(struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
|  |  | 
|  | update_cfs_rq_h_load(cfs_rq); | 
|  | return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, | 
|  | cfs_rq->runnable_load_avg + 1); | 
|  | } | 
|  | #else | 
|  | static inline void update_blocked_averages(int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static unsigned long task_h_load(struct task_struct *p) | 
|  | { | 
|  | return p->se.avg.load_avg_contrib; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********** Helpers for find_busiest_group ************************/ | 
|  | /* | 
|  | * sg_lb_stats - stats of a sched_group required for load_balancing | 
|  | */ | 
|  | struct sg_lb_stats { | 
|  | unsigned long avg_load; /*Avg load across the CPUs of the group */ | 
|  | unsigned long group_load; /* Total load over the CPUs of the group */ | 
|  | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | 
|  | unsigned long load_per_task; | 
|  | unsigned long group_capacity; | 
|  | unsigned int sum_nr_running; /* Nr tasks running in the group */ | 
|  | unsigned int group_capacity_factor; | 
|  | unsigned int idle_cpus; | 
|  | unsigned int group_weight; | 
|  | int group_imb; /* Is there an imbalance in the group ? */ | 
|  | int group_has_free_capacity; | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | unsigned int nr_numa_running; | 
|  | unsigned int nr_preferred_running; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * sd_lb_stats - Structure to store the statistics of a sched_domain | 
|  | *		 during load balancing. | 
|  | */ | 
|  | struct sd_lb_stats { | 
|  | struct sched_group *busiest;	/* Busiest group in this sd */ | 
|  | struct sched_group *local;	/* Local group in this sd */ | 
|  | unsigned long total_load;	/* Total load of all groups in sd */ | 
|  | unsigned long total_capacity;	/* Total capacity of all groups in sd */ | 
|  | unsigned long avg_load;	/* Average load across all groups in sd */ | 
|  |  | 
|  | struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ | 
|  | struct sg_lb_stats local_stat;	/* Statistics of the local group */ | 
|  | }; | 
|  |  | 
|  | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) | 
|  | { | 
|  | /* | 
|  | * Skimp on the clearing to avoid duplicate work. We can avoid clearing | 
|  | * local_stat because update_sg_lb_stats() does a full clear/assignment. | 
|  | * We must however clear busiest_stat::avg_load because | 
|  | * update_sd_pick_busiest() reads this before assignment. | 
|  | */ | 
|  | *sds = (struct sd_lb_stats){ | 
|  | .busiest = NULL, | 
|  | .local = NULL, | 
|  | .total_load = 0UL, | 
|  | .total_capacity = 0UL, | 
|  | .busiest_stat = { | 
|  | .avg_load = 0UL, | 
|  | }, | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_sd_load_idx - Obtain the load index for a given sched domain. | 
|  | * @sd: The sched_domain whose load_idx is to be obtained. | 
|  | * @idle: The idle status of the CPU for whose sd load_idx is obtained. | 
|  | * | 
|  | * Return: The load index. | 
|  | */ | 
|  | static inline int get_sd_load_idx(struct sched_domain *sd, | 
|  | enum cpu_idle_type idle) | 
|  | { | 
|  | int load_idx; | 
|  |  | 
|  | switch (idle) { | 
|  | case CPU_NOT_IDLE: | 
|  | load_idx = sd->busy_idx; | 
|  | break; | 
|  |  | 
|  | case CPU_NEWLY_IDLE: | 
|  | load_idx = sd->newidle_idx; | 
|  | break; | 
|  | default: | 
|  | load_idx = sd->idle_idx; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return load_idx; | 
|  | } | 
|  |  | 
|  | static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | return SCHED_CAPACITY_SCALE; | 
|  | } | 
|  |  | 
|  | unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | return default_scale_capacity(sd, cpu); | 
|  | } | 
|  |  | 
|  | static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | unsigned long weight = sd->span_weight; | 
|  | unsigned long smt_gain = sd->smt_gain; | 
|  |  | 
|  | smt_gain /= weight; | 
|  |  | 
|  | return smt_gain; | 
|  | } | 
|  |  | 
|  | unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | return default_scale_smt_capacity(sd, cpu); | 
|  | } | 
|  |  | 
|  | static unsigned long scale_rt_capacity(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | u64 total, available, age_stamp, avg; | 
|  | s64 delta; | 
|  |  | 
|  | /* | 
|  | * Since we're reading these variables without serialization make sure | 
|  | * we read them once before doing sanity checks on them. | 
|  | */ | 
|  | age_stamp = ACCESS_ONCE(rq->age_stamp); | 
|  | avg = ACCESS_ONCE(rq->rt_avg); | 
|  |  | 
|  | delta = rq_clock(rq) - age_stamp; | 
|  | if (unlikely(delta < 0)) | 
|  | delta = 0; | 
|  |  | 
|  | total = sched_avg_period() + delta; | 
|  |  | 
|  | if (unlikely(total < avg)) { | 
|  | /* Ensures that capacity won't end up being negative */ | 
|  | available = 0; | 
|  | } else { | 
|  | available = total - avg; | 
|  | } | 
|  |  | 
|  | if (unlikely((s64)total < SCHED_CAPACITY_SCALE)) | 
|  | total = SCHED_CAPACITY_SCALE; | 
|  |  | 
|  | total >>= SCHED_CAPACITY_SHIFT; | 
|  |  | 
|  | return div_u64(available, total); | 
|  | } | 
|  |  | 
|  | static void update_cpu_capacity(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | unsigned long weight = sd->span_weight; | 
|  | unsigned long capacity = SCHED_CAPACITY_SCALE; | 
|  | struct sched_group *sdg = sd->groups; | 
|  |  | 
|  | if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) { | 
|  | if (sched_feat(ARCH_CAPACITY)) | 
|  | capacity *= arch_scale_smt_capacity(sd, cpu); | 
|  | else | 
|  | capacity *= default_scale_smt_capacity(sd, cpu); | 
|  |  | 
|  | capacity >>= SCHED_CAPACITY_SHIFT; | 
|  | } | 
|  |  | 
|  | sdg->sgc->capacity_orig = capacity; | 
|  |  | 
|  | if (sched_feat(ARCH_CAPACITY)) | 
|  | capacity *= arch_scale_freq_capacity(sd, cpu); | 
|  | else | 
|  | capacity *= default_scale_capacity(sd, cpu); | 
|  |  | 
|  | capacity >>= SCHED_CAPACITY_SHIFT; | 
|  |  | 
|  | capacity *= scale_rt_capacity(cpu); | 
|  | capacity >>= SCHED_CAPACITY_SHIFT; | 
|  |  | 
|  | if (!capacity) | 
|  | capacity = 1; | 
|  |  | 
|  | cpu_rq(cpu)->cpu_capacity = capacity; | 
|  | sdg->sgc->capacity = capacity; | 
|  | } | 
|  |  | 
|  | void update_group_capacity(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | struct sched_domain *child = sd->child; | 
|  | struct sched_group *group, *sdg = sd->groups; | 
|  | unsigned long capacity, capacity_orig; | 
|  | unsigned long interval; | 
|  |  | 
|  | interval = msecs_to_jiffies(sd->balance_interval); | 
|  | interval = clamp(interval, 1UL, max_load_balance_interval); | 
|  | sdg->sgc->next_update = jiffies + interval; | 
|  |  | 
|  | if (!child) { | 
|  | update_cpu_capacity(sd, cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | capacity_orig = capacity = 0; | 
|  |  | 
|  | if (child->flags & SD_OVERLAP) { | 
|  | /* | 
|  | * SD_OVERLAP domains cannot assume that child groups | 
|  | * span the current group. | 
|  | */ | 
|  |  | 
|  | for_each_cpu(cpu, sched_group_cpus(sdg)) { | 
|  | struct sched_group_capacity *sgc; | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | /* | 
|  | * build_sched_domains() -> init_sched_groups_capacity() | 
|  | * gets here before we've attached the domains to the | 
|  | * runqueues. | 
|  | * | 
|  | * Use capacity_of(), which is set irrespective of domains | 
|  | * in update_cpu_capacity(). | 
|  | * | 
|  | * This avoids capacity/capacity_orig from being 0 and | 
|  | * causing divide-by-zero issues on boot. | 
|  | * | 
|  | * Runtime updates will correct capacity_orig. | 
|  | */ | 
|  | if (unlikely(!rq->sd)) { | 
|  | capacity_orig += capacity_of(cpu); | 
|  | capacity += capacity_of(cpu); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sgc = rq->sd->groups->sgc; | 
|  | capacity_orig += sgc->capacity_orig; | 
|  | capacity += sgc->capacity; | 
|  | } | 
|  | } else  { | 
|  | /* | 
|  | * !SD_OVERLAP domains can assume that child groups | 
|  | * span the current group. | 
|  | */ | 
|  |  | 
|  | group = child->groups; | 
|  | do { | 
|  | capacity_orig += group->sgc->capacity_orig; | 
|  | capacity += group->sgc->capacity; | 
|  | group = group->next; | 
|  | } while (group != child->groups); | 
|  | } | 
|  |  | 
|  | sdg->sgc->capacity_orig = capacity_orig; | 
|  | sdg->sgc->capacity = capacity; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try and fix up capacity for tiny siblings, this is needed when | 
|  | * things like SD_ASYM_PACKING need f_b_g to select another sibling | 
|  | * which on its own isn't powerful enough. | 
|  | * | 
|  | * See update_sd_pick_busiest() and check_asym_packing(). | 
|  | */ | 
|  | static inline int | 
|  | fix_small_capacity(struct sched_domain *sd, struct sched_group *group) | 
|  | { | 
|  | /* | 
|  | * Only siblings can have significantly less than SCHED_CAPACITY_SCALE | 
|  | */ | 
|  | if (!(sd->flags & SD_SHARE_CPUCAPACITY)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If ~90% of the cpu_capacity is still there, we're good. | 
|  | */ | 
|  | if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Group imbalance indicates (and tries to solve) the problem where balancing | 
|  | * groups is inadequate due to tsk_cpus_allowed() constraints. | 
|  | * | 
|  | * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a | 
|  | * cpumask covering 1 cpu of the first group and 3 cpus of the second group. | 
|  | * Something like: | 
|  | * | 
|  | * 	{ 0 1 2 3 } { 4 5 6 7 } | 
|  | * 	        *     * * * | 
|  | * | 
|  | * If we were to balance group-wise we'd place two tasks in the first group and | 
|  | * two tasks in the second group. Clearly this is undesired as it will overload | 
|  | * cpu 3 and leave one of the cpus in the second group unused. | 
|  | * | 
|  | * The current solution to this issue is detecting the skew in the first group | 
|  | * by noticing the lower domain failed to reach balance and had difficulty | 
|  | * moving tasks due to affinity constraints. | 
|  | * | 
|  | * When this is so detected; this group becomes a candidate for busiest; see | 
|  | * update_sd_pick_busiest(). And calculate_imbalance() and | 
|  | * find_busiest_group() avoid some of the usual balance conditions to allow it | 
|  | * to create an effective group imbalance. | 
|  | * | 
|  | * This is a somewhat tricky proposition since the next run might not find the | 
|  | * group imbalance and decide the groups need to be balanced again. A most | 
|  | * subtle and fragile situation. | 
|  | */ | 
|  |  | 
|  | static inline int sg_imbalanced(struct sched_group *group) | 
|  | { | 
|  | return group->sgc->imbalance; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the group capacity factor. | 
|  | * | 
|  | * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by | 
|  | * first dividing out the smt factor and computing the actual number of cores | 
|  | * and limit unit capacity with that. | 
|  | */ | 
|  | static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group) | 
|  | { | 
|  | unsigned int capacity_factor, smt, cpus; | 
|  | unsigned int capacity, capacity_orig; | 
|  |  | 
|  | capacity = group->sgc->capacity; | 
|  | capacity_orig = group->sgc->capacity_orig; | 
|  | cpus = group->group_weight; | 
|  |  | 
|  | /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */ | 
|  | smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig); | 
|  | capacity_factor = cpus / smt; /* cores */ | 
|  |  | 
|  | capacity_factor = min_t(unsigned, | 
|  | capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE)); | 
|  | if (!capacity_factor) | 
|  | capacity_factor = fix_small_capacity(env->sd, group); | 
|  |  | 
|  | return capacity_factor; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | 
|  | * @env: The load balancing environment. | 
|  | * @group: sched_group whose statistics are to be updated. | 
|  | * @load_idx: Load index of sched_domain of this_cpu for load calc. | 
|  | * @local_group: Does group contain this_cpu. | 
|  | * @sgs: variable to hold the statistics for this group. | 
|  | */ | 
|  | static inline void update_sg_lb_stats(struct lb_env *env, | 
|  | struct sched_group *group, int load_idx, | 
|  | int local_group, struct sg_lb_stats *sgs) | 
|  | { | 
|  | unsigned long load; | 
|  | int i; | 
|  |  | 
|  | memset(sgs, 0, sizeof(*sgs)); | 
|  |  | 
|  | for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { | 
|  | struct rq *rq = cpu_rq(i); | 
|  |  | 
|  | /* Bias balancing toward cpus of our domain */ | 
|  | if (local_group) | 
|  | load = target_load(i, load_idx); | 
|  | else | 
|  | load = source_load(i, load_idx); | 
|  |  | 
|  | sgs->group_load += load; | 
|  | sgs->sum_nr_running += rq->nr_running; | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | sgs->nr_numa_running += rq->nr_numa_running; | 
|  | sgs->nr_preferred_running += rq->nr_preferred_running; | 
|  | #endif | 
|  | sgs->sum_weighted_load += weighted_cpuload(i); | 
|  | if (idle_cpu(i)) | 
|  | sgs->idle_cpus++; | 
|  | } | 
|  |  | 
|  | /* Adjust by relative CPU capacity of the group */ | 
|  | sgs->group_capacity = group->sgc->capacity; | 
|  | sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; | 
|  |  | 
|  | if (sgs->sum_nr_running) | 
|  | sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; | 
|  |  | 
|  | sgs->group_weight = group->group_weight; | 
|  |  | 
|  | sgs->group_imb = sg_imbalanced(group); | 
|  | sgs->group_capacity_factor = sg_capacity_factor(env, group); | 
|  |  | 
|  | if (sgs->group_capacity_factor > sgs->sum_nr_running) | 
|  | sgs->group_has_free_capacity = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_sd_pick_busiest - return 1 on busiest group | 
|  | * @env: The load balancing environment. | 
|  | * @sds: sched_domain statistics | 
|  | * @sg: sched_group candidate to be checked for being the busiest | 
|  | * @sgs: sched_group statistics | 
|  | * | 
|  | * Determine if @sg is a busier group than the previously selected | 
|  | * busiest group. | 
|  | * | 
|  | * Return: %true if @sg is a busier group than the previously selected | 
|  | * busiest group. %false otherwise. | 
|  | */ | 
|  | static bool update_sd_pick_busiest(struct lb_env *env, | 
|  | struct sd_lb_stats *sds, | 
|  | struct sched_group *sg, | 
|  | struct sg_lb_stats *sgs) | 
|  | { | 
|  | if (sgs->avg_load <= sds->busiest_stat.avg_load) | 
|  | return false; | 
|  |  | 
|  | if (sgs->sum_nr_running > sgs->group_capacity_factor) | 
|  | return true; | 
|  |  | 
|  | if (sgs->group_imb) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * ASYM_PACKING needs to move all the work to the lowest | 
|  | * numbered CPUs in the group, therefore mark all groups | 
|  | * higher than ourself as busy. | 
|  | */ | 
|  | if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && | 
|  | env->dst_cpu < group_first_cpu(sg)) { | 
|  | if (!sds->busiest) | 
|  | return true; | 
|  |  | 
|  | if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | 
|  | { | 
|  | if (sgs->sum_nr_running > sgs->nr_numa_running) | 
|  | return regular; | 
|  | if (sgs->sum_nr_running > sgs->nr_preferred_running) | 
|  | return remote; | 
|  | return all; | 
|  | } | 
|  |  | 
|  | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | 
|  | { | 
|  | if (rq->nr_running > rq->nr_numa_running) | 
|  | return regular; | 
|  | if (rq->nr_running > rq->nr_preferred_running) | 
|  | return remote; | 
|  | return all; | 
|  | } | 
|  | #else | 
|  | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | 
|  | { | 
|  | return all; | 
|  | } | 
|  |  | 
|  | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | 
|  | { | 
|  | return regular; | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | /** | 
|  | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. | 
|  | * @env: The load balancing environment. | 
|  | * @sds: variable to hold the statistics for this sched_domain. | 
|  | */ | 
|  | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) | 
|  | { | 
|  | struct sched_domain *child = env->sd->child; | 
|  | struct sched_group *sg = env->sd->groups; | 
|  | struct sg_lb_stats tmp_sgs; | 
|  | int load_idx, prefer_sibling = 0; | 
|  |  | 
|  | if (child && child->flags & SD_PREFER_SIBLING) | 
|  | prefer_sibling = 1; | 
|  |  | 
|  | load_idx = get_sd_load_idx(env->sd, env->idle); | 
|  |  | 
|  | do { | 
|  | struct sg_lb_stats *sgs = &tmp_sgs; | 
|  | int local_group; | 
|  |  | 
|  | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); | 
|  | if (local_group) { | 
|  | sds->local = sg; | 
|  | sgs = &sds->local_stat; | 
|  |  | 
|  | if (env->idle != CPU_NEWLY_IDLE || | 
|  | time_after_eq(jiffies, sg->sgc->next_update)) | 
|  | update_group_capacity(env->sd, env->dst_cpu); | 
|  | } | 
|  |  | 
|  | update_sg_lb_stats(env, sg, load_idx, local_group, sgs); | 
|  |  | 
|  | if (local_group) | 
|  | goto next_group; | 
|  |  | 
|  | /* | 
|  | * In case the child domain prefers tasks go to siblings | 
|  | * first, lower the sg capacity factor to one so that we'll try | 
|  | * and move all the excess tasks away. We lower the capacity | 
|  | * of a group only if the local group has the capacity to fit | 
|  | * these excess tasks, i.e. nr_running < group_capacity_factor. The | 
|  | * extra check prevents the case where you always pull from the | 
|  | * heaviest group when it is already under-utilized (possible | 
|  | * with a large weight task outweighs the tasks on the system). | 
|  | */ | 
|  | if (prefer_sibling && sds->local && | 
|  | sds->local_stat.group_has_free_capacity) | 
|  | sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U); | 
|  |  | 
|  | if (update_sd_pick_busiest(env, sds, sg, sgs)) { | 
|  | sds->busiest = sg; | 
|  | sds->busiest_stat = *sgs; | 
|  | } | 
|  |  | 
|  | next_group: | 
|  | /* Now, start updating sd_lb_stats */ | 
|  | sds->total_load += sgs->group_load; | 
|  | sds->total_capacity += sgs->group_capacity; | 
|  |  | 
|  | sg = sg->next; | 
|  | } while (sg != env->sd->groups); | 
|  |  | 
|  | if (env->sd->flags & SD_NUMA) | 
|  | env->fbq_type = fbq_classify_group(&sds->busiest_stat); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_asym_packing - Check to see if the group is packed into the | 
|  | *			sched doman. | 
|  | * | 
|  | * This is primarily intended to used at the sibling level.  Some | 
|  | * cores like POWER7 prefer to use lower numbered SMT threads.  In the | 
|  | * case of POWER7, it can move to lower SMT modes only when higher | 
|  | * threads are idle.  When in lower SMT modes, the threads will | 
|  | * perform better since they share less core resources.  Hence when we | 
|  | * have idle threads, we want them to be the higher ones. | 
|  | * | 
|  | * This packing function is run on idle threads.  It checks to see if | 
|  | * the busiest CPU in this domain (core in the P7 case) has a higher | 
|  | * CPU number than the packing function is being run on.  Here we are | 
|  | * assuming lower CPU number will be equivalent to lower a SMT thread | 
|  | * number. | 
|  | * | 
|  | * Return: 1 when packing is required and a task should be moved to | 
|  | * this CPU.  The amount of the imbalance is returned in *imbalance. | 
|  | * | 
|  | * @env: The load balancing environment. | 
|  | * @sds: Statistics of the sched_domain which is to be packed | 
|  | */ | 
|  | static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) | 
|  | { | 
|  | int busiest_cpu; | 
|  |  | 
|  | if (!(env->sd->flags & SD_ASYM_PACKING)) | 
|  | return 0; | 
|  |  | 
|  | if (!sds->busiest) | 
|  | return 0; | 
|  |  | 
|  | busiest_cpu = group_first_cpu(sds->busiest); | 
|  | if (env->dst_cpu > busiest_cpu) | 
|  | return 0; | 
|  |  | 
|  | env->imbalance = DIV_ROUND_CLOSEST( | 
|  | sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, | 
|  | SCHED_CAPACITY_SCALE); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fix_small_imbalance - Calculate the minor imbalance that exists | 
|  | *			amongst the groups of a sched_domain, during | 
|  | *			load balancing. | 
|  | * @env: The load balancing environment. | 
|  | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | 
|  | */ | 
|  | static inline | 
|  | void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) | 
|  | { | 
|  | unsigned long tmp, capa_now = 0, capa_move = 0; | 
|  | unsigned int imbn = 2; | 
|  | unsigned long scaled_busy_load_per_task; | 
|  | struct sg_lb_stats *local, *busiest; | 
|  |  | 
|  | local = &sds->local_stat; | 
|  | busiest = &sds->busiest_stat; | 
|  |  | 
|  | if (!local->sum_nr_running) | 
|  | local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); | 
|  | else if (busiest->load_per_task > local->load_per_task) | 
|  | imbn = 1; | 
|  |  | 
|  | scaled_busy_load_per_task = | 
|  | (busiest->load_per_task * SCHED_CAPACITY_SCALE) / | 
|  | busiest->group_capacity; | 
|  |  | 
|  | if (busiest->avg_load + scaled_busy_load_per_task >= | 
|  | local->avg_load + (scaled_busy_load_per_task * imbn)) { | 
|  | env->imbalance = busiest->load_per_task; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OK, we don't have enough imbalance to justify moving tasks, | 
|  | * however we may be able to increase total CPU capacity used by | 
|  | * moving them. | 
|  | */ | 
|  |  | 
|  | capa_now += busiest->group_capacity * | 
|  | min(busiest->load_per_task, busiest->avg_load); | 
|  | capa_now += local->group_capacity * | 
|  | min(local->load_per_task, local->avg_load); | 
|  | capa_now /= SCHED_CAPACITY_SCALE; | 
|  |  | 
|  | /* Amount of load we'd subtract */ | 
|  | if (busiest->avg_load > scaled_busy_load_per_task) { | 
|  | capa_move += busiest->group_capacity * | 
|  | min(busiest->load_per_task, | 
|  | busiest->avg_load - scaled_busy_load_per_task); | 
|  | } | 
|  |  | 
|  | /* Amount of load we'd add */ | 
|  | if (busiest->avg_load * busiest->group_capacity < | 
|  | busiest->load_per_task * SCHED_CAPACITY_SCALE) { | 
|  | tmp = (busiest->avg_load * busiest->group_capacity) / | 
|  | local->group_capacity; | 
|  | } else { | 
|  | tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / | 
|  | local->group_capacity; | 
|  | } | 
|  | capa_move += local->group_capacity * | 
|  | min(local->load_per_task, local->avg_load + tmp); | 
|  | capa_move /= SCHED_CAPACITY_SCALE; | 
|  |  | 
|  | /* Move if we gain throughput */ | 
|  | if (capa_move > capa_now) | 
|  | env->imbalance = busiest->load_per_task; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * calculate_imbalance - Calculate the amount of imbalance present within the | 
|  | *			 groups of a given sched_domain during load balance. | 
|  | * @env: load balance environment | 
|  | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | 
|  | */ | 
|  | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) | 
|  | { | 
|  | unsigned long max_pull, load_above_capacity = ~0UL; | 
|  | struct sg_lb_stats *local, *busiest; | 
|  |  | 
|  | local = &sds->local_stat; | 
|  | busiest = &sds->busiest_stat; | 
|  |  | 
|  | if (busiest->group_imb) { | 
|  | /* | 
|  | * In the group_imb case we cannot rely on group-wide averages | 
|  | * to ensure cpu-load equilibrium, look at wider averages. XXX | 
|  | */ | 
|  | busiest->load_per_task = | 
|  | min(busiest->load_per_task, sds->avg_load); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the presence of smp nice balancing, certain scenarios can have | 
|  | * max load less than avg load(as we skip the groups at or below | 
|  | * its cpu_capacity, while calculating max_load..) | 
|  | */ | 
|  | if (busiest->avg_load <= sds->avg_load || | 
|  | local->avg_load >= sds->avg_load) { | 
|  | env->imbalance = 0; | 
|  | return fix_small_imbalance(env, sds); | 
|  | } | 
|  |  | 
|  | if (!busiest->group_imb) { | 
|  | /* | 
|  | * Don't want to pull so many tasks that a group would go idle. | 
|  | * Except of course for the group_imb case, since then we might | 
|  | * have to drop below capacity to reach cpu-load equilibrium. | 
|  | */ | 
|  | load_above_capacity = | 
|  | (busiest->sum_nr_running - busiest->group_capacity_factor); | 
|  |  | 
|  | load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE); | 
|  | load_above_capacity /= busiest->group_capacity; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're trying to get all the cpus to the average_load, so we don't | 
|  | * want to push ourselves above the average load, nor do we wish to | 
|  | * reduce the max loaded cpu below the average load. At the same time, | 
|  | * we also don't want to reduce the group load below the group capacity | 
|  | * (so that we can implement power-savings policies etc). Thus we look | 
|  | * for the minimum possible imbalance. | 
|  | */ | 
|  | max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); | 
|  |  | 
|  | /* How much load to actually move to equalise the imbalance */ | 
|  | env->imbalance = min( | 
|  | max_pull * busiest->group_capacity, | 
|  | (sds->avg_load - local->avg_load) * local->group_capacity | 
|  | ) / SCHED_CAPACITY_SCALE; | 
|  |  | 
|  | /* | 
|  | * if *imbalance is less than the average load per runnable task | 
|  | * there is no guarantee that any tasks will be moved so we'll have | 
|  | * a think about bumping its value to force at least one task to be | 
|  | * moved | 
|  | */ | 
|  | if (env->imbalance < busiest->load_per_task) | 
|  | return fix_small_imbalance(env, sds); | 
|  | } | 
|  |  | 
|  | /******* find_busiest_group() helpers end here *********************/ | 
|  |  | 
|  | /** | 
|  | * find_busiest_group - Returns the busiest group within the sched_domain | 
|  | * if there is an imbalance. If there isn't an imbalance, and | 
|  | * the user has opted for power-savings, it returns a group whose | 
|  | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | 
|  | * such a group exists. | 
|  | * | 
|  | * Also calculates the amount of weighted load which should be moved | 
|  | * to restore balance. | 
|  | * | 
|  | * @env: The load balancing environment. | 
|  | * | 
|  | * Return:	- The busiest group if imbalance exists. | 
|  | *		- If no imbalance and user has opted for power-savings balance, | 
|  | *		   return the least loaded group whose CPUs can be | 
|  | *		   put to idle by rebalancing its tasks onto our group. | 
|  | */ | 
|  | static struct sched_group *find_busiest_group(struct lb_env *env) | 
|  | { | 
|  | struct sg_lb_stats *local, *busiest; | 
|  | struct sd_lb_stats sds; | 
|  |  | 
|  | init_sd_lb_stats(&sds); | 
|  |  | 
|  | /* | 
|  | * Compute the various statistics relavent for load balancing at | 
|  | * this level. | 
|  | */ | 
|  | update_sd_lb_stats(env, &sds); | 
|  | local = &sds.local_stat; | 
|  | busiest = &sds.busiest_stat; | 
|  |  | 
|  | if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && | 
|  | check_asym_packing(env, &sds)) | 
|  | return sds.busiest; | 
|  |  | 
|  | /* There is no busy sibling group to pull tasks from */ | 
|  | if (!sds.busiest || busiest->sum_nr_running == 0) | 
|  | goto out_balanced; | 
|  |  | 
|  | sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) | 
|  | / sds.total_capacity; | 
|  |  | 
|  | /* | 
|  | * If the busiest group is imbalanced the below checks don't | 
|  | * work because they assume all things are equal, which typically | 
|  | * isn't true due to cpus_allowed constraints and the like. | 
|  | */ | 
|  | if (busiest->group_imb) | 
|  | goto force_balance; | 
|  |  | 
|  | /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ | 
|  | if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity && | 
|  | !busiest->group_has_free_capacity) | 
|  | goto force_balance; | 
|  |  | 
|  | /* | 
|  | * If the local group is more busy than the selected busiest group | 
|  | * don't try and pull any tasks. | 
|  | */ | 
|  | if (local->avg_load >= busiest->avg_load) | 
|  | goto out_balanced; | 
|  |  | 
|  | /* | 
|  | * Don't pull any tasks if this group is already above the domain | 
|  | * average load. | 
|  | */ | 
|  | if (local->avg_load >= sds.avg_load) | 
|  | goto out_balanced; | 
|  |  | 
|  | if (env->idle == CPU_IDLE) { | 
|  | /* | 
|  | * This cpu is idle. If the busiest group load doesn't | 
|  | * have more tasks than the number of available cpu's and | 
|  | * there is no imbalance between this and busiest group | 
|  | * wrt to idle cpu's, it is balanced. | 
|  | */ | 
|  | if ((local->idle_cpus < busiest->idle_cpus) && | 
|  | busiest->sum_nr_running <= busiest->group_weight) | 
|  | goto out_balanced; | 
|  | } else { | 
|  | /* | 
|  | * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use | 
|  | * imbalance_pct to be conservative. | 
|  | */ | 
|  | if (100 * busiest->avg_load <= | 
|  | env->sd->imbalance_pct * local->avg_load) | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | force_balance: | 
|  | /* Looks like there is an imbalance. Compute it */ | 
|  | calculate_imbalance(env, &sds); | 
|  | return sds.busiest; | 
|  |  | 
|  | out_balanced: | 
|  | env->imbalance = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
|  | */ | 
|  | static struct rq *find_busiest_queue(struct lb_env *env, | 
|  | struct sched_group *group) | 
|  | { | 
|  | struct rq *busiest = NULL, *rq; | 
|  | unsigned long busiest_load = 0, busiest_capacity = 1; | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { | 
|  | unsigned long capacity, capacity_factor, wl; | 
|  | enum fbq_type rt; | 
|  |  | 
|  | rq = cpu_rq(i); | 
|  | rt = fbq_classify_rq(rq); | 
|  |  | 
|  | /* | 
|  | * We classify groups/runqueues into three groups: | 
|  | *  - regular: there are !numa tasks | 
|  | *  - remote:  there are numa tasks that run on the 'wrong' node | 
|  | *  - all:     there is no distinction | 
|  | * | 
|  | * In order to avoid migrating ideally placed numa tasks, | 
|  | * ignore those when there's better options. | 
|  | * | 
|  | * If we ignore the actual busiest queue to migrate another | 
|  | * task, the next balance pass can still reduce the busiest | 
|  | * queue by moving tasks around inside the node. | 
|  | * | 
|  | * If we cannot move enough load due to this classification | 
|  | * the next pass will adjust the group classification and | 
|  | * allow migration of more tasks. | 
|  | * | 
|  | * Both cases only affect the total convergence complexity. | 
|  | */ | 
|  | if (rt > env->fbq_type) | 
|  | continue; | 
|  |  | 
|  | capacity = capacity_of(i); | 
|  | capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE); | 
|  | if (!capacity_factor) | 
|  | capacity_factor = fix_small_capacity(env->sd, group); | 
|  |  | 
|  | wl = weighted_cpuload(i); | 
|  |  | 
|  | /* | 
|  | * When comparing with imbalance, use weighted_cpuload() | 
|  | * which is not scaled with the cpu capacity. | 
|  | */ | 
|  | if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * For the load comparisons with the other cpu's, consider | 
|  | * the weighted_cpuload() scaled with the cpu capacity, so | 
|  | * that the load can be moved away from the cpu that is | 
|  | * potentially running at a lower capacity. | 
|  | * | 
|  | * Thus we're looking for max(wl_i / capacity_i), crosswise | 
|  | * multiplication to rid ourselves of the division works out | 
|  | * to: wl_i * capacity_j > wl_j * capacity_i;  where j is | 
|  | * our previous maximum. | 
|  | */ | 
|  | if (wl * busiest_capacity > busiest_load * capacity) { | 
|  | busiest_load = wl; | 
|  | busiest_capacity = capacity; | 
|  | busiest = rq; | 
|  | } | 
|  | } | 
|  |  | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
|  | * so long as it is large enough. | 
|  | */ | 
|  | #define MAX_PINNED_INTERVAL	512 | 
|  |  | 
|  | /* Working cpumask for load_balance and load_balance_newidle. */ | 
|  | DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); | 
|  |  | 
|  | static int need_active_balance(struct lb_env *env) | 
|  | { | 
|  | struct sched_domain *sd = env->sd; | 
|  |  | 
|  | if (env->idle == CPU_NEWLY_IDLE) { | 
|  |  | 
|  | /* | 
|  | * ASYM_PACKING needs to force migrate tasks from busy but | 
|  | * higher numbered CPUs in order to pack all tasks in the | 
|  | * lowest numbered CPUs. | 
|  | */ | 
|  | if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | 
|  | } | 
|  |  | 
|  | static int active_load_balance_cpu_stop(void *data); | 
|  |  | 
|  | static int should_we_balance(struct lb_env *env) | 
|  | { | 
|  | struct sched_group *sg = env->sd->groups; | 
|  | struct cpumask *sg_cpus, *sg_mask; | 
|  | int cpu, balance_cpu = -1; | 
|  |  | 
|  | /* | 
|  | * In the newly idle case, we will allow all the cpu's | 
|  | * to do the newly idle load balance. | 
|  | */ | 
|  | if (env->idle == CPU_NEWLY_IDLE) | 
|  | return 1; | 
|  |  | 
|  | sg_cpus = sched_group_cpus(sg); | 
|  | sg_mask = sched_group_mask(sg); | 
|  | /* Try to find first idle cpu */ | 
|  | for_each_cpu_and(cpu, sg_cpus, env->cpus) { | 
|  | if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) | 
|  | continue; | 
|  |  | 
|  | balance_cpu = cpu; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (balance_cpu == -1) | 
|  | balance_cpu = group_balance_cpu(sg); | 
|  |  | 
|  | /* | 
|  | * First idle cpu or the first cpu(busiest) in this sched group | 
|  | * is eligible for doing load balancing at this and above domains. | 
|  | */ | 
|  | return balance_cpu == env->dst_cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | * tasks if there is an imbalance. | 
|  | */ | 
|  | static int load_balance(int this_cpu, struct rq *this_rq, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *continue_balancing) | 
|  | { | 
|  | int ld_moved, cur_ld_moved, active_balance = 0; | 
|  | struct sched_domain *sd_parent = sd->parent; | 
|  | struct sched_group *group; | 
|  | struct rq *busiest; | 
|  | unsigned long flags; | 
|  | struct cpumask *cpus = __get_cpu_var(load_balance_mask); | 
|  |  | 
|  | struct lb_env env = { | 
|  | .sd		= sd, | 
|  | .dst_cpu	= this_cpu, | 
|  | .dst_rq		= this_rq, | 
|  | .dst_grpmask    = sched_group_cpus(sd->groups), | 
|  | .idle		= idle, | 
|  | .loop_break	= sched_nr_migrate_break, | 
|  | .cpus		= cpus, | 
|  | .fbq_type	= all, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * For NEWLY_IDLE load_balancing, we don't need to consider | 
|  | * other cpus in our group | 
|  | */ | 
|  | if (idle == CPU_NEWLY_IDLE) | 
|  | env.dst_grpmask = NULL; | 
|  |  | 
|  | cpumask_copy(cpus, cpu_active_mask); | 
|  |  | 
|  | schedstat_inc(sd, lb_count[idle]); | 
|  |  | 
|  | redo: | 
|  | if (!should_we_balance(&env)) { | 
|  | *continue_balancing = 0; | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | group = find_busiest_group(&env); | 
|  | if (!group) { | 
|  | schedstat_inc(sd, lb_nobusyg[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | busiest = find_busiest_queue(&env, group); | 
|  | if (!busiest) { | 
|  | schedstat_inc(sd, lb_nobusyq[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | BUG_ON(busiest == env.dst_rq); | 
|  |  | 
|  | schedstat_add(sd, lb_imbalance[idle], env.imbalance); | 
|  |  | 
|  | ld_moved = 0; | 
|  | if (busiest->nr_running > 1) { | 
|  | /* | 
|  | * Attempt to move tasks. If find_busiest_group has found | 
|  | * an imbalance but busiest->nr_running <= 1, the group is | 
|  | * still unbalanced. ld_moved simply stays zero, so it is | 
|  | * correctly treated as an imbalance. | 
|  | */ | 
|  | env.flags |= LBF_ALL_PINNED; | 
|  | env.src_cpu   = busiest->cpu; | 
|  | env.src_rq    = busiest; | 
|  | env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running); | 
|  |  | 
|  | more_balance: | 
|  | local_irq_save(flags); | 
|  | double_rq_lock(env.dst_rq, busiest); | 
|  |  | 
|  | /* | 
|  | * cur_ld_moved - load moved in current iteration | 
|  | * ld_moved     - cumulative load moved across iterations | 
|  | */ | 
|  | cur_ld_moved = move_tasks(&env); | 
|  | ld_moved += cur_ld_moved; | 
|  | double_rq_unlock(env.dst_rq, busiest); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* | 
|  | * some other cpu did the load balance for us. | 
|  | */ | 
|  | if (cur_ld_moved && env.dst_cpu != smp_processor_id()) | 
|  | resched_cpu(env.dst_cpu); | 
|  |  | 
|  | if (env.flags & LBF_NEED_BREAK) { | 
|  | env.flags &= ~LBF_NEED_BREAK; | 
|  | goto more_balance; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Revisit (affine) tasks on src_cpu that couldn't be moved to | 
|  | * us and move them to an alternate dst_cpu in our sched_group | 
|  | * where they can run. The upper limit on how many times we | 
|  | * iterate on same src_cpu is dependent on number of cpus in our | 
|  | * sched_group. | 
|  | * | 
|  | * This changes load balance semantics a bit on who can move | 
|  | * load to a given_cpu. In addition to the given_cpu itself | 
|  | * (or a ilb_cpu acting on its behalf where given_cpu is | 
|  | * nohz-idle), we now have balance_cpu in a position to move | 
|  | * load to given_cpu. In rare situations, this may cause | 
|  | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | 
|  | * _independently_ and at _same_ time to move some load to | 
|  | * given_cpu) causing exceess load to be moved to given_cpu. | 
|  | * This however should not happen so much in practice and | 
|  | * moreover subsequent load balance cycles should correct the | 
|  | * excess load moved. | 
|  | */ | 
|  | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { | 
|  |  | 
|  | /* Prevent to re-select dst_cpu via env's cpus */ | 
|  | cpumask_clear_cpu(env.dst_cpu, env.cpus); | 
|  |  | 
|  | env.dst_rq	 = cpu_rq(env.new_dst_cpu); | 
|  | env.dst_cpu	 = env.new_dst_cpu; | 
|  | env.flags	&= ~LBF_DST_PINNED; | 
|  | env.loop	 = 0; | 
|  | env.loop_break	 = sched_nr_migrate_break; | 
|  |  | 
|  | /* | 
|  | * Go back to "more_balance" rather than "redo" since we | 
|  | * need to continue with same src_cpu. | 
|  | */ | 
|  | goto more_balance; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We failed to reach balance because of affinity. | 
|  | */ | 
|  | if (sd_parent) { | 
|  | int *group_imbalance = &sd_parent->groups->sgc->imbalance; | 
|  |  | 
|  | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { | 
|  | *group_imbalance = 1; | 
|  | } else if (*group_imbalance) | 
|  | *group_imbalance = 0; | 
|  | } | 
|  |  | 
|  | /* All tasks on this runqueue were pinned by CPU affinity */ | 
|  | if (unlikely(env.flags & LBF_ALL_PINNED)) { | 
|  | cpumask_clear_cpu(cpu_of(busiest), cpus); | 
|  | if (!cpumask_empty(cpus)) { | 
|  | env.loop = 0; | 
|  | env.loop_break = sched_nr_migrate_break; | 
|  | goto redo; | 
|  | } | 
|  | goto out_balanced; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ld_moved) { | 
|  | schedstat_inc(sd, lb_failed[idle]); | 
|  | /* | 
|  | * Increment the failure counter only on periodic balance. | 
|  | * We do not want newidle balance, which can be very | 
|  | * frequent, pollute the failure counter causing | 
|  | * excessive cache_hot migrations and active balances. | 
|  | */ | 
|  | if (idle != CPU_NEWLY_IDLE) | 
|  | sd->nr_balance_failed++; | 
|  |  | 
|  | if (need_active_balance(&env)) { | 
|  | raw_spin_lock_irqsave(&busiest->lock, flags); | 
|  |  | 
|  | /* don't kick the active_load_balance_cpu_stop, | 
|  | * if the curr task on busiest cpu can't be | 
|  | * moved to this_cpu | 
|  | */ | 
|  | if (!cpumask_test_cpu(this_cpu, | 
|  | tsk_cpus_allowed(busiest->curr))) { | 
|  | raw_spin_unlock_irqrestore(&busiest->lock, | 
|  | flags); | 
|  | env.flags |= LBF_ALL_PINNED; | 
|  | goto out_one_pinned; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ->active_balance synchronizes accesses to | 
|  | * ->active_balance_work.  Once set, it's cleared | 
|  | * only after active load balance is finished. | 
|  | */ | 
|  | if (!busiest->active_balance) { | 
|  | busiest->active_balance = 1; | 
|  | busiest->push_cpu = this_cpu; | 
|  | active_balance = 1; | 
|  | } | 
|  | raw_spin_unlock_irqrestore(&busiest->lock, flags); | 
|  |  | 
|  | if (active_balance) { | 
|  | stop_one_cpu_nowait(cpu_of(busiest), | 
|  | active_load_balance_cpu_stop, busiest, | 
|  | &busiest->active_balance_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We've kicked active balancing, reset the failure | 
|  | * counter. | 
|  | */ | 
|  | sd->nr_balance_failed = sd->cache_nice_tries+1; | 
|  | } | 
|  | } else | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | if (likely(!active_balance)) { | 
|  | /* We were unbalanced, so reset the balancing interval */ | 
|  | sd->balance_interval = sd->min_interval; | 
|  | } else { | 
|  | /* | 
|  | * If we've begun active balancing, start to back off. This | 
|  | * case may not be covered by the all_pinned logic if there | 
|  | * is only 1 task on the busy runqueue (because we don't call | 
|  | * move_tasks). | 
|  | */ | 
|  | if (sd->balance_interval < sd->max_interval) | 
|  | sd->balance_interval *= 2; | 
|  | } | 
|  |  | 
|  | goto out; | 
|  |  | 
|  | out_balanced: | 
|  | schedstat_inc(sd, lb_balanced[idle]); | 
|  |  | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | out_one_pinned: | 
|  | /* tune up the balancing interval */ | 
|  | if (((env.flags & LBF_ALL_PINNED) && | 
|  | sd->balance_interval < MAX_PINNED_INTERVAL) || | 
|  | (sd->balance_interval < sd->max_interval)) | 
|  | sd->balance_interval *= 2; | 
|  |  | 
|  | ld_moved = 0; | 
|  | out: | 
|  | return ld_moved; | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | 
|  | { | 
|  | unsigned long interval = sd->balance_interval; | 
|  |  | 
|  | if (cpu_busy) | 
|  | interval *= sd->busy_factor; | 
|  |  | 
|  | /* scale ms to jiffies */ | 
|  | interval = msecs_to_jiffies(interval); | 
|  | interval = clamp(interval, 1UL, max_load_balance_interval); | 
|  |  | 
|  | return interval; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) | 
|  | { | 
|  | unsigned long interval, next; | 
|  |  | 
|  | interval = get_sd_balance_interval(sd, cpu_busy); | 
|  | next = sd->last_balance + interval; | 
|  |  | 
|  | if (time_after(*next_balance, next)) | 
|  | *next_balance = next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * idle_balance is called by schedule() if this_cpu is about to become | 
|  | * idle. Attempts to pull tasks from other CPUs. | 
|  | */ | 
|  | static int idle_balance(struct rq *this_rq) | 
|  | { | 
|  | unsigned long next_balance = jiffies + HZ; | 
|  | int this_cpu = this_rq->cpu; | 
|  | struct sched_domain *sd; | 
|  | int pulled_task = 0; | 
|  | u64 curr_cost = 0; | 
|  |  | 
|  | idle_enter_fair(this_rq); | 
|  |  | 
|  | /* | 
|  | * We must set idle_stamp _before_ calling idle_balance(), such that we | 
|  | * measure the duration of idle_balance() as idle time. | 
|  | */ | 
|  | this_rq->idle_stamp = rq_clock(this_rq); | 
|  |  | 
|  | if (this_rq->avg_idle < sysctl_sched_migration_cost) { | 
|  | rcu_read_lock(); | 
|  | sd = rcu_dereference_check_sched_domain(this_rq->sd); | 
|  | if (sd) | 
|  | update_next_balance(sd, 0, &next_balance); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop the rq->lock, but keep IRQ/preempt disabled. | 
|  | */ | 
|  | raw_spin_unlock(&this_rq->lock); | 
|  |  | 
|  | update_blocked_averages(this_cpu); | 
|  | rcu_read_lock(); | 
|  | for_each_domain(this_cpu, sd) { | 
|  | int continue_balancing = 1; | 
|  | u64 t0, domain_cost; | 
|  |  | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | continue; | 
|  |  | 
|  | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { | 
|  | update_next_balance(sd, 0, &next_balance); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (sd->flags & SD_BALANCE_NEWIDLE) { | 
|  | t0 = sched_clock_cpu(this_cpu); | 
|  |  | 
|  | pulled_task = load_balance(this_cpu, this_rq, | 
|  | sd, CPU_NEWLY_IDLE, | 
|  | &continue_balancing); | 
|  |  | 
|  | domain_cost = sched_clock_cpu(this_cpu) - t0; | 
|  | if (domain_cost > sd->max_newidle_lb_cost) | 
|  | sd->max_newidle_lb_cost = domain_cost; | 
|  |  | 
|  | curr_cost += domain_cost; | 
|  | } | 
|  |  | 
|  | update_next_balance(sd, 0, &next_balance); | 
|  |  | 
|  | /* | 
|  | * Stop searching for tasks to pull if there are | 
|  | * now runnable tasks on this rq. | 
|  | */ | 
|  | if (pulled_task || this_rq->nr_running > 0) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | raw_spin_lock(&this_rq->lock); | 
|  |  | 
|  | if (curr_cost > this_rq->max_idle_balance_cost) | 
|  | this_rq->max_idle_balance_cost = curr_cost; | 
|  |  | 
|  | /* | 
|  | * While browsing the domains, we released the rq lock, a task could | 
|  | * have been enqueued in the meantime. Since we're not going idle, | 
|  | * pretend we pulled a task. | 
|  | */ | 
|  | if (this_rq->cfs.h_nr_running && !pulled_task) | 
|  | pulled_task = 1; | 
|  |  | 
|  | out: | 
|  | /* Move the next balance forward */ | 
|  | if (time_after(this_rq->next_balance, next_balance)) | 
|  | this_rq->next_balance = next_balance; | 
|  |  | 
|  | /* Is there a task of a high priority class? */ | 
|  | if (this_rq->nr_running != this_rq->cfs.h_nr_running) | 
|  | pulled_task = -1; | 
|  |  | 
|  | if (pulled_task) { | 
|  | idle_exit_fair(this_rq); | 
|  | this_rq->idle_stamp = 0; | 
|  | } | 
|  |  | 
|  | return pulled_task; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * active_load_balance_cpu_stop is run by cpu stopper. It pushes | 
|  | * running tasks off the busiest CPU onto idle CPUs. It requires at | 
|  | * least 1 task to be running on each physical CPU where possible, and | 
|  | * avoids physical / logical imbalances. | 
|  | */ | 
|  | static int active_load_balance_cpu_stop(void *data) | 
|  | { | 
|  | struct rq *busiest_rq = data; | 
|  | int busiest_cpu = cpu_of(busiest_rq); | 
|  | int target_cpu = busiest_rq->push_cpu; | 
|  | struct rq *target_rq = cpu_rq(target_cpu); | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | raw_spin_lock_irq(&busiest_rq->lock); | 
|  |  | 
|  | /* make sure the requested cpu hasn't gone down in the meantime */ | 
|  | if (unlikely(busiest_cpu != smp_processor_id() || | 
|  | !busiest_rq->active_balance)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Is there any task to move? */ | 
|  | if (busiest_rq->nr_running <= 1) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * This condition is "impossible", if it occurs | 
|  | * we need to fix it. Originally reported by | 
|  | * Bjorn Helgaas on a 128-cpu setup. | 
|  | */ | 
|  | BUG_ON(busiest_rq == target_rq); | 
|  |  | 
|  | /* move a task from busiest_rq to target_rq */ | 
|  | double_lock_balance(busiest_rq, target_rq); | 
|  |  | 
|  | /* Search for an sd spanning us and the target CPU. */ | 
|  | rcu_read_lock(); | 
|  | for_each_domain(target_cpu, sd) { | 
|  | if ((sd->flags & SD_LOAD_BALANCE) && | 
|  | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (likely(sd)) { | 
|  | struct lb_env env = { | 
|  | .sd		= sd, | 
|  | .dst_cpu	= target_cpu, | 
|  | .dst_rq		= target_rq, | 
|  | .src_cpu	= busiest_rq->cpu, | 
|  | .src_rq		= busiest_rq, | 
|  | .idle		= CPU_IDLE, | 
|  | }; | 
|  |  | 
|  | schedstat_inc(sd, alb_count); | 
|  |  | 
|  | if (move_one_task(&env)) | 
|  | schedstat_inc(sd, alb_pushed); | 
|  | else | 
|  | schedstat_inc(sd, alb_failed); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | double_unlock_balance(busiest_rq, target_rq); | 
|  | out_unlock: | 
|  | busiest_rq->active_balance = 0; | 
|  | raw_spin_unlock_irq(&busiest_rq->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int on_null_domain(struct rq *rq) | 
|  | { | 
|  | return unlikely(!rcu_dereference_sched(rq->sd)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | /* | 
|  | * idle load balancing details | 
|  | * - When one of the busy CPUs notice that there may be an idle rebalancing | 
|  | *   needed, they will kick the idle load balancer, which then does idle | 
|  | *   load balancing for all the idle CPUs. | 
|  | */ | 
|  | static struct { | 
|  | cpumask_var_t idle_cpus_mask; | 
|  | atomic_t nr_cpus; | 
|  | unsigned long next_balance;     /* in jiffy units */ | 
|  | } nohz ____cacheline_aligned; | 
|  |  | 
|  | static inline int find_new_ilb(void) | 
|  | { | 
|  | int ilb = cpumask_first(nohz.idle_cpus_mask); | 
|  |  | 
|  | if (ilb < nr_cpu_ids && idle_cpu(ilb)) | 
|  | return ilb; | 
|  |  | 
|  | return nr_cpu_ids; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kick a CPU to do the nohz balancing, if it is time for it. We pick the | 
|  | * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle | 
|  | * CPU (if there is one). | 
|  | */ | 
|  | static void nohz_balancer_kick(void) | 
|  | { | 
|  | int ilb_cpu; | 
|  |  | 
|  | nohz.next_balance++; | 
|  |  | 
|  | ilb_cpu = find_new_ilb(); | 
|  |  | 
|  | if (ilb_cpu >= nr_cpu_ids) | 
|  | return; | 
|  |  | 
|  | if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) | 
|  | return; | 
|  | /* | 
|  | * Use smp_send_reschedule() instead of resched_cpu(). | 
|  | * This way we generate a sched IPI on the target cpu which | 
|  | * is idle. And the softirq performing nohz idle load balance | 
|  | * will be run before returning from the IPI. | 
|  | */ | 
|  | smp_send_reschedule(ilb_cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void nohz_balance_exit_idle(int cpu) | 
|  | { | 
|  | if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { | 
|  | /* | 
|  | * Completely isolated CPUs don't ever set, so we must test. | 
|  | */ | 
|  | if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { | 
|  | cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | 
|  | atomic_dec(&nohz.nr_cpus); | 
|  | } | 
|  | clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void set_cpu_sd_state_busy(void) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sd = rcu_dereference(per_cpu(sd_busy, cpu)); | 
|  |  | 
|  | if (!sd || !sd->nohz_idle) | 
|  | goto unlock; | 
|  | sd->nohz_idle = 0; | 
|  |  | 
|  | atomic_inc(&sd->groups->sgc->nr_busy_cpus); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void set_cpu_sd_state_idle(void) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sd = rcu_dereference(per_cpu(sd_busy, cpu)); | 
|  |  | 
|  | if (!sd || sd->nohz_idle) | 
|  | goto unlock; | 
|  | sd->nohz_idle = 1; | 
|  |  | 
|  | atomic_dec(&sd->groups->sgc->nr_busy_cpus); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine will record that the cpu is going idle with tick stopped. | 
|  | * This info will be used in performing idle load balancing in the future. | 
|  | */ | 
|  | void nohz_balance_enter_idle(int cpu) | 
|  | { | 
|  | /* | 
|  | * If this cpu is going down, then nothing needs to be done. | 
|  | */ | 
|  | if (!cpu_active(cpu)) | 
|  | return; | 
|  |  | 
|  | if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If we're a completely isolated CPU, we don't play. | 
|  | */ | 
|  | if (on_null_domain(cpu_rq(cpu))) | 
|  | return; | 
|  |  | 
|  | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); | 
|  | atomic_inc(&nohz.nr_cpus); | 
|  | set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); | 
|  | } | 
|  |  | 
|  | static int sched_ilb_notifier(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | switch (action & ~CPU_TASKS_FROZEN) { | 
|  | case CPU_DYING: | 
|  | nohz_balance_exit_idle(smp_processor_id()); | 
|  | return NOTIFY_OK; | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static DEFINE_SPINLOCK(balancing); | 
|  |  | 
|  | /* | 
|  | * Scale the max load_balance interval with the number of CPUs in the system. | 
|  | * This trades load-balance latency on larger machines for less cross talk. | 
|  | */ | 
|  | void update_max_interval(void) | 
|  | { | 
|  | max_load_balance_interval = HZ*num_online_cpus()/10; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It checks each scheduling domain to see if it is due to be balanced, | 
|  | * and initiates a balancing operation if so. | 
|  | * | 
|  | * Balancing parameters are set up in init_sched_domains. | 
|  | */ | 
|  | static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) | 
|  | { | 
|  | int continue_balancing = 1; | 
|  | int cpu = rq->cpu; | 
|  | unsigned long interval; | 
|  | struct sched_domain *sd; | 
|  | /* Earliest time when we have to do rebalance again */ | 
|  | unsigned long next_balance = jiffies + 60*HZ; | 
|  | int update_next_balance = 0; | 
|  | int need_serialize, need_decay = 0; | 
|  | u64 max_cost = 0; | 
|  |  | 
|  | update_blocked_averages(cpu); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_domain(cpu, sd) { | 
|  | /* | 
|  | * Decay the newidle max times here because this is a regular | 
|  | * visit to all the domains. Decay ~1% per second. | 
|  | */ | 
|  | if (time_after(jiffies, sd->next_decay_max_lb_cost)) { | 
|  | sd->max_newidle_lb_cost = | 
|  | (sd->max_newidle_lb_cost * 253) / 256; | 
|  | sd->next_decay_max_lb_cost = jiffies + HZ; | 
|  | need_decay = 1; | 
|  | } | 
|  | max_cost += sd->max_newidle_lb_cost; | 
|  |  | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Stop the load balance at this level. There is another | 
|  | * CPU in our sched group which is doing load balancing more | 
|  | * actively. | 
|  | */ | 
|  | if (!continue_balancing) { | 
|  | if (need_decay) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  |  | 
|  | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); | 
|  |  | 
|  | need_serialize = sd->flags & SD_SERIALIZE; | 
|  | if (need_serialize) { | 
|  | if (!spin_trylock(&balancing)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (time_after_eq(jiffies, sd->last_balance + interval)) { | 
|  | if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { | 
|  | /* | 
|  | * The LBF_DST_PINNED logic could have changed | 
|  | * env->dst_cpu, so we can't know our idle | 
|  | * state even if we migrated tasks. Update it. | 
|  | */ | 
|  | idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; | 
|  | } | 
|  | sd->last_balance = jiffies; | 
|  | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); | 
|  | } | 
|  | if (need_serialize) | 
|  | spin_unlock(&balancing); | 
|  | out: | 
|  | if (time_after(next_balance, sd->last_balance + interval)) { | 
|  | next_balance = sd->last_balance + interval; | 
|  | update_next_balance = 1; | 
|  | } | 
|  | } | 
|  | if (need_decay) { | 
|  | /* | 
|  | * Ensure the rq-wide value also decays but keep it at a | 
|  | * reasonable floor to avoid funnies with rq->avg_idle. | 
|  | */ | 
|  | rq->max_idle_balance_cost = | 
|  | max((u64)sysctl_sched_migration_cost, max_cost); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * next_balance will be updated only when there is a need. | 
|  | * When the cpu is attached to null domain for ex, it will not be | 
|  | * updated. | 
|  | */ | 
|  | if (likely(update_next_balance)) | 
|  | rq->next_balance = next_balance; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | /* | 
|  | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the | 
|  | * rebalancing for all the cpus for whom scheduler ticks are stopped. | 
|  | */ | 
|  | static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | 
|  | { | 
|  | int this_cpu = this_rq->cpu; | 
|  | struct rq *rq; | 
|  | int balance_cpu; | 
|  |  | 
|  | if (idle != CPU_IDLE || | 
|  | !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) | 
|  | goto end; | 
|  |  | 
|  | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { | 
|  | if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If this cpu gets work to do, stop the load balancing | 
|  | * work being done for other cpus. Next load | 
|  | * balancing owner will pick it up. | 
|  | */ | 
|  | if (need_resched()) | 
|  | break; | 
|  |  | 
|  | rq = cpu_rq(balance_cpu); | 
|  |  | 
|  | /* | 
|  | * If time for next balance is due, | 
|  | * do the balance. | 
|  | */ | 
|  | if (time_after_eq(jiffies, rq->next_balance)) { | 
|  | raw_spin_lock_irq(&rq->lock); | 
|  | update_rq_clock(rq); | 
|  | update_idle_cpu_load(rq); | 
|  | raw_spin_unlock_irq(&rq->lock); | 
|  | rebalance_domains(rq, CPU_IDLE); | 
|  | } | 
|  |  | 
|  | if (time_after(this_rq->next_balance, rq->next_balance)) | 
|  | this_rq->next_balance = rq->next_balance; | 
|  | } | 
|  | nohz.next_balance = this_rq->next_balance; | 
|  | end: | 
|  | clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Current heuristic for kicking the idle load balancer in the presence | 
|  | * of an idle cpu is the system. | 
|  | *   - This rq has more than one task. | 
|  | *   - At any scheduler domain level, this cpu's scheduler group has multiple | 
|  | *     busy cpu's exceeding the group's capacity. | 
|  | *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler | 
|  | *     domain span are idle. | 
|  | */ | 
|  | static inline int nohz_kick_needed(struct rq *rq) | 
|  | { | 
|  | unsigned long now = jiffies; | 
|  | struct sched_domain *sd; | 
|  | struct sched_group_capacity *sgc; | 
|  | int nr_busy, cpu = rq->cpu; | 
|  |  | 
|  | if (unlikely(rq->idle_balance)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We may be recently in ticked or tickless idle mode. At the first | 
|  | * busy tick after returning from idle, we will update the busy stats. | 
|  | */ | 
|  | set_cpu_sd_state_busy(); | 
|  | nohz_balance_exit_idle(cpu); | 
|  |  | 
|  | /* | 
|  | * None are in tickless mode and hence no need for NOHZ idle load | 
|  | * balancing. | 
|  | */ | 
|  | if (likely(!atomic_read(&nohz.nr_cpus))) | 
|  | return 0; | 
|  |  | 
|  | if (time_before(now, nohz.next_balance)) | 
|  | return 0; | 
|  |  | 
|  | if (rq->nr_running >= 2) | 
|  | goto need_kick; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sd = rcu_dereference(per_cpu(sd_busy, cpu)); | 
|  |  | 
|  | if (sd) { | 
|  | sgc = sd->groups->sgc; | 
|  | nr_busy = atomic_read(&sgc->nr_busy_cpus); | 
|  |  | 
|  | if (nr_busy > 1) | 
|  | goto need_kick_unlock; | 
|  | } | 
|  |  | 
|  | sd = rcu_dereference(per_cpu(sd_asym, cpu)); | 
|  |  | 
|  | if (sd && (cpumask_first_and(nohz.idle_cpus_mask, | 
|  | sched_domain_span(sd)) < cpu)) | 
|  | goto need_kick_unlock; | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | return 0; | 
|  |  | 
|  | need_kick_unlock: | 
|  | rcu_read_unlock(); | 
|  | need_kick: | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * run_rebalance_domains is triggered when needed from the scheduler tick. | 
|  | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | 
|  | */ | 
|  | static void run_rebalance_domains(struct softirq_action *h) | 
|  | { | 
|  | struct rq *this_rq = this_rq(); | 
|  | enum cpu_idle_type idle = this_rq->idle_balance ? | 
|  | CPU_IDLE : CPU_NOT_IDLE; | 
|  |  | 
|  | rebalance_domains(this_rq, idle); | 
|  |  | 
|  | /* | 
|  | * If this cpu has a pending nohz_balance_kick, then do the | 
|  | * balancing on behalf of the other idle cpus whose ticks are | 
|  | * stopped. | 
|  | */ | 
|  | nohz_idle_balance(this_rq, idle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 
|  | */ | 
|  | void trigger_load_balance(struct rq *rq) | 
|  | { | 
|  | /* Don't need to rebalance while attached to NULL domain */ | 
|  | if (unlikely(on_null_domain(rq))) | 
|  | return; | 
|  |  | 
|  | if (time_after_eq(jiffies, rq->next_balance)) | 
|  | raise_softirq(SCHED_SOFTIRQ); | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | if (nohz_kick_needed(rq)) | 
|  | nohz_balancer_kick(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void rq_online_fair(struct rq *rq) | 
|  | { | 
|  | update_sysctl(); | 
|  | } | 
|  |  | 
|  | static void rq_offline_fair(struct rq *rq) | 
|  | { | 
|  | update_sysctl(); | 
|  |  | 
|  | /* Ensure any throttled groups are reachable by pick_next_task */ | 
|  | unthrottle_offline_cfs_rqs(rq); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * scheduler tick hitting a task of our scheduling class: | 
|  | */ | 
|  | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &curr->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | entity_tick(cfs_rq, se, queued); | 
|  | } | 
|  |  | 
|  | if (numabalancing_enabled) | 
|  | task_tick_numa(rq, curr); | 
|  |  | 
|  | update_rq_runnable_avg(rq, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called on fork with the child task as argument from the parent's context | 
|  | *  - child not yet on the tasklist | 
|  | *  - preemption disabled | 
|  | */ | 
|  | static void task_fork_fair(struct task_struct *p) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se = &p->se, *curr; | 
|  | int this_cpu = smp_processor_id(); | 
|  | struct rq *rq = this_rq(); | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rq->lock, flags); | 
|  |  | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | cfs_rq = task_cfs_rq(current); | 
|  | curr = cfs_rq->curr; | 
|  |  | 
|  | /* | 
|  | * Not only the cpu but also the task_group of the parent might have | 
|  | * been changed after parent->se.parent,cfs_rq were copied to | 
|  | * child->se.parent,cfs_rq. So call __set_task_cpu() to make those | 
|  | * of child point to valid ones. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | __set_task_cpu(p, this_cpu); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | update_curr(cfs_rq); | 
|  |  | 
|  | if (curr) | 
|  | se->vruntime = curr->vruntime; | 
|  | place_entity(cfs_rq, se, 1); | 
|  |  | 
|  | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { | 
|  | /* | 
|  | * Upon rescheduling, sched_class::put_prev_task() will place | 
|  | * 'current' within the tree based on its new key value. | 
|  | */ | 
|  | swap(curr->vruntime, se->vruntime); | 
|  | resched_task(rq->curr); | 
|  | } | 
|  |  | 
|  | se->vruntime -= cfs_rq->min_vruntime; | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Priority of the task has changed. Check to see if we preempt | 
|  | * the current task. | 
|  | */ | 
|  | static void | 
|  | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | 
|  | { | 
|  | if (!p->se.on_rq) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Reschedule if we are currently running on this runqueue and | 
|  | * our priority decreased, or if we are not currently running on | 
|  | * this runqueue and our priority is higher than the current's | 
|  | */ | 
|  | if (rq->curr == p) { | 
|  | if (p->prio > oldprio) | 
|  | resched_task(rq->curr); | 
|  | } else | 
|  | check_preempt_curr(rq, p, 0); | 
|  | } | 
|  |  | 
|  | static void switched_from_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | /* | 
|  | * Ensure the task's vruntime is normalized, so that when it's | 
|  | * switched back to the fair class the enqueue_entity(.flags=0) will | 
|  | * do the right thing. | 
|  | * | 
|  | * If it's on_rq, then the dequeue_entity(.flags=0) will already | 
|  | * have normalized the vruntime, if it's !on_rq, then only when | 
|  | * the task is sleeping will it still have non-normalized vruntime. | 
|  | */ | 
|  | if (!p->on_rq && p->state != TASK_RUNNING) { | 
|  | /* | 
|  | * Fix up our vruntime so that the current sleep doesn't | 
|  | * cause 'unlimited' sleep bonus. | 
|  | */ | 
|  | place_entity(cfs_rq, se, 0); | 
|  | se->vruntime -= cfs_rq->min_vruntime; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Remove our load from contribution when we leave sched_fair | 
|  | * and ensure we don't carry in an old decay_count if we | 
|  | * switch back. | 
|  | */ | 
|  | if (se->avg.decay_count) { | 
|  | __synchronize_entity_decay(se); | 
|  | subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We switched to the sched_fair class. | 
|  | */ | 
|  | static void switched_to_fair(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* | 
|  | * Since the real-depth could have been changed (only FAIR | 
|  | * class maintain depth value), reset depth properly. | 
|  | */ | 
|  | se->depth = se->parent ? se->parent->depth + 1 : 0; | 
|  | #endif | 
|  | if (!se->on_rq) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We were most likely switched from sched_rt, so | 
|  | * kick off the schedule if running, otherwise just see | 
|  | * if we can still preempt the current task. | 
|  | */ | 
|  | if (rq->curr == p) | 
|  | resched_task(rq->curr); | 
|  | else | 
|  | check_preempt_curr(rq, p, 0); | 
|  | } | 
|  |  | 
|  | /* Account for a task changing its policy or group. | 
|  | * | 
|  | * This routine is mostly called to set cfs_rq->curr field when a task | 
|  | * migrates between groups/classes. | 
|  | */ | 
|  | static void set_curr_task_fair(struct rq *rq) | 
|  | { | 
|  | struct sched_entity *se = &rq->curr->se; | 
|  |  | 
|  | for_each_sched_entity(se) { | 
|  | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|  |  | 
|  | set_next_entity(cfs_rq, se); | 
|  | /* ensure bandwidth has been allocated on our new cfs_rq */ | 
|  | account_cfs_rq_runtime(cfs_rq, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void init_cfs_rq(struct cfs_rq *cfs_rq) | 
|  | { | 
|  | cfs_rq->tasks_timeline = RB_ROOT; | 
|  | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | 
|  | #ifndef CONFIG_64BIT | 
|  | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | atomic64_set(&cfs_rq->decay_counter, 1); | 
|  | atomic_long_set(&cfs_rq->removed_load, 0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static void task_move_group_fair(struct task_struct *p, int on_rq) | 
|  | { | 
|  | struct sched_entity *se = &p->se; | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | /* | 
|  | * If the task was not on the rq at the time of this cgroup movement | 
|  | * it must have been asleep, sleeping tasks keep their ->vruntime | 
|  | * absolute on their old rq until wakeup (needed for the fair sleeper | 
|  | * bonus in place_entity()). | 
|  | * | 
|  | * If it was on the rq, we've just 'preempted' it, which does convert | 
|  | * ->vruntime to a relative base. | 
|  | * | 
|  | * Make sure both cases convert their relative position when migrating | 
|  | * to another cgroup's rq. This does somewhat interfere with the | 
|  | * fair sleeper stuff for the first placement, but who cares. | 
|  | */ | 
|  | /* | 
|  | * When !on_rq, vruntime of the task has usually NOT been normalized. | 
|  | * But there are some cases where it has already been normalized: | 
|  | * | 
|  | * - Moving a forked child which is waiting for being woken up by | 
|  | *   wake_up_new_task(). | 
|  | * - Moving a task which has been woken up by try_to_wake_up() and | 
|  | *   waiting for actually being woken up by sched_ttwu_pending(). | 
|  | * | 
|  | * To prevent boost or penalty in the new cfs_rq caused by delta | 
|  | * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. | 
|  | */ | 
|  | if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING)) | 
|  | on_rq = 1; | 
|  |  | 
|  | if (!on_rq) | 
|  | se->vruntime -= cfs_rq_of(se)->min_vruntime; | 
|  | set_task_rq(p, task_cpu(p)); | 
|  | se->depth = se->parent ? se->parent->depth + 1 : 0; | 
|  | if (!on_rq) { | 
|  | cfs_rq = cfs_rq_of(se); | 
|  | se->vruntime += cfs_rq->min_vruntime; | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * migrate_task_rq_fair() will have removed our previous | 
|  | * contribution, but we must synchronize for ongoing future | 
|  | * decay. | 
|  | */ | 
|  | se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); | 
|  | cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | void free_fair_sched_group(struct task_group *tg) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | if (tg->cfs_rq) | 
|  | kfree(tg->cfs_rq[i]); | 
|  | if (tg->se) | 
|  | kfree(tg->se[i]); | 
|  | } | 
|  |  | 
|  | kfree(tg->cfs_rq); | 
|  | kfree(tg->se); | 
|  | } | 
|  |  | 
|  | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se; | 
|  | int i; | 
|  |  | 
|  | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | 
|  | if (!tg->cfs_rq) | 
|  | goto err; | 
|  | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | 
|  | if (!tg->se) | 
|  | goto err; | 
|  |  | 
|  | tg->shares = NICE_0_LOAD; | 
|  |  | 
|  | init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | 
|  | GFP_KERNEL, cpu_to_node(i)); | 
|  | if (!cfs_rq) | 
|  | goto err; | 
|  |  | 
|  | se = kzalloc_node(sizeof(struct sched_entity), | 
|  | GFP_KERNEL, cpu_to_node(i)); | 
|  | if (!se) | 
|  | goto err_free_rq; | 
|  |  | 
|  | init_cfs_rq(cfs_rq); | 
|  | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err_free_rq: | 
|  | kfree(cfs_rq); | 
|  | err: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void unregister_fair_sched_group(struct task_group *tg, int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Only empty task groups can be destroyed; so we can speculatively | 
|  | * check on_list without danger of it being re-added. | 
|  | */ | 
|  | if (!tg->cfs_rq[cpu]->on_list) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rq->lock, flags); | 
|  | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | 
|  | raw_spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
|  | struct sched_entity *se, int cpu, | 
|  | struct sched_entity *parent) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | cfs_rq->tg = tg; | 
|  | cfs_rq->rq = rq; | 
|  | init_cfs_rq_runtime(cfs_rq); | 
|  |  | 
|  | tg->cfs_rq[cpu] = cfs_rq; | 
|  | tg->se[cpu] = se; | 
|  |  | 
|  | /* se could be NULL for root_task_group */ | 
|  | if (!se) | 
|  | return; | 
|  |  | 
|  | if (!parent) { | 
|  | se->cfs_rq = &rq->cfs; | 
|  | se->depth = 0; | 
|  | } else { | 
|  | se->cfs_rq = parent->my_q; | 
|  | se->depth = parent->depth + 1; | 
|  | } | 
|  |  | 
|  | se->my_q = cfs_rq; | 
|  | /* guarantee group entities always have weight */ | 
|  | update_load_set(&se->load, NICE_0_LOAD); | 
|  | se->parent = parent; | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(shares_mutex); | 
|  |  | 
|  | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | 
|  | { | 
|  | int i; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * We can't change the weight of the root cgroup. | 
|  | */ | 
|  | if (!tg->se[0]) | 
|  | return -EINVAL; | 
|  |  | 
|  | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | 
|  |  | 
|  | mutex_lock(&shares_mutex); | 
|  | if (tg->shares == shares) | 
|  | goto done; | 
|  |  | 
|  | tg->shares = shares; | 
|  | for_each_possible_cpu(i) { | 
|  | struct rq *rq = cpu_rq(i); | 
|  | struct sched_entity *se; | 
|  |  | 
|  | se = tg->se[i]; | 
|  | /* Propagate contribution to hierarchy */ | 
|  | raw_spin_lock_irqsave(&rq->lock, flags); | 
|  |  | 
|  | /* Possible calls to update_curr() need rq clock */ | 
|  | update_rq_clock(rq); | 
|  | for_each_sched_entity(se) | 
|  | update_cfs_shares(group_cfs_rq(se)); | 
|  | raw_spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | done: | 
|  | mutex_unlock(&shares_mutex); | 
|  | return 0; | 
|  | } | 
|  | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | void free_fair_sched_group(struct task_group *tg) { } | 
|  |  | 
|  | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void unregister_fair_sched_group(struct task_group *tg, int cpu) { } | 
|  |  | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  |  | 
|  | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | 
|  | { | 
|  | struct sched_entity *se = &task->se; | 
|  | unsigned int rr_interval = 0; | 
|  |  | 
|  | /* | 
|  | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | 
|  | * idle runqueue: | 
|  | */ | 
|  | if (rq->cfs.load.weight) | 
|  | rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); | 
|  |  | 
|  | return rr_interval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All the scheduling class methods: | 
|  | */ | 
|  | const struct sched_class fair_sched_class = { | 
|  | .next			= &idle_sched_class, | 
|  | .enqueue_task		= enqueue_task_fair, | 
|  | .dequeue_task		= dequeue_task_fair, | 
|  | .yield_task		= yield_task_fair, | 
|  | .yield_to_task		= yield_to_task_fair, | 
|  |  | 
|  | .check_preempt_curr	= check_preempt_wakeup, | 
|  |  | 
|  | .pick_next_task		= pick_next_task_fair, | 
|  | .put_prev_task		= put_prev_task_fair, | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | .select_task_rq		= select_task_rq_fair, | 
|  | .migrate_task_rq	= migrate_task_rq_fair, | 
|  |  | 
|  | .rq_online		= rq_online_fair, | 
|  | .rq_offline		= rq_offline_fair, | 
|  |  | 
|  | .task_waking		= task_waking_fair, | 
|  | #endif | 
|  |  | 
|  | .set_curr_task          = set_curr_task_fair, | 
|  | .task_tick		= task_tick_fair, | 
|  | .task_fork		= task_fork_fair, | 
|  |  | 
|  | .prio_changed		= prio_changed_fair, | 
|  | .switched_from		= switched_from_fair, | 
|  | .switched_to		= switched_to_fair, | 
|  |  | 
|  | .get_rr_interval	= get_rr_interval_fair, | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | .task_move_group	= task_move_group_fair, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | void print_cfs_stats(struct seq_file *m, int cpu) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | 
|  | print_cfs_rq(m, cpu, cfs_rq); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | __init void init_sched_fair_class(void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_COMMON | 
|  | nohz.next_balance = jiffies; | 
|  | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); | 
|  | cpu_notifier(sched_ilb_notifier, 0); | 
|  | #endif | 
|  | #endif /* SMP */ | 
|  |  | 
|  | } |