| /* |
| * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. |
| * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/slab.h> |
| #include <rdma/ib_user_verbs.h> |
| |
| #include "mlx4_ib.h" |
| |
| static u32 convert_access(int acc) |
| { |
| return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) | |
| (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) | |
| (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) | |
| (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) | |
| (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) | |
| MLX4_PERM_LOCAL_READ; |
| } |
| |
| static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type) |
| { |
| switch (type) { |
| case IB_MW_TYPE_1: return MLX4_MW_TYPE_1; |
| case IB_MW_TYPE_2: return MLX4_MW_TYPE_2; |
| default: return -1; |
| } |
| } |
| |
| struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc) |
| { |
| struct mlx4_ib_mr *mr; |
| int err; |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| return ERR_PTR(-ENOMEM); |
| |
| err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0, |
| ~0ull, convert_access(acc), 0, 0, &mr->mmr); |
| if (err) |
| goto err_free; |
| |
| err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr); |
| if (err) |
| goto err_mr; |
| |
| mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; |
| mr->umem = NULL; |
| |
| return &mr->ibmr; |
| |
| err_mr: |
| (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); |
| |
| err_free: |
| kfree(mr); |
| |
| return ERR_PTR(err); |
| } |
| |
| enum { |
| MLX4_MAX_MTT_SHIFT = 31 |
| }; |
| |
| static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev, |
| struct mlx4_mtt *mtt, |
| u64 mtt_size, u64 mtt_shift, u64 len, |
| u64 cur_start_addr, u64 *pages, |
| int *start_index, int *npages) |
| { |
| u64 cur_end_addr = cur_start_addr + len; |
| u64 cur_end_addr_aligned = 0; |
| u64 mtt_entries; |
| int err = 0; |
| int k; |
| |
| len += (cur_start_addr & (mtt_size - 1ULL)); |
| cur_end_addr_aligned = round_up(cur_end_addr, mtt_size); |
| len += (cur_end_addr_aligned - cur_end_addr); |
| if (len & (mtt_size - 1ULL)) { |
| pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n", |
| len, mtt_size); |
| return -EINVAL; |
| } |
| |
| mtt_entries = (len >> mtt_shift); |
| |
| /* |
| * Align the MTT start address to the mtt_size. |
| * Required to handle cases when the MR starts in the middle of an MTT |
| * record. Was not required in old code since the physical addresses |
| * provided by the dma subsystem were page aligned, which was also the |
| * MTT size. |
| */ |
| cur_start_addr = round_down(cur_start_addr, mtt_size); |
| /* A new block is started ... */ |
| for (k = 0; k < mtt_entries; ++k) { |
| pages[*npages] = cur_start_addr + (mtt_size * k); |
| (*npages)++; |
| /* |
| * Be friendly to mlx4_write_mtt() and pass it chunks of |
| * appropriate size. |
| */ |
| if (*npages == PAGE_SIZE / sizeof(u64)) { |
| err = mlx4_write_mtt(dev->dev, mtt, *start_index, |
| *npages, pages); |
| if (err) |
| return err; |
| |
| (*start_index) += *npages; |
| *npages = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline u64 alignment_of(u64 ptr) |
| { |
| return ilog2(ptr & (~(ptr - 1))); |
| } |
| |
| static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start, |
| u64 current_block_end, |
| u64 block_shift) |
| { |
| /* Check whether the alignment of the new block is aligned as well as |
| * the previous block. |
| * Block address must start with zeros till size of entity_size. |
| */ |
| if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0) |
| /* |
| * It is not as well aligned as the previous block-reduce the |
| * mtt size accordingly. Here we take the last right bit which |
| * is 1. |
| */ |
| block_shift = alignment_of(next_block_start); |
| |
| /* |
| * Check whether the alignment of the end of previous block - is it |
| * aligned as well as the start of the block |
| */ |
| if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0) |
| /* |
| * It is not as well aligned as the start of the block - |
| * reduce the mtt size accordingly. |
| */ |
| block_shift = alignment_of(current_block_end); |
| |
| return block_shift; |
| } |
| |
| int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, |
| struct ib_umem *umem) |
| { |
| u64 *pages; |
| u64 len = 0; |
| int err = 0; |
| u64 mtt_size; |
| u64 cur_start_addr = 0; |
| u64 mtt_shift; |
| int start_index = 0; |
| int npages = 0; |
| struct scatterlist *sg; |
| int i; |
| |
| pages = (u64 *) __get_free_page(GFP_KERNEL); |
| if (!pages) |
| return -ENOMEM; |
| |
| mtt_shift = mtt->page_shift; |
| mtt_size = 1ULL << mtt_shift; |
| |
| for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { |
| if (cur_start_addr + len == sg_dma_address(sg)) { |
| /* still the same block */ |
| len += sg_dma_len(sg); |
| continue; |
| } |
| /* |
| * A new block is started ... |
| * If len is malaligned, write an extra mtt entry to cover the |
| * misaligned area (round up the division) |
| */ |
| err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, |
| mtt_shift, len, |
| cur_start_addr, |
| pages, &start_index, |
| &npages); |
| if (err) |
| goto out; |
| |
| cur_start_addr = sg_dma_address(sg); |
| len = sg_dma_len(sg); |
| } |
| |
| /* Handle the last block */ |
| if (len > 0) { |
| /* |
| * If len is malaligned, write an extra mtt entry to cover |
| * the misaligned area (round up the division) |
| */ |
| err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, |
| mtt_shift, len, |
| cur_start_addr, pages, |
| &start_index, &npages); |
| if (err) |
| goto out; |
| } |
| |
| if (npages) |
| err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages); |
| |
| out: |
| free_page((unsigned long) pages); |
| return err; |
| } |
| |
| /* |
| * Calculate optimal mtt size based on contiguous pages. |
| * Function will return also the number of pages that are not aligned to the |
| * calculated mtt_size to be added to total number of pages. For that we should |
| * check the first chunk length & last chunk length and if not aligned to |
| * mtt_size we should increment the non_aligned_pages number. All chunks in the |
| * middle already handled as part of mtt shift calculation for both their start |
| * & end addresses. |
| */ |
| int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va, |
| int *num_of_mtts) |
| { |
| u64 block_shift = MLX4_MAX_MTT_SHIFT; |
| u64 min_shift = umem->page_shift; |
| u64 last_block_aligned_end = 0; |
| u64 current_block_start = 0; |
| u64 first_block_start = 0; |
| u64 current_block_len = 0; |
| u64 last_block_end = 0; |
| struct scatterlist *sg; |
| u64 current_block_end; |
| u64 misalignment_bits; |
| u64 next_block_start; |
| u64 total_len = 0; |
| int i; |
| |
| for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { |
| /* |
| * Initialization - save the first chunk start as the |
| * current_block_start - block means contiguous pages. |
| */ |
| if (current_block_len == 0 && current_block_start == 0) { |
| current_block_start = sg_dma_address(sg); |
| first_block_start = current_block_start; |
| /* |
| * Find the bits that are different between the physical |
| * address and the virtual address for the start of the |
| * MR. |
| * umem_get aligned the start_va to a page boundary. |
| * Therefore, we need to align the start va to the same |
| * boundary. |
| * misalignment_bits is needed to handle the case of a |
| * single memory region. In this case, the rest of the |
| * logic will not reduce the block size. If we use a |
| * block size which is bigger than the alignment of the |
| * misalignment bits, we might use the virtual page |
| * number instead of the physical page number, resulting |
| * in access to the wrong data. |
| */ |
| misalignment_bits = |
| (start_va & (~(((u64)(BIT(umem->page_shift))) - 1ULL))) |
| ^ current_block_start; |
| block_shift = min(alignment_of(misalignment_bits), |
| block_shift); |
| } |
| |
| /* |
| * Go over the scatter entries and check if they continue the |
| * previous scatter entry. |
| */ |
| next_block_start = sg_dma_address(sg); |
| current_block_end = current_block_start + current_block_len; |
| /* If we have a split (non-contig.) between two blocks */ |
| if (current_block_end != next_block_start) { |
| block_shift = mlx4_ib_umem_calc_block_mtt |
| (next_block_start, |
| current_block_end, |
| block_shift); |
| |
| /* |
| * If we reached the minimum shift for 4k page we stop |
| * the loop. |
| */ |
| if (block_shift <= min_shift) |
| goto end; |
| |
| /* |
| * If not saved yet we are in first block - we save the |
| * length of first block to calculate the |
| * non_aligned_pages number at the end. |
| */ |
| total_len += current_block_len; |
| |
| /* Start a new block */ |
| current_block_start = next_block_start; |
| current_block_len = sg_dma_len(sg); |
| continue; |
| } |
| /* The scatter entry is another part of the current block, |
| * increase the block size. |
| * An entry in the scatter can be larger than 4k (page) as of |
| * dma mapping which merge some blocks together. |
| */ |
| current_block_len += sg_dma_len(sg); |
| } |
| |
| /* Account for the last block in the total len */ |
| total_len += current_block_len; |
| /* Add to the first block the misalignment that it suffers from. */ |
| total_len += (first_block_start & ((1ULL << block_shift) - 1ULL)); |
| last_block_end = current_block_start + current_block_len; |
| last_block_aligned_end = round_up(last_block_end, 1 << block_shift); |
| total_len += (last_block_aligned_end - last_block_end); |
| |
| if (total_len & ((1ULL << block_shift) - 1ULL)) |
| pr_warn("misaligned total length detected (%llu, %llu)!", |
| total_len, block_shift); |
| |
| *num_of_mtts = total_len >> block_shift; |
| end: |
| if (block_shift < min_shift) { |
| /* |
| * If shift is less than the min we set a warning and return the |
| * min shift. |
| */ |
| pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift); |
| |
| block_shift = min_shift; |
| } |
| return block_shift; |
| } |
| |
| struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, |
| u64 virt_addr, int access_flags, |
| struct ib_udata *udata) |
| { |
| struct mlx4_ib_dev *dev = to_mdev(pd->device); |
| struct mlx4_ib_mr *mr; |
| int shift; |
| int err; |
| int n; |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| return ERR_PTR(-ENOMEM); |
| |
| /* Force registering the memory as writable. */ |
| /* Used for memory re-registeration. HCA protects the access */ |
| mr->umem = ib_umem_get(pd->uobject->context, start, length, |
| access_flags | IB_ACCESS_LOCAL_WRITE, 0); |
| if (IS_ERR(mr->umem)) { |
| err = PTR_ERR(mr->umem); |
| goto err_free; |
| } |
| |
| n = ib_umem_page_count(mr->umem); |
| shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n); |
| |
| err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length, |
| convert_access(access_flags), n, shift, &mr->mmr); |
| if (err) |
| goto err_umem; |
| |
| err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem); |
| if (err) |
| goto err_mr; |
| |
| err = mlx4_mr_enable(dev->dev, &mr->mmr); |
| if (err) |
| goto err_mr; |
| |
| mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; |
| |
| return &mr->ibmr; |
| |
| err_mr: |
| (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); |
| |
| err_umem: |
| ib_umem_release(mr->umem); |
| |
| err_free: |
| kfree(mr); |
| |
| return ERR_PTR(err); |
| } |
| |
| int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, |
| u64 start, u64 length, u64 virt_addr, |
| int mr_access_flags, struct ib_pd *pd, |
| struct ib_udata *udata) |
| { |
| struct mlx4_ib_dev *dev = to_mdev(mr->device); |
| struct mlx4_ib_mr *mmr = to_mmr(mr); |
| struct mlx4_mpt_entry *mpt_entry; |
| struct mlx4_mpt_entry **pmpt_entry = &mpt_entry; |
| int err; |
| |
| /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs, |
| * we assume that the calls can't run concurrently. Otherwise, a |
| * race exists. |
| */ |
| err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry); |
| |
| if (err) |
| return err; |
| |
| if (flags & IB_MR_REREG_PD) { |
| err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry, |
| to_mpd(pd)->pdn); |
| |
| if (err) |
| goto release_mpt_entry; |
| } |
| |
| if (flags & IB_MR_REREG_ACCESS) { |
| err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry, |
| convert_access(mr_access_flags)); |
| |
| if (err) |
| goto release_mpt_entry; |
| } |
| |
| if (flags & IB_MR_REREG_TRANS) { |
| int shift; |
| int n; |
| |
| mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); |
| ib_umem_release(mmr->umem); |
| mmr->umem = ib_umem_get(mr->uobject->context, start, length, |
| mr_access_flags | |
| IB_ACCESS_LOCAL_WRITE, |
| 0); |
| if (IS_ERR(mmr->umem)) { |
| err = PTR_ERR(mmr->umem); |
| /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */ |
| mmr->umem = NULL; |
| goto release_mpt_entry; |
| } |
| n = ib_umem_page_count(mmr->umem); |
| shift = mmr->umem->page_shift; |
| |
| err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr, |
| virt_addr, length, n, shift, |
| *pmpt_entry); |
| if (err) { |
| ib_umem_release(mmr->umem); |
| goto release_mpt_entry; |
| } |
| mmr->mmr.iova = virt_addr; |
| mmr->mmr.size = length; |
| |
| err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem); |
| if (err) { |
| mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); |
| ib_umem_release(mmr->umem); |
| goto release_mpt_entry; |
| } |
| } |
| |
| /* If we couldn't transfer the MR to the HCA, just remember to |
| * return a failure. But dereg_mr will free the resources. |
| */ |
| err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry); |
| if (!err && flags & IB_MR_REREG_ACCESS) |
| mmr->mmr.access = mr_access_flags; |
| |
| release_mpt_entry: |
| mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry); |
| |
| return err; |
| } |
| |
| static int |
| mlx4_alloc_priv_pages(struct ib_device *device, |
| struct mlx4_ib_mr *mr, |
| int max_pages) |
| { |
| int ret; |
| |
| /* Ensure that size is aligned to DMA cacheline |
| * requirements. |
| * max_pages is limited to MLX4_MAX_FAST_REG_PAGES |
| * so page_map_size will never cross PAGE_SIZE. |
| */ |
| mr->page_map_size = roundup(max_pages * sizeof(u64), |
| MLX4_MR_PAGES_ALIGN); |
| |
| /* Prevent cross page boundary allocation. */ |
| mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL); |
| if (!mr->pages) |
| return -ENOMEM; |
| |
| mr->page_map = dma_map_single(device->dev.parent, mr->pages, |
| mr->page_map_size, DMA_TO_DEVICE); |
| |
| if (dma_mapping_error(device->dev.parent, mr->page_map)) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| free_page((unsigned long)mr->pages); |
| return ret; |
| } |
| |
| static void |
| mlx4_free_priv_pages(struct mlx4_ib_mr *mr) |
| { |
| if (mr->pages) { |
| struct ib_device *device = mr->ibmr.device; |
| |
| dma_unmap_single(device->dev.parent, mr->page_map, |
| mr->page_map_size, DMA_TO_DEVICE); |
| free_page((unsigned long)mr->pages); |
| mr->pages = NULL; |
| } |
| } |
| |
| int mlx4_ib_dereg_mr(struct ib_mr *ibmr) |
| { |
| struct mlx4_ib_mr *mr = to_mmr(ibmr); |
| int ret; |
| |
| mlx4_free_priv_pages(mr); |
| |
| ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr); |
| if (ret) |
| return ret; |
| if (mr->umem) |
| ib_umem_release(mr->umem); |
| kfree(mr); |
| |
| return 0; |
| } |
| |
| struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, |
| struct ib_udata *udata) |
| { |
| struct mlx4_ib_dev *dev = to_mdev(pd->device); |
| struct mlx4_ib_mw *mw; |
| int err; |
| |
| mw = kmalloc(sizeof(*mw), GFP_KERNEL); |
| if (!mw) |
| return ERR_PTR(-ENOMEM); |
| |
| err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn, |
| to_mlx4_type(type), &mw->mmw); |
| if (err) |
| goto err_free; |
| |
| err = mlx4_mw_enable(dev->dev, &mw->mmw); |
| if (err) |
| goto err_mw; |
| |
| mw->ibmw.rkey = mw->mmw.key; |
| |
| return &mw->ibmw; |
| |
| err_mw: |
| mlx4_mw_free(dev->dev, &mw->mmw); |
| |
| err_free: |
| kfree(mw); |
| |
| return ERR_PTR(err); |
| } |
| |
| int mlx4_ib_dealloc_mw(struct ib_mw *ibmw) |
| { |
| struct mlx4_ib_mw *mw = to_mmw(ibmw); |
| |
| mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw); |
| kfree(mw); |
| |
| return 0; |
| } |
| |
| struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, |
| enum ib_mr_type mr_type, |
| u32 max_num_sg) |
| { |
| struct mlx4_ib_dev *dev = to_mdev(pd->device); |
| struct mlx4_ib_mr *mr; |
| int err; |
| |
| if (mr_type != IB_MR_TYPE_MEM_REG || |
| max_num_sg > MLX4_MAX_FAST_REG_PAGES) |
| return ERR_PTR(-EINVAL); |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| return ERR_PTR(-ENOMEM); |
| |
| err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0, |
| max_num_sg, 0, &mr->mmr); |
| if (err) |
| goto err_free; |
| |
| err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg); |
| if (err) |
| goto err_free_mr; |
| |
| mr->max_pages = max_num_sg; |
| err = mlx4_mr_enable(dev->dev, &mr->mmr); |
| if (err) |
| goto err_free_pl; |
| |
| mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; |
| mr->umem = NULL; |
| |
| return &mr->ibmr; |
| |
| err_free_pl: |
| mr->ibmr.device = pd->device; |
| mlx4_free_priv_pages(mr); |
| err_free_mr: |
| (void) mlx4_mr_free(dev->dev, &mr->mmr); |
| err_free: |
| kfree(mr); |
| return ERR_PTR(err); |
| } |
| |
| struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc, |
| struct ib_fmr_attr *fmr_attr) |
| { |
| struct mlx4_ib_dev *dev = to_mdev(pd->device); |
| struct mlx4_ib_fmr *fmr; |
| int err = -ENOMEM; |
| |
| fmr = kmalloc(sizeof *fmr, GFP_KERNEL); |
| if (!fmr) |
| return ERR_PTR(-ENOMEM); |
| |
| err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc), |
| fmr_attr->max_pages, fmr_attr->max_maps, |
| fmr_attr->page_shift, &fmr->mfmr); |
| if (err) |
| goto err_free; |
| |
| err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr); |
| if (err) |
| goto err_mr; |
| |
| fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key; |
| |
| return &fmr->ibfmr; |
| |
| err_mr: |
| (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr); |
| |
| err_free: |
| kfree(fmr); |
| |
| return ERR_PTR(err); |
| } |
| |
| int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, |
| int npages, u64 iova) |
| { |
| struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); |
| struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device); |
| |
| return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova, |
| &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); |
| } |
| |
| int mlx4_ib_unmap_fmr(struct list_head *fmr_list) |
| { |
| struct ib_fmr *ibfmr; |
| int err; |
| struct mlx4_dev *mdev = NULL; |
| |
| list_for_each_entry(ibfmr, fmr_list, list) { |
| if (mdev && to_mdev(ibfmr->device)->dev != mdev) |
| return -EINVAL; |
| mdev = to_mdev(ibfmr->device)->dev; |
| } |
| |
| if (!mdev) |
| return 0; |
| |
| list_for_each_entry(ibfmr, fmr_list, list) { |
| struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); |
| |
| mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); |
| } |
| |
| /* |
| * Make sure all MPT status updates are visible before issuing |
| * SYNC_TPT firmware command. |
| */ |
| wmb(); |
| |
| err = mlx4_SYNC_TPT(mdev); |
| if (err) |
| pr_warn("SYNC_TPT error %d when " |
| "unmapping FMRs\n", err); |
| |
| return 0; |
| } |
| |
| int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr) |
| { |
| struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); |
| struct mlx4_ib_dev *dev = to_mdev(ibfmr->device); |
| int err; |
| |
| err = mlx4_fmr_free(dev->dev, &ifmr->mfmr); |
| |
| if (!err) |
| kfree(ifmr); |
| |
| return err; |
| } |
| |
| static int mlx4_set_page(struct ib_mr *ibmr, u64 addr) |
| { |
| struct mlx4_ib_mr *mr = to_mmr(ibmr); |
| |
| if (unlikely(mr->npages == mr->max_pages)) |
| return -ENOMEM; |
| |
| mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT); |
| |
| return 0; |
| } |
| |
| int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, |
| unsigned int *sg_offset) |
| { |
| struct mlx4_ib_mr *mr = to_mmr(ibmr); |
| int rc; |
| |
| mr->npages = 0; |
| |
| ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map, |
| mr->page_map_size, DMA_TO_DEVICE); |
| |
| rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page); |
| |
| ib_dma_sync_single_for_device(ibmr->device, mr->page_map, |
| mr->page_map_size, DMA_TO_DEVICE); |
| |
| return rc; |
| } |