| /* |
| * Microchip switch driver main logic |
| * |
| * Copyright (C) 2017 |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/gpio.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/platform_data/microchip-ksz.h> |
| #include <linux/phy.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_bridge.h> |
| #include <net/dsa.h> |
| #include <net/switchdev.h> |
| |
| #include "ksz_priv.h" |
| |
| static const struct { |
| int index; |
| char string[ETH_GSTRING_LEN]; |
| } mib_names[TOTAL_SWITCH_COUNTER_NUM] = { |
| { 0x00, "rx_hi" }, |
| { 0x01, "rx_undersize" }, |
| { 0x02, "rx_fragments" }, |
| { 0x03, "rx_oversize" }, |
| { 0x04, "rx_jabbers" }, |
| { 0x05, "rx_symbol_err" }, |
| { 0x06, "rx_crc_err" }, |
| { 0x07, "rx_align_err" }, |
| { 0x08, "rx_mac_ctrl" }, |
| { 0x09, "rx_pause" }, |
| { 0x0A, "rx_bcast" }, |
| { 0x0B, "rx_mcast" }, |
| { 0x0C, "rx_ucast" }, |
| { 0x0D, "rx_64_or_less" }, |
| { 0x0E, "rx_65_127" }, |
| { 0x0F, "rx_128_255" }, |
| { 0x10, "rx_256_511" }, |
| { 0x11, "rx_512_1023" }, |
| { 0x12, "rx_1024_1522" }, |
| { 0x13, "rx_1523_2000" }, |
| { 0x14, "rx_2001" }, |
| { 0x15, "tx_hi" }, |
| { 0x16, "tx_late_col" }, |
| { 0x17, "tx_pause" }, |
| { 0x18, "tx_bcast" }, |
| { 0x19, "tx_mcast" }, |
| { 0x1A, "tx_ucast" }, |
| { 0x1B, "tx_deferred" }, |
| { 0x1C, "tx_total_col" }, |
| { 0x1D, "tx_exc_col" }, |
| { 0x1E, "tx_single_col" }, |
| { 0x1F, "tx_mult_col" }, |
| { 0x80, "rx_total" }, |
| { 0x81, "tx_total" }, |
| { 0x82, "rx_discards" }, |
| { 0x83, "tx_discards" }, |
| }; |
| |
| static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set) |
| { |
| u8 data; |
| |
| ksz_read8(dev, addr, &data); |
| if (set) |
| data |= bits; |
| else |
| data &= ~bits; |
| ksz_write8(dev, addr, data); |
| } |
| |
| static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set) |
| { |
| u32 data; |
| |
| ksz_read32(dev, addr, &data); |
| if (set) |
| data |= bits; |
| else |
| data &= ~bits; |
| ksz_write32(dev, addr, data); |
| } |
| |
| static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits, |
| bool set) |
| { |
| u32 addr; |
| u8 data; |
| |
| addr = PORT_CTRL_ADDR(port, offset); |
| ksz_read8(dev, addr, &data); |
| |
| if (set) |
| data |= bits; |
| else |
| data &= ~bits; |
| |
| ksz_write8(dev, addr, data); |
| } |
| |
| static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset, |
| u32 bits, bool set) |
| { |
| u32 addr; |
| u32 data; |
| |
| addr = PORT_CTRL_ADDR(port, offset); |
| ksz_read32(dev, addr, &data); |
| |
| if (set) |
| data |= bits; |
| else |
| data &= ~bits; |
| |
| ksz_write32(dev, addr, data); |
| } |
| |
| static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout) |
| { |
| u8 data; |
| |
| do { |
| ksz_read8(dev, REG_SW_VLAN_CTRL, &data); |
| if (!(data & waiton)) |
| break; |
| usleep_range(1, 10); |
| } while (timeout-- > 0); |
| |
| if (timeout <= 0) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table) |
| { |
| struct ksz_device *dev = ds->priv; |
| int ret; |
| |
| mutex_lock(&dev->vlan_mutex); |
| |
| ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M); |
| ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START); |
| |
| /* wait to be cleared */ |
| ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000); |
| if (ret < 0) { |
| dev_dbg(dev->dev, "Failed to read vlan table\n"); |
| goto exit; |
| } |
| |
| ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]); |
| ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]); |
| ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]); |
| |
| ksz_write8(dev, REG_SW_VLAN_CTRL, 0); |
| |
| exit: |
| mutex_unlock(&dev->vlan_mutex); |
| |
| return ret; |
| } |
| |
| static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table) |
| { |
| struct ksz_device *dev = ds->priv; |
| int ret; |
| |
| mutex_lock(&dev->vlan_mutex); |
| |
| ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]); |
| ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]); |
| ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]); |
| |
| ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M); |
| ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE); |
| |
| /* wait to be cleared */ |
| ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000); |
| if (ret < 0) { |
| dev_dbg(dev->dev, "Failed to write vlan table\n"); |
| goto exit; |
| } |
| |
| ksz_write8(dev, REG_SW_VLAN_CTRL, 0); |
| |
| /* update vlan cache table */ |
| dev->vlan_cache[vid].table[0] = vlan_table[0]; |
| dev->vlan_cache[vid].table[1] = vlan_table[1]; |
| dev->vlan_cache[vid].table[2] = vlan_table[2]; |
| |
| exit: |
| mutex_unlock(&dev->vlan_mutex); |
| |
| return ret; |
| } |
| |
| static void read_table(struct dsa_switch *ds, u32 *table) |
| { |
| struct ksz_device *dev = ds->priv; |
| |
| ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]); |
| ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]); |
| ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]); |
| ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]); |
| } |
| |
| static void write_table(struct dsa_switch *ds, u32 *table) |
| { |
| struct ksz_device *dev = ds->priv; |
| |
| ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]); |
| ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]); |
| ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]); |
| ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]); |
| } |
| |
| static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout) |
| { |
| u32 data; |
| |
| do { |
| ksz_read32(dev, REG_SW_ALU_CTRL__4, &data); |
| if (!(data & waiton)) |
| break; |
| usleep_range(1, 10); |
| } while (timeout-- > 0); |
| |
| if (timeout <= 0) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout) |
| { |
| u32 data; |
| |
| do { |
| ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data); |
| if (!(data & waiton)) |
| break; |
| usleep_range(1, 10); |
| } while (timeout-- > 0); |
| |
| if (timeout <= 0) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| static int ksz_reset_switch(struct dsa_switch *ds) |
| { |
| struct ksz_device *dev = ds->priv; |
| u8 data8; |
| u16 data16; |
| u32 data32; |
| |
| /* reset switch */ |
| ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true); |
| |
| /* turn off SPI DO Edge select */ |
| ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8); |
| data8 &= ~SPI_AUTO_EDGE_DETECTION; |
| ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8); |
| |
| /* default configuration */ |
| ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8); |
| data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING | |
| SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE; |
| ksz_write8(dev, REG_SW_LUE_CTRL_1, data8); |
| |
| /* disable interrupts */ |
| ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK); |
| ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F); |
| ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32); |
| |
| /* set broadcast storm protection 10% rate */ |
| ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16); |
| data16 &= ~BROADCAST_STORM_RATE; |
| data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100; |
| ksz_write16(dev, REG_SW_MAC_CTRL_2, data16); |
| |
| return 0; |
| } |
| |
| static void port_setup(struct ksz_device *dev, int port, bool cpu_port) |
| { |
| u8 data8; |
| u16 data16; |
| |
| /* enable tag tail for host port */ |
| if (cpu_port) |
| ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE, |
| true); |
| |
| ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false); |
| |
| /* set back pressure */ |
| ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true); |
| |
| /* set flow control */ |
| ksz_port_cfg(dev, port, REG_PORT_CTRL_0, |
| PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true); |
| |
| /* enable broadcast storm limit */ |
| ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true); |
| |
| /* disable DiffServ priority */ |
| ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false); |
| |
| /* replace priority */ |
| ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING, |
| false); |
| ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4, |
| MTI_PVID_REPLACE, false); |
| |
| /* enable 802.1p priority */ |
| ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true); |
| |
| /* configure MAC to 1G & RGMII mode */ |
| ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8); |
| data8 |= PORT_RGMII_ID_EG_ENABLE; |
| data8 &= ~PORT_MII_NOT_1GBIT; |
| data8 &= ~PORT_MII_SEL_M; |
| data8 |= PORT_RGMII_SEL; |
| ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8); |
| |
| /* clear pending interrupts */ |
| ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16); |
| } |
| |
| static void ksz_config_cpu_port(struct dsa_switch *ds) |
| { |
| struct ksz_device *dev = ds->priv; |
| int i; |
| |
| ds->num_ports = dev->port_cnt; |
| |
| for (i = 0; i < ds->num_ports; i++) { |
| if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) { |
| dev->cpu_port = i; |
| |
| /* enable cpu port */ |
| port_setup(dev, i, true); |
| } |
| } |
| } |
| |
| static int ksz_setup(struct dsa_switch *ds) |
| { |
| struct ksz_device *dev = ds->priv; |
| int ret = 0; |
| |
| dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), |
| dev->num_vlans, GFP_KERNEL); |
| if (!dev->vlan_cache) |
| return -ENOMEM; |
| |
| ret = ksz_reset_switch(ds); |
| if (ret) { |
| dev_err(ds->dev, "failed to reset switch\n"); |
| return ret; |
| } |
| |
| /* accept packet up to 2000bytes */ |
| ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true); |
| |
| ksz_config_cpu_port(ds); |
| |
| ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true); |
| |
| /* queue based egress rate limit */ |
| ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true); |
| |
| /* start switch */ |
| ksz_cfg(dev, REG_SW_OPERATION, SW_START, true); |
| |
| return 0; |
| } |
| |
| static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds, |
| int port) |
| { |
| return DSA_TAG_PROTO_KSZ; |
| } |
| |
| static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg) |
| { |
| struct ksz_device *dev = ds->priv; |
| u16 val = 0; |
| |
| ksz_pread16(dev, addr, 0x100 + (reg << 1), &val); |
| |
| return val; |
| } |
| |
| static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) |
| { |
| struct ksz_device *dev = ds->priv; |
| |
| ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val); |
| |
| return 0; |
| } |
| |
| static int ksz_enable_port(struct dsa_switch *ds, int port, |
| struct phy_device *phy) |
| { |
| struct ksz_device *dev = ds->priv; |
| |
| /* setup slave port */ |
| port_setup(dev, port, false); |
| |
| return 0; |
| } |
| |
| static void ksz_disable_port(struct dsa_switch *ds, int port, |
| struct phy_device *phy) |
| { |
| struct ksz_device *dev = ds->priv; |
| |
| /* there is no port disable */ |
| ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true); |
| } |
| |
| static int ksz_sset_count(struct dsa_switch *ds) |
| { |
| return TOTAL_SWITCH_COUNTER_NUM; |
| } |
| |
| static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf) |
| { |
| int i; |
| |
| for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) { |
| memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string, |
| ETH_GSTRING_LEN); |
| } |
| } |
| |
| static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, |
| uint64_t *buf) |
| { |
| struct ksz_device *dev = ds->priv; |
| int i; |
| u32 data; |
| int timeout; |
| |
| mutex_lock(&dev->stats_mutex); |
| |
| for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) { |
| data = MIB_COUNTER_READ; |
| data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S); |
| ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data); |
| |
| timeout = 1000; |
| do { |
| ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4, |
| &data); |
| usleep_range(1, 10); |
| if (!(data & MIB_COUNTER_READ)) |
| break; |
| } while (timeout-- > 0); |
| |
| /* failed to read MIB. get out of loop */ |
| if (!timeout) { |
| dev_dbg(dev->dev, "Failed to get MIB\n"); |
| break; |
| } |
| |
| /* count resets upon read */ |
| ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data); |
| |
| dev->mib_value[i] += (uint64_t)data; |
| buf[i] = dev->mib_value[i]; |
| } |
| |
| mutex_unlock(&dev->stats_mutex); |
| } |
| |
| static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) |
| { |
| struct ksz_device *dev = ds->priv; |
| u8 data; |
| |
| ksz_pread8(dev, port, P_STP_CTRL, &data); |
| data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); |
| |
| switch (state) { |
| case BR_STATE_DISABLED: |
| data |= PORT_LEARN_DISABLE; |
| break; |
| case BR_STATE_LISTENING: |
| data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); |
| break; |
| case BR_STATE_LEARNING: |
| data |= PORT_RX_ENABLE; |
| break; |
| case BR_STATE_FORWARDING: |
| data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); |
| break; |
| case BR_STATE_BLOCKING: |
| data |= PORT_LEARN_DISABLE; |
| break; |
| default: |
| dev_err(ds->dev, "invalid STP state: %d\n", state); |
| return; |
| } |
| |
| ksz_pwrite8(dev, port, P_STP_CTRL, data); |
| } |
| |
| static void ksz_port_fast_age(struct dsa_switch *ds, int port) |
| { |
| struct ksz_device *dev = ds->priv; |
| u8 data8; |
| |
| ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8); |
| data8 |= SW_FAST_AGING; |
| ksz_write8(dev, REG_SW_LUE_CTRL_1, data8); |
| |
| data8 &= ~SW_FAST_AGING; |
| ksz_write8(dev, REG_SW_LUE_CTRL_1, data8); |
| } |
| |
| static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag) |
| { |
| struct ksz_device *dev = ds->priv; |
| |
| if (flag) { |
| ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, |
| PORT_VLAN_LOOKUP_VID_0, true); |
| ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true); |
| ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true); |
| } else { |
| ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false); |
| ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false); |
| ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, |
| PORT_VLAN_LOOKUP_VID_0, false); |
| } |
| |
| return 0; |
| } |
| |
| static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_vlan *vlan, |
| struct switchdev_trans *trans) |
| { |
| /* nothing needed */ |
| |
| return 0; |
| } |
| |
| static void ksz_port_vlan_add(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_vlan *vlan, |
| struct switchdev_trans *trans) |
| { |
| struct ksz_device *dev = ds->priv; |
| u32 vlan_table[3]; |
| u16 vid; |
| bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; |
| |
| for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) { |
| if (get_vlan_table(ds, vid, vlan_table)) { |
| dev_dbg(dev->dev, "Failed to get vlan table\n"); |
| return; |
| } |
| |
| vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M); |
| if (untagged) |
| vlan_table[1] |= BIT(port); |
| else |
| vlan_table[1] &= ~BIT(port); |
| vlan_table[1] &= ~(BIT(dev->cpu_port)); |
| |
| vlan_table[2] |= BIT(port) | BIT(dev->cpu_port); |
| |
| if (set_vlan_table(ds, vid, vlan_table)) { |
| dev_dbg(dev->dev, "Failed to set vlan table\n"); |
| return; |
| } |
| |
| /* change PVID */ |
| if (vlan->flags & BRIDGE_VLAN_INFO_PVID) |
| ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid); |
| } |
| } |
| |
| static int ksz_port_vlan_del(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_vlan *vlan) |
| { |
| struct ksz_device *dev = ds->priv; |
| bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; |
| u32 vlan_table[3]; |
| u16 vid; |
| u16 pvid; |
| |
| ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid); |
| pvid = pvid & 0xFFF; |
| |
| for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) { |
| if (get_vlan_table(ds, vid, vlan_table)) { |
| dev_dbg(dev->dev, "Failed to get vlan table\n"); |
| return -ETIMEDOUT; |
| } |
| |
| vlan_table[2] &= ~BIT(port); |
| |
| if (pvid == vid) |
| pvid = 1; |
| |
| if (untagged) |
| vlan_table[1] &= ~BIT(port); |
| |
| if (set_vlan_table(ds, vid, vlan_table)) { |
| dev_dbg(dev->dev, "Failed to set vlan table\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| |
| ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid); |
| |
| return 0; |
| } |
| |
| struct alu_struct { |
| /* entry 1 */ |
| u8 is_static:1; |
| u8 is_src_filter:1; |
| u8 is_dst_filter:1; |
| u8 prio_age:3; |
| u32 _reserv_0_1:23; |
| u8 mstp:3; |
| /* entry 2 */ |
| u8 is_override:1; |
| u8 is_use_fid:1; |
| u32 _reserv_1_1:23; |
| u8 port_forward:7; |
| /* entry 3 & 4*/ |
| u32 _reserv_2_1:9; |
| u8 fid:7; |
| u8 mac[ETH_ALEN]; |
| }; |
| |
| static int ksz_port_fdb_add(struct dsa_switch *ds, int port, |
| const unsigned char *addr, u16 vid) |
| { |
| struct ksz_device *dev = ds->priv; |
| u32 alu_table[4]; |
| u32 data; |
| int ret = 0; |
| |
| mutex_lock(&dev->alu_mutex); |
| |
| /* find any entry with mac & vid */ |
| data = vid << ALU_FID_INDEX_S; |
| data |= ((addr[0] << 8) | addr[1]); |
| ksz_write32(dev, REG_SW_ALU_INDEX_0, data); |
| |
| data = ((addr[2] << 24) | (addr[3] << 16)); |
| data |= ((addr[4] << 8) | addr[5]); |
| ksz_write32(dev, REG_SW_ALU_INDEX_1, data); |
| |
| /* start read operation */ |
| ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START); |
| |
| /* wait to be finished */ |
| ret = wait_alu_ready(dev, ALU_START, 1000); |
| if (ret < 0) { |
| dev_dbg(dev->dev, "Failed to read ALU\n"); |
| goto exit; |
| } |
| |
| /* read ALU entry */ |
| read_table(ds, alu_table); |
| |
| /* update ALU entry */ |
| alu_table[0] = ALU_V_STATIC_VALID; |
| alu_table[1] |= BIT(port); |
| if (vid) |
| alu_table[1] |= ALU_V_USE_FID; |
| alu_table[2] = (vid << ALU_V_FID_S); |
| alu_table[2] |= ((addr[0] << 8) | addr[1]); |
| alu_table[3] = ((addr[2] << 24) | (addr[3] << 16)); |
| alu_table[3] |= ((addr[4] << 8) | addr[5]); |
| |
| write_table(ds, alu_table); |
| |
| ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START); |
| |
| /* wait to be finished */ |
| ret = wait_alu_ready(dev, ALU_START, 1000); |
| if (ret < 0) |
| dev_dbg(dev->dev, "Failed to write ALU\n"); |
| |
| exit: |
| mutex_unlock(&dev->alu_mutex); |
| |
| return ret; |
| } |
| |
| static int ksz_port_fdb_del(struct dsa_switch *ds, int port, |
| const unsigned char *addr, u16 vid) |
| { |
| struct ksz_device *dev = ds->priv; |
| u32 alu_table[4]; |
| u32 data; |
| int ret = 0; |
| |
| mutex_lock(&dev->alu_mutex); |
| |
| /* read any entry with mac & vid */ |
| data = vid << ALU_FID_INDEX_S; |
| data |= ((addr[0] << 8) | addr[1]); |
| ksz_write32(dev, REG_SW_ALU_INDEX_0, data); |
| |
| data = ((addr[2] << 24) | (addr[3] << 16)); |
| data |= ((addr[4] << 8) | addr[5]); |
| ksz_write32(dev, REG_SW_ALU_INDEX_1, data); |
| |
| /* start read operation */ |
| ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START); |
| |
| /* wait to be finished */ |
| ret = wait_alu_ready(dev, ALU_START, 1000); |
| if (ret < 0) { |
| dev_dbg(dev->dev, "Failed to read ALU\n"); |
| goto exit; |
| } |
| |
| ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]); |
| if (alu_table[0] & ALU_V_STATIC_VALID) { |
| ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]); |
| ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]); |
| ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]); |
| |
| /* clear forwarding port */ |
| alu_table[2] &= ~BIT(port); |
| |
| /* if there is no port to forward, clear table */ |
| if ((alu_table[2] & ALU_V_PORT_MAP) == 0) { |
| alu_table[0] = 0; |
| alu_table[1] = 0; |
| alu_table[2] = 0; |
| alu_table[3] = 0; |
| } |
| } else { |
| alu_table[0] = 0; |
| alu_table[1] = 0; |
| alu_table[2] = 0; |
| alu_table[3] = 0; |
| } |
| |
| write_table(ds, alu_table); |
| |
| ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START); |
| |
| /* wait to be finished */ |
| ret = wait_alu_ready(dev, ALU_START, 1000); |
| if (ret < 0) |
| dev_dbg(dev->dev, "Failed to write ALU\n"); |
| |
| exit: |
| mutex_unlock(&dev->alu_mutex); |
| |
| return ret; |
| } |
| |
| static void convert_alu(struct alu_struct *alu, u32 *alu_table) |
| { |
| alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID); |
| alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER); |
| alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER); |
| alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) & |
| ALU_V_PRIO_AGE_CNT_M; |
| alu->mstp = alu_table[0] & ALU_V_MSTP_M; |
| |
| alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE); |
| alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID); |
| alu->port_forward = alu_table[1] & ALU_V_PORT_MAP; |
| |
| alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M; |
| |
| alu->mac[0] = (alu_table[2] >> 8) & 0xFF; |
| alu->mac[1] = alu_table[2] & 0xFF; |
| alu->mac[2] = (alu_table[3] >> 24) & 0xFF; |
| alu->mac[3] = (alu_table[3] >> 16) & 0xFF; |
| alu->mac[4] = (alu_table[3] >> 8) & 0xFF; |
| alu->mac[5] = alu_table[3] & 0xFF; |
| } |
| |
| static int ksz_port_fdb_dump(struct dsa_switch *ds, int port, |
| dsa_fdb_dump_cb_t *cb, void *data) |
| { |
| struct ksz_device *dev = ds->priv; |
| int ret = 0; |
| u32 ksz_data; |
| u32 alu_table[4]; |
| struct alu_struct alu; |
| int timeout; |
| |
| mutex_lock(&dev->alu_mutex); |
| |
| /* start ALU search */ |
| ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH); |
| |
| do { |
| timeout = 1000; |
| do { |
| ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data); |
| if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START)) |
| break; |
| usleep_range(1, 10); |
| } while (timeout-- > 0); |
| |
| if (!timeout) { |
| dev_dbg(dev->dev, "Failed to search ALU\n"); |
| ret = -ETIMEDOUT; |
| goto exit; |
| } |
| |
| /* read ALU table */ |
| read_table(ds, alu_table); |
| |
| convert_alu(&alu, alu_table); |
| |
| if (alu.port_forward & BIT(port)) { |
| ret = cb(alu.mac, alu.fid, alu.is_static, data); |
| if (ret) |
| goto exit; |
| } |
| } while (ksz_data & ALU_START); |
| |
| exit: |
| |
| /* stop ALU search */ |
| ksz_write32(dev, REG_SW_ALU_CTRL__4, 0); |
| |
| mutex_unlock(&dev->alu_mutex); |
| |
| return ret; |
| } |
| |
| static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_mdb *mdb, |
| struct switchdev_trans *trans) |
| { |
| /* nothing to do */ |
| return 0; |
| } |
| |
| static void ksz_port_mdb_add(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_mdb *mdb, |
| struct switchdev_trans *trans) |
| { |
| struct ksz_device *dev = ds->priv; |
| u32 static_table[4]; |
| u32 data; |
| int index; |
| u32 mac_hi, mac_lo; |
| |
| mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]); |
| mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16)); |
| mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]); |
| |
| mutex_lock(&dev->alu_mutex); |
| |
| for (index = 0; index < dev->num_statics; index++) { |
| /* find empty slot first */ |
| data = (index << ALU_STAT_INDEX_S) | |
| ALU_STAT_READ | ALU_STAT_START; |
| ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); |
| |
| /* wait to be finished */ |
| if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) { |
| dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); |
| goto exit; |
| } |
| |
| /* read ALU static table */ |
| read_table(ds, static_table); |
| |
| if (static_table[0] & ALU_V_STATIC_VALID) { |
| /* check this has same vid & mac address */ |
| if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) && |
| ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) && |
| (static_table[3] == mac_lo)) { |
| /* found matching one */ |
| break; |
| } |
| } else { |
| /* found empty one */ |
| break; |
| } |
| } |
| |
| /* no available entry */ |
| if (index == dev->num_statics) |
| goto exit; |
| |
| /* add entry */ |
| static_table[0] = ALU_V_STATIC_VALID; |
| static_table[1] |= BIT(port); |
| if (mdb->vid) |
| static_table[1] |= ALU_V_USE_FID; |
| static_table[2] = (mdb->vid << ALU_V_FID_S); |
| static_table[2] |= mac_hi; |
| static_table[3] = mac_lo; |
| |
| write_table(ds, static_table); |
| |
| data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START; |
| ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); |
| |
| /* wait to be finished */ |
| if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) |
| dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); |
| |
| exit: |
| mutex_unlock(&dev->alu_mutex); |
| } |
| |
| static int ksz_port_mdb_del(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_mdb *mdb) |
| { |
| struct ksz_device *dev = ds->priv; |
| u32 static_table[4]; |
| u32 data; |
| int index; |
| int ret = 0; |
| u32 mac_hi, mac_lo; |
| |
| mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]); |
| mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16)); |
| mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]); |
| |
| mutex_lock(&dev->alu_mutex); |
| |
| for (index = 0; index < dev->num_statics; index++) { |
| /* find empty slot first */ |
| data = (index << ALU_STAT_INDEX_S) | |
| ALU_STAT_READ | ALU_STAT_START; |
| ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); |
| |
| /* wait to be finished */ |
| ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000); |
| if (ret < 0) { |
| dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); |
| goto exit; |
| } |
| |
| /* read ALU static table */ |
| read_table(ds, static_table); |
| |
| if (static_table[0] & ALU_V_STATIC_VALID) { |
| /* check this has same vid & mac address */ |
| |
| if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) && |
| ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) && |
| (static_table[3] == mac_lo)) { |
| /* found matching one */ |
| break; |
| } |
| } |
| } |
| |
| /* no available entry */ |
| if (index == dev->num_statics) { |
| ret = -EINVAL; |
| goto exit; |
| } |
| |
| /* clear port */ |
| static_table[1] &= ~BIT(port); |
| |
| if ((static_table[1] & ALU_V_PORT_MAP) == 0) { |
| /* delete entry */ |
| static_table[0] = 0; |
| static_table[1] = 0; |
| static_table[2] = 0; |
| static_table[3] = 0; |
| } |
| |
| write_table(ds, static_table); |
| |
| data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START; |
| ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); |
| |
| /* wait to be finished */ |
| ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000); |
| if (ret < 0) |
| dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); |
| |
| exit: |
| mutex_unlock(&dev->alu_mutex); |
| |
| return ret; |
| } |
| |
| static int ksz_port_mirror_add(struct dsa_switch *ds, int port, |
| struct dsa_mall_mirror_tc_entry *mirror, |
| bool ingress) |
| { |
| struct ksz_device *dev = ds->priv; |
| |
| if (ingress) |
| ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true); |
| else |
| ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true); |
| |
| ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); |
| |
| /* configure mirror port */ |
| ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, |
| PORT_MIRROR_SNIFFER, true); |
| |
| ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false); |
| |
| return 0; |
| } |
| |
| static void ksz_port_mirror_del(struct dsa_switch *ds, int port, |
| struct dsa_mall_mirror_tc_entry *mirror) |
| { |
| struct ksz_device *dev = ds->priv; |
| u8 data; |
| |
| if (mirror->ingress) |
| ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false); |
| else |
| ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false); |
| |
| ksz_pread8(dev, port, P_MIRROR_CTRL, &data); |
| |
| if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) |
| ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, |
| PORT_MIRROR_SNIFFER, false); |
| } |
| |
| static const struct dsa_switch_ops ksz_switch_ops = { |
| .get_tag_protocol = ksz_get_tag_protocol, |
| .setup = ksz_setup, |
| .phy_read = ksz_phy_read16, |
| .phy_write = ksz_phy_write16, |
| .port_enable = ksz_enable_port, |
| .port_disable = ksz_disable_port, |
| .get_strings = ksz_get_strings, |
| .get_ethtool_stats = ksz_get_ethtool_stats, |
| .get_sset_count = ksz_sset_count, |
| .port_stp_state_set = ksz_port_stp_state_set, |
| .port_fast_age = ksz_port_fast_age, |
| .port_vlan_filtering = ksz_port_vlan_filtering, |
| .port_vlan_prepare = ksz_port_vlan_prepare, |
| .port_vlan_add = ksz_port_vlan_add, |
| .port_vlan_del = ksz_port_vlan_del, |
| .port_fdb_dump = ksz_port_fdb_dump, |
| .port_fdb_add = ksz_port_fdb_add, |
| .port_fdb_del = ksz_port_fdb_del, |
| .port_mdb_prepare = ksz_port_mdb_prepare, |
| .port_mdb_add = ksz_port_mdb_add, |
| .port_mdb_del = ksz_port_mdb_del, |
| .port_mirror_add = ksz_port_mirror_add, |
| .port_mirror_del = ksz_port_mirror_del, |
| }; |
| |
| struct ksz_chip_data { |
| u32 chip_id; |
| const char *dev_name; |
| int num_vlans; |
| int num_alus; |
| int num_statics; |
| int cpu_ports; |
| int port_cnt; |
| }; |
| |
| static const struct ksz_chip_data ksz_switch_chips[] = { |
| { |
| .chip_id = 0x00947700, |
| .dev_name = "KSZ9477", |
| .num_vlans = 4096, |
| .num_alus = 4096, |
| .num_statics = 16, |
| .cpu_ports = 0x7F, /* can be configured as cpu port */ |
| .port_cnt = 7, /* total physical port count */ |
| }, |
| }; |
| |
| static int ksz_switch_init(struct ksz_device *dev) |
| { |
| int i; |
| |
| mutex_init(&dev->reg_mutex); |
| mutex_init(&dev->stats_mutex); |
| mutex_init(&dev->alu_mutex); |
| mutex_init(&dev->vlan_mutex); |
| |
| dev->ds->ops = &ksz_switch_ops; |
| |
| for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) { |
| const struct ksz_chip_data *chip = &ksz_switch_chips[i]; |
| |
| if (dev->chip_id == chip->chip_id) { |
| dev->name = chip->dev_name; |
| dev->num_vlans = chip->num_vlans; |
| dev->num_alus = chip->num_alus; |
| dev->num_statics = chip->num_statics; |
| dev->port_cnt = chip->port_cnt; |
| dev->cpu_ports = chip->cpu_ports; |
| |
| break; |
| } |
| } |
| |
| /* no switch found */ |
| if (!dev->port_cnt) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| struct ksz_device *ksz_switch_alloc(struct device *base, |
| const struct ksz_io_ops *ops, |
| void *priv) |
| { |
| struct dsa_switch *ds; |
| struct ksz_device *swdev; |
| |
| ds = dsa_switch_alloc(base, DSA_MAX_PORTS); |
| if (!ds) |
| return NULL; |
| |
| swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL); |
| if (!swdev) |
| return NULL; |
| |
| ds->priv = swdev; |
| swdev->dev = base; |
| |
| swdev->ds = ds; |
| swdev->priv = priv; |
| swdev->ops = ops; |
| |
| return swdev; |
| } |
| EXPORT_SYMBOL(ksz_switch_alloc); |
| |
| int ksz_switch_detect(struct ksz_device *dev) |
| { |
| u8 data8; |
| u32 id32; |
| int ret; |
| |
| /* turn off SPI DO Edge select */ |
| ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8); |
| if (ret) |
| return ret; |
| |
| data8 &= ~SPI_AUTO_EDGE_DETECTION; |
| ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8); |
| if (ret) |
| return ret; |
| |
| /* read chip id */ |
| ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32); |
| if (ret) |
| return ret; |
| |
| dev->chip_id = id32; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ksz_switch_detect); |
| |
| int ksz_switch_register(struct ksz_device *dev) |
| { |
| int ret; |
| |
| if (dev->pdata) |
| dev->chip_id = dev->pdata->chip_id; |
| |
| if (ksz_switch_detect(dev)) |
| return -EINVAL; |
| |
| ret = ksz_switch_init(dev); |
| if (ret) |
| return ret; |
| |
| return dsa_register_switch(dev->ds); |
| } |
| EXPORT_SYMBOL(ksz_switch_register); |
| |
| void ksz_switch_remove(struct ksz_device *dev) |
| { |
| dsa_unregister_switch(dev->ds); |
| } |
| EXPORT_SYMBOL(ksz_switch_remove); |
| |
| MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); |
| MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver"); |
| MODULE_LICENSE("GPL"); |