| /* |
| * Audio and Music Data Transmission Protocol (IEC 61883-6) streams |
| * with Common Isochronous Packet (IEC 61883-1) headers |
| * |
| * Copyright (c) Clemens Ladisch <clemens@ladisch.de> |
| * Licensed under the terms of the GNU General Public License, version 2. |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/firewire.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| #include "amdtp-stream.h" |
| |
| #define TICKS_PER_CYCLE 3072 |
| #define CYCLES_PER_SECOND 8000 |
| #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) |
| |
| /* Always support Linux tracing subsystem. */ |
| #define CREATE_TRACE_POINTS |
| #include "amdtp-stream-trace.h" |
| |
| #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ |
| |
| /* isochronous header parameters */ |
| #define ISO_DATA_LENGTH_SHIFT 16 |
| #define TAG_NO_CIP_HEADER 0 |
| #define TAG_CIP 1 |
| |
| /* common isochronous packet header parameters */ |
| #define CIP_EOH_SHIFT 31 |
| #define CIP_EOH (1u << CIP_EOH_SHIFT) |
| #define CIP_EOH_MASK 0x80000000 |
| #define CIP_SID_SHIFT 24 |
| #define CIP_SID_MASK 0x3f000000 |
| #define CIP_DBS_MASK 0x00ff0000 |
| #define CIP_DBS_SHIFT 16 |
| #define CIP_SPH_MASK 0x00000400 |
| #define CIP_SPH_SHIFT 10 |
| #define CIP_DBC_MASK 0x000000ff |
| #define CIP_FMT_SHIFT 24 |
| #define CIP_FMT_MASK 0x3f000000 |
| #define CIP_FDF_MASK 0x00ff0000 |
| #define CIP_FDF_SHIFT 16 |
| #define CIP_SYT_MASK 0x0000ffff |
| #define CIP_SYT_NO_INFO 0xffff |
| |
| /* Audio and Music transfer protocol specific parameters */ |
| #define CIP_FMT_AM 0x10 |
| #define AMDTP_FDF_NO_DATA 0xff |
| |
| /* TODO: make these configurable */ |
| #define INTERRUPT_INTERVAL 16 |
| #define QUEUE_LENGTH 48 |
| |
| #define IN_PACKET_HEADER_SIZE 4 |
| #define OUT_PACKET_HEADER_SIZE 0 |
| |
| static void pcm_period_tasklet(unsigned long data); |
| |
| /** |
| * amdtp_stream_init - initialize an AMDTP stream structure |
| * @s: the AMDTP stream to initialize |
| * @unit: the target of the stream |
| * @dir: the direction of stream |
| * @flags: the packet transmission method to use |
| * @fmt: the value of fmt field in CIP header |
| * @process_data_blocks: callback handler to process data blocks |
| * @protocol_size: the size to allocate newly for protocol |
| */ |
| int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, |
| enum amdtp_stream_direction dir, enum cip_flags flags, |
| unsigned int fmt, |
| amdtp_stream_process_data_blocks_t process_data_blocks, |
| unsigned int protocol_size) |
| { |
| if (process_data_blocks == NULL) |
| return -EINVAL; |
| |
| s->protocol = kzalloc(protocol_size, GFP_KERNEL); |
| if (!s->protocol) |
| return -ENOMEM; |
| |
| s->unit = unit; |
| s->direction = dir; |
| s->flags = flags; |
| s->context = ERR_PTR(-1); |
| mutex_init(&s->mutex); |
| tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s); |
| s->packet_index = 0; |
| |
| init_waitqueue_head(&s->callback_wait); |
| s->callbacked = false; |
| |
| s->fmt = fmt; |
| s->process_data_blocks = process_data_blocks; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(amdtp_stream_init); |
| |
| /** |
| * amdtp_stream_destroy - free stream resources |
| * @s: the AMDTP stream to destroy |
| */ |
| void amdtp_stream_destroy(struct amdtp_stream *s) |
| { |
| /* Not initialized. */ |
| if (s->protocol == NULL) |
| return; |
| |
| WARN_ON(amdtp_stream_running(s)); |
| kfree(s->protocol); |
| mutex_destroy(&s->mutex); |
| } |
| EXPORT_SYMBOL(amdtp_stream_destroy); |
| |
| const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { |
| [CIP_SFC_32000] = 8, |
| [CIP_SFC_44100] = 8, |
| [CIP_SFC_48000] = 8, |
| [CIP_SFC_88200] = 16, |
| [CIP_SFC_96000] = 16, |
| [CIP_SFC_176400] = 32, |
| [CIP_SFC_192000] = 32, |
| }; |
| EXPORT_SYMBOL(amdtp_syt_intervals); |
| |
| const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { |
| [CIP_SFC_32000] = 32000, |
| [CIP_SFC_44100] = 44100, |
| [CIP_SFC_48000] = 48000, |
| [CIP_SFC_88200] = 88200, |
| [CIP_SFC_96000] = 96000, |
| [CIP_SFC_176400] = 176400, |
| [CIP_SFC_192000] = 192000, |
| }; |
| EXPORT_SYMBOL(amdtp_rate_table); |
| |
| /** |
| * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream |
| * @s: the AMDTP stream, which must be initialized. |
| * @runtime: the PCM substream runtime |
| */ |
| int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, |
| struct snd_pcm_runtime *runtime) |
| { |
| struct snd_pcm_hardware *hw = &runtime->hw; |
| int err; |
| |
| hw->info = SNDRV_PCM_INFO_BATCH | |
| SNDRV_PCM_INFO_BLOCK_TRANSFER | |
| SNDRV_PCM_INFO_INTERLEAVED | |
| SNDRV_PCM_INFO_JOINT_DUPLEX | |
| SNDRV_PCM_INFO_MMAP | |
| SNDRV_PCM_INFO_MMAP_VALID; |
| |
| /* SNDRV_PCM_INFO_BATCH */ |
| hw->periods_min = 2; |
| hw->periods_max = UINT_MAX; |
| |
| /* bytes for a frame */ |
| hw->period_bytes_min = 4 * hw->channels_max; |
| |
| /* Just to prevent from allocating much pages. */ |
| hw->period_bytes_max = hw->period_bytes_min * 2048; |
| hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; |
| |
| /* |
| * Currently firewire-lib processes 16 packets in one software |
| * interrupt callback. This equals to 2msec but actually the |
| * interval of the interrupts has a jitter. |
| * Additionally, even if adding a constraint to fit period size to |
| * 2msec, actual calculated frames per period doesn't equal to 2msec, |
| * depending on sampling rate. |
| * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec. |
| * Here let us use 5msec for safe period interrupt. |
| */ |
| err = snd_pcm_hw_constraint_minmax(runtime, |
| SNDRV_PCM_HW_PARAM_PERIOD_TIME, |
| 5000, UINT_MAX); |
| if (err < 0) |
| goto end; |
| |
| /* Non-Blocking stream has no more constraints */ |
| if (!(s->flags & CIP_BLOCKING)) |
| goto end; |
| |
| /* |
| * One AMDTP packet can include some frames. In blocking mode, the |
| * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, |
| * depending on its sampling rate. For accurate period interrupt, it's |
| * preferrable to align period/buffer sizes to current SYT_INTERVAL. |
| * |
| * TODO: These constraints can be improved with proper rules. |
| * Currently apply LCM of SYT_INTERVALs. |
| */ |
| err = snd_pcm_hw_constraint_step(runtime, 0, |
| SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32); |
| if (err < 0) |
| goto end; |
| err = snd_pcm_hw_constraint_step(runtime, 0, |
| SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32); |
| end: |
| return err; |
| } |
| EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); |
| |
| /** |
| * amdtp_stream_set_parameters - set stream parameters |
| * @s: the AMDTP stream to configure |
| * @rate: the sample rate |
| * @data_block_quadlets: the size of a data block in quadlet unit |
| * |
| * The parameters must be set before the stream is started, and must not be |
| * changed while the stream is running. |
| */ |
| int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, |
| unsigned int data_block_quadlets) |
| { |
| unsigned int sfc; |
| |
| for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { |
| if (amdtp_rate_table[sfc] == rate) |
| break; |
| } |
| if (sfc == ARRAY_SIZE(amdtp_rate_table)) |
| return -EINVAL; |
| |
| s->sfc = sfc; |
| s->data_block_quadlets = data_block_quadlets; |
| s->syt_interval = amdtp_syt_intervals[sfc]; |
| |
| /* default buffering in the device */ |
| s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; |
| if (s->flags & CIP_BLOCKING) |
| /* additional buffering needed to adjust for no-data packets */ |
| s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(amdtp_stream_set_parameters); |
| |
| /** |
| * amdtp_stream_get_max_payload - get the stream's packet size |
| * @s: the AMDTP stream |
| * |
| * This function must not be called before the stream has been configured |
| * with amdtp_stream_set_parameters(). |
| */ |
| unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) |
| { |
| unsigned int multiplier = 1; |
| unsigned int header_size = 0; |
| |
| if (s->flags & CIP_JUMBO_PAYLOAD) |
| multiplier = 5; |
| if (!(s->flags & CIP_NO_HEADER)) |
| header_size = 8; |
| |
| return header_size + |
| s->syt_interval * s->data_block_quadlets * 4 * multiplier; |
| } |
| EXPORT_SYMBOL(amdtp_stream_get_max_payload); |
| |
| /** |
| * amdtp_stream_pcm_prepare - prepare PCM device for running |
| * @s: the AMDTP stream |
| * |
| * This function should be called from the PCM device's .prepare callback. |
| */ |
| void amdtp_stream_pcm_prepare(struct amdtp_stream *s) |
| { |
| tasklet_kill(&s->period_tasklet); |
| s->pcm_buffer_pointer = 0; |
| s->pcm_period_pointer = 0; |
| } |
| EXPORT_SYMBOL(amdtp_stream_pcm_prepare); |
| |
| static unsigned int calculate_data_blocks(struct amdtp_stream *s, |
| unsigned int syt) |
| { |
| unsigned int phase, data_blocks; |
| |
| /* Blocking mode. */ |
| if (s->flags & CIP_BLOCKING) { |
| /* This module generate empty packet for 'no data'. */ |
| if (syt == CIP_SYT_NO_INFO) |
| data_blocks = 0; |
| else |
| data_blocks = s->syt_interval; |
| /* Non-blocking mode. */ |
| } else { |
| if (!cip_sfc_is_base_44100(s->sfc)) { |
| /* Sample_rate / 8000 is an integer, and precomputed. */ |
| data_blocks = s->data_block_state; |
| } else { |
| phase = s->data_block_state; |
| |
| /* |
| * This calculates the number of data blocks per packet so that |
| * 1) the overall rate is correct and exactly synchronized to |
| * the bus clock, and |
| * 2) packets with a rounded-up number of blocks occur as early |
| * as possible in the sequence (to prevent underruns of the |
| * device's buffer). |
| */ |
| if (s->sfc == CIP_SFC_44100) |
| /* 6 6 5 6 5 6 5 ... */ |
| data_blocks = 5 + ((phase & 1) ^ |
| (phase == 0 || phase >= 40)); |
| else |
| /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ |
| data_blocks = 11 * (s->sfc >> 1) + (phase == 0); |
| if (++phase >= (80 >> (s->sfc >> 1))) |
| phase = 0; |
| s->data_block_state = phase; |
| } |
| } |
| |
| return data_blocks; |
| } |
| |
| static unsigned int calculate_syt(struct amdtp_stream *s, |
| unsigned int cycle) |
| { |
| unsigned int syt_offset, phase, index, syt; |
| |
| if (s->last_syt_offset < TICKS_PER_CYCLE) { |
| if (!cip_sfc_is_base_44100(s->sfc)) |
| syt_offset = s->last_syt_offset + s->syt_offset_state; |
| else { |
| /* |
| * The time, in ticks, of the n'th SYT_INTERVAL sample is: |
| * n * SYT_INTERVAL * 24576000 / sample_rate |
| * Modulo TICKS_PER_CYCLE, the difference between successive |
| * elements is about 1386.23. Rounding the results of this |
| * formula to the SYT precision results in a sequence of |
| * differences that begins with: |
| * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... |
| * This code generates _exactly_ the same sequence. |
| */ |
| phase = s->syt_offset_state; |
| index = phase % 13; |
| syt_offset = s->last_syt_offset; |
| syt_offset += 1386 + ((index && !(index & 3)) || |
| phase == 146); |
| if (++phase >= 147) |
| phase = 0; |
| s->syt_offset_state = phase; |
| } |
| } else |
| syt_offset = s->last_syt_offset - TICKS_PER_CYCLE; |
| s->last_syt_offset = syt_offset; |
| |
| if (syt_offset < TICKS_PER_CYCLE) { |
| syt_offset += s->transfer_delay; |
| syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12; |
| syt += syt_offset % TICKS_PER_CYCLE; |
| |
| return syt & CIP_SYT_MASK; |
| } else { |
| return CIP_SYT_NO_INFO; |
| } |
| } |
| |
| static void update_pcm_pointers(struct amdtp_stream *s, |
| struct snd_pcm_substream *pcm, |
| unsigned int frames) |
| { |
| unsigned int ptr; |
| |
| ptr = s->pcm_buffer_pointer + frames; |
| if (ptr >= pcm->runtime->buffer_size) |
| ptr -= pcm->runtime->buffer_size; |
| WRITE_ONCE(s->pcm_buffer_pointer, ptr); |
| |
| s->pcm_period_pointer += frames; |
| if (s->pcm_period_pointer >= pcm->runtime->period_size) { |
| s->pcm_period_pointer -= pcm->runtime->period_size; |
| tasklet_hi_schedule(&s->period_tasklet); |
| } |
| } |
| |
| static void pcm_period_tasklet(unsigned long data) |
| { |
| struct amdtp_stream *s = (void *)data; |
| struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); |
| |
| if (pcm) |
| snd_pcm_period_elapsed(pcm); |
| } |
| |
| static int queue_packet(struct amdtp_stream *s, unsigned int header_length, |
| unsigned int payload_length) |
| { |
| struct fw_iso_packet p = {0}; |
| int err = 0; |
| |
| if (IS_ERR(s->context)) |
| goto end; |
| |
| p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL); |
| p.tag = s->tag; |
| p.header_length = header_length; |
| if (payload_length > 0) |
| p.payload_length = payload_length; |
| else |
| p.skip = true; |
| err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer, |
| s->buffer.packets[s->packet_index].offset); |
| if (err < 0) { |
| dev_err(&s->unit->device, "queueing error: %d\n", err); |
| goto end; |
| } |
| |
| if (++s->packet_index >= QUEUE_LENGTH) |
| s->packet_index = 0; |
| end: |
| return err; |
| } |
| |
| static inline int queue_out_packet(struct amdtp_stream *s, |
| unsigned int payload_length) |
| { |
| return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length); |
| } |
| |
| static inline int queue_in_packet(struct amdtp_stream *s) |
| { |
| return queue_packet(s, IN_PACKET_HEADER_SIZE, s->max_payload_length); |
| } |
| |
| static int handle_out_packet(struct amdtp_stream *s, |
| unsigned int payload_length, unsigned int cycle, |
| unsigned int index) |
| { |
| __be32 *buffer; |
| unsigned int syt; |
| unsigned int data_blocks; |
| unsigned int pcm_frames; |
| struct snd_pcm_substream *pcm; |
| |
| buffer = s->buffer.packets[s->packet_index].buffer; |
| syt = calculate_syt(s, cycle); |
| data_blocks = calculate_data_blocks(s, syt); |
| pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt); |
| |
| if (s->flags & CIP_DBC_IS_END_EVENT) |
| s->data_block_counter = |
| (s->data_block_counter + data_blocks) & 0xff; |
| |
| buffer[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | |
| (s->data_block_quadlets << CIP_DBS_SHIFT) | |
| ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | |
| s->data_block_counter); |
| buffer[1] = cpu_to_be32(CIP_EOH | |
| ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | |
| ((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | |
| (syt & CIP_SYT_MASK)); |
| |
| if (!(s->flags & CIP_DBC_IS_END_EVENT)) |
| s->data_block_counter = |
| (s->data_block_counter + data_blocks) & 0xff; |
| payload_length = 8 + data_blocks * 4 * s->data_block_quadlets; |
| |
| trace_out_packet(s, cycle, buffer, payload_length, index); |
| |
| if (queue_out_packet(s, payload_length) < 0) |
| return -EIO; |
| |
| pcm = READ_ONCE(s->pcm); |
| if (pcm && pcm_frames > 0) |
| update_pcm_pointers(s, pcm, pcm_frames); |
| |
| /* No need to return the number of handled data blocks. */ |
| return 0; |
| } |
| |
| static int handle_out_packet_without_header(struct amdtp_stream *s, |
| unsigned int payload_length, unsigned int cycle, |
| unsigned int index) |
| { |
| __be32 *buffer; |
| unsigned int syt; |
| unsigned int data_blocks; |
| unsigned int pcm_frames; |
| struct snd_pcm_substream *pcm; |
| |
| buffer = s->buffer.packets[s->packet_index].buffer; |
| syt = calculate_syt(s, cycle); |
| data_blocks = calculate_data_blocks(s, syt); |
| pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt); |
| s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff; |
| |
| payload_length = data_blocks * 4 * s->data_block_quadlets; |
| |
| trace_out_packet_without_header(s, cycle, payload_length, data_blocks, |
| index); |
| |
| if (queue_out_packet(s, payload_length) < 0) |
| return -EIO; |
| |
| pcm = READ_ONCE(s->pcm); |
| if (pcm && pcm_frames > 0) |
| update_pcm_pointers(s, pcm, pcm_frames); |
| |
| /* No need to return the number of handled data blocks. */ |
| return 0; |
| } |
| |
| static int handle_in_packet(struct amdtp_stream *s, |
| unsigned int payload_length, unsigned int cycle, |
| unsigned int index) |
| { |
| __be32 *buffer; |
| u32 cip_header[2]; |
| unsigned int sph, fmt, fdf, syt; |
| unsigned int data_block_quadlets, data_block_counter, dbc_interval; |
| unsigned int data_blocks; |
| struct snd_pcm_substream *pcm; |
| unsigned int pcm_frames; |
| bool lost; |
| |
| buffer = s->buffer.packets[s->packet_index].buffer; |
| cip_header[0] = be32_to_cpu(buffer[0]); |
| cip_header[1] = be32_to_cpu(buffer[1]); |
| |
| trace_in_packet(s, cycle, cip_header, payload_length, index); |
| |
| /* |
| * This module supports 'Two-quadlet CIP header with SYT field'. |
| * For convenience, also check FMT field is AM824 or not. |
| */ |
| if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || |
| ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && |
| (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { |
| dev_info_ratelimited(&s->unit->device, |
| "Invalid CIP header for AMDTP: %08X:%08X\n", |
| cip_header[0], cip_header[1]); |
| data_blocks = 0; |
| pcm_frames = 0; |
| goto end; |
| } |
| |
| /* Check valid protocol or not. */ |
| sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; |
| fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; |
| if (sph != s->sph || fmt != s->fmt) { |
| dev_info_ratelimited(&s->unit->device, |
| "Detect unexpected protocol: %08x %08x\n", |
| cip_header[0], cip_header[1]); |
| data_blocks = 0; |
| pcm_frames = 0; |
| goto end; |
| } |
| |
| /* Calculate data blocks */ |
| fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; |
| if (payload_length < 12 || |
| (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { |
| data_blocks = 0; |
| } else { |
| data_block_quadlets = |
| (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; |
| /* avoid division by zero */ |
| if (data_block_quadlets == 0) { |
| dev_err(&s->unit->device, |
| "Detect invalid value in dbs field: %08X\n", |
| cip_header[0]); |
| return -EPROTO; |
| } |
| if (s->flags & CIP_WRONG_DBS) |
| data_block_quadlets = s->data_block_quadlets; |
| |
| data_blocks = (payload_length / 4 - 2) / |
| data_block_quadlets; |
| } |
| |
| /* Check data block counter continuity */ |
| data_block_counter = cip_header[0] & CIP_DBC_MASK; |
| if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && |
| s->data_block_counter != UINT_MAX) |
| data_block_counter = s->data_block_counter; |
| |
| if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && |
| data_block_counter == s->tx_first_dbc) || |
| s->data_block_counter == UINT_MAX) { |
| lost = false; |
| } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { |
| lost = data_block_counter != s->data_block_counter; |
| } else { |
| if (data_blocks > 0 && s->tx_dbc_interval > 0) |
| dbc_interval = s->tx_dbc_interval; |
| else |
| dbc_interval = data_blocks; |
| |
| lost = data_block_counter != |
| ((s->data_block_counter + dbc_interval) & 0xff); |
| } |
| |
| if (lost) { |
| dev_err(&s->unit->device, |
| "Detect discontinuity of CIP: %02X %02X\n", |
| s->data_block_counter, data_block_counter); |
| return -EIO; |
| } |
| |
| syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK; |
| pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt); |
| |
| if (s->flags & CIP_DBC_IS_END_EVENT) |
| s->data_block_counter = data_block_counter; |
| else |
| s->data_block_counter = |
| (data_block_counter + data_blocks) & 0xff; |
| end: |
| if (queue_in_packet(s) < 0) |
| return -EIO; |
| |
| pcm = READ_ONCE(s->pcm); |
| if (pcm && pcm_frames > 0) |
| update_pcm_pointers(s, pcm, pcm_frames); |
| |
| return 0; |
| } |
| |
| static int handle_in_packet_without_header(struct amdtp_stream *s, |
| unsigned int payload_quadlets, unsigned int cycle, |
| unsigned int index) |
| { |
| __be32 *buffer; |
| unsigned int data_blocks; |
| struct snd_pcm_substream *pcm; |
| unsigned int pcm_frames; |
| |
| buffer = s->buffer.packets[s->packet_index].buffer; |
| data_blocks = payload_quadlets / s->data_block_quadlets; |
| |
| trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks, |
| index); |
| |
| pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL); |
| s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff; |
| |
| if (queue_in_packet(s) < 0) |
| return -EIO; |
| |
| pcm = READ_ONCE(s->pcm); |
| if (pcm && pcm_frames > 0) |
| update_pcm_pointers(s, pcm, pcm_frames); |
| |
| return 0; |
| } |
| |
| /* |
| * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On |
| * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent |
| * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. |
| */ |
| static inline u32 compute_cycle_count(u32 tstamp) |
| { |
| return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); |
| } |
| |
| static inline u32 increment_cycle_count(u32 cycle, unsigned int addend) |
| { |
| cycle += addend; |
| if (cycle >= 8 * CYCLES_PER_SECOND) |
| cycle -= 8 * CYCLES_PER_SECOND; |
| return cycle; |
| } |
| |
| static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend) |
| { |
| if (cycle < subtrahend) |
| cycle += 8 * CYCLES_PER_SECOND; |
| return cycle - subtrahend; |
| } |
| |
| static void out_stream_callback(struct fw_iso_context *context, u32 tstamp, |
| size_t header_length, void *header, |
| void *private_data) |
| { |
| struct amdtp_stream *s = private_data; |
| unsigned int i, packets = header_length / 4; |
| u32 cycle; |
| |
| if (s->packet_index < 0) |
| return; |
| |
| cycle = compute_cycle_count(tstamp); |
| |
| /* Align to actual cycle count for the last packet. */ |
| cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets); |
| |
| for (i = 0; i < packets; ++i) { |
| cycle = increment_cycle_count(cycle, 1); |
| if (s->handle_packet(s, 0, cycle, i) < 0) { |
| s->packet_index = -1; |
| if (in_interrupt()) |
| amdtp_stream_pcm_abort(s); |
| WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); |
| return; |
| } |
| } |
| |
| fw_iso_context_queue_flush(s->context); |
| } |
| |
| static void in_stream_callback(struct fw_iso_context *context, u32 tstamp, |
| size_t header_length, void *header, |
| void *private_data) |
| { |
| struct amdtp_stream *s = private_data; |
| unsigned int i, packets; |
| unsigned int payload_length, max_payload_length; |
| __be32 *headers = header; |
| u32 cycle; |
| |
| if (s->packet_index < 0) |
| return; |
| |
| /* The number of packets in buffer */ |
| packets = header_length / IN_PACKET_HEADER_SIZE; |
| |
| cycle = compute_cycle_count(tstamp); |
| |
| /* Align to actual cycle count for the last packet. */ |
| cycle = decrement_cycle_count(cycle, packets); |
| |
| /* For buffer-over-run prevention. */ |
| max_payload_length = s->max_payload_length; |
| |
| for (i = 0; i < packets; i++) { |
| cycle = increment_cycle_count(cycle, 1); |
| |
| /* The number of bytes in this packet */ |
| payload_length = |
| (be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT); |
| if (payload_length > max_payload_length) { |
| dev_err(&s->unit->device, |
| "Detect jumbo payload: %04x %04x\n", |
| payload_length, max_payload_length); |
| break; |
| } |
| |
| if (s->handle_packet(s, payload_length, cycle, i) < 0) |
| break; |
| } |
| |
| /* Queueing error or detecting invalid payload. */ |
| if (i < packets) { |
| s->packet_index = -1; |
| if (in_interrupt()) |
| amdtp_stream_pcm_abort(s); |
| WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); |
| return; |
| } |
| |
| fw_iso_context_queue_flush(s->context); |
| } |
| |
| /* this is executed one time */ |
| static void amdtp_stream_first_callback(struct fw_iso_context *context, |
| u32 tstamp, size_t header_length, |
| void *header, void *private_data) |
| { |
| struct amdtp_stream *s = private_data; |
| u32 cycle; |
| unsigned int packets; |
| |
| s->max_payload_length = amdtp_stream_get_max_payload(s); |
| |
| /* |
| * For in-stream, first packet has come. |
| * For out-stream, prepared to transmit first packet |
| */ |
| s->callbacked = true; |
| wake_up(&s->callback_wait); |
| |
| cycle = compute_cycle_count(tstamp); |
| |
| if (s->direction == AMDTP_IN_STREAM) { |
| packets = header_length / IN_PACKET_HEADER_SIZE; |
| cycle = decrement_cycle_count(cycle, packets); |
| context->callback.sc = in_stream_callback; |
| if (s->flags & CIP_NO_HEADER) |
| s->handle_packet = handle_in_packet_without_header; |
| else |
| s->handle_packet = handle_in_packet; |
| } else { |
| packets = header_length / 4; |
| cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets); |
| context->callback.sc = out_stream_callback; |
| if (s->flags & CIP_NO_HEADER) |
| s->handle_packet = handle_out_packet_without_header; |
| else |
| s->handle_packet = handle_out_packet; |
| } |
| |
| s->start_cycle = cycle; |
| |
| context->callback.sc(context, tstamp, header_length, header, s); |
| } |
| |
| /** |
| * amdtp_stream_start - start transferring packets |
| * @s: the AMDTP stream to start |
| * @channel: the isochronous channel on the bus |
| * @speed: firewire speed code |
| * |
| * The stream cannot be started until it has been configured with |
| * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI |
| * device can be started. |
| */ |
| int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed) |
| { |
| static const struct { |
| unsigned int data_block; |
| unsigned int syt_offset; |
| } initial_state[] = { |
| [CIP_SFC_32000] = { 4, 3072 }, |
| [CIP_SFC_48000] = { 6, 1024 }, |
| [CIP_SFC_96000] = { 12, 1024 }, |
| [CIP_SFC_192000] = { 24, 1024 }, |
| [CIP_SFC_44100] = { 0, 67 }, |
| [CIP_SFC_88200] = { 0, 67 }, |
| [CIP_SFC_176400] = { 0, 67 }, |
| }; |
| unsigned int header_size; |
| enum dma_data_direction dir; |
| int type, tag, err; |
| |
| mutex_lock(&s->mutex); |
| |
| if (WARN_ON(amdtp_stream_running(s) || |
| (s->data_block_quadlets < 1))) { |
| err = -EBADFD; |
| goto err_unlock; |
| } |
| |
| if (s->direction == AMDTP_IN_STREAM) |
| s->data_block_counter = UINT_MAX; |
| else |
| s->data_block_counter = 0; |
| s->data_block_state = initial_state[s->sfc].data_block; |
| s->syt_offset_state = initial_state[s->sfc].syt_offset; |
| s->last_syt_offset = TICKS_PER_CYCLE; |
| |
| /* initialize packet buffer */ |
| if (s->direction == AMDTP_IN_STREAM) { |
| dir = DMA_FROM_DEVICE; |
| type = FW_ISO_CONTEXT_RECEIVE; |
| header_size = IN_PACKET_HEADER_SIZE; |
| } else { |
| dir = DMA_TO_DEVICE; |
| type = FW_ISO_CONTEXT_TRANSMIT; |
| header_size = OUT_PACKET_HEADER_SIZE; |
| } |
| err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH, |
| amdtp_stream_get_max_payload(s), dir); |
| if (err < 0) |
| goto err_unlock; |
| |
| s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, |
| type, channel, speed, header_size, |
| amdtp_stream_first_callback, s); |
| if (IS_ERR(s->context)) { |
| err = PTR_ERR(s->context); |
| if (err == -EBUSY) |
| dev_err(&s->unit->device, |
| "no free stream on this controller\n"); |
| goto err_buffer; |
| } |
| |
| amdtp_stream_update(s); |
| |
| if (s->flags & CIP_NO_HEADER) |
| s->tag = TAG_NO_CIP_HEADER; |
| else |
| s->tag = TAG_CIP; |
| |
| s->packet_index = 0; |
| do { |
| if (s->direction == AMDTP_IN_STREAM) |
| err = queue_in_packet(s); |
| else |
| err = queue_out_packet(s, 0); |
| if (err < 0) |
| goto err_context; |
| } while (s->packet_index > 0); |
| |
| /* NOTE: TAG1 matches CIP. This just affects in stream. */ |
| tag = FW_ISO_CONTEXT_MATCH_TAG1; |
| if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) |
| tag |= FW_ISO_CONTEXT_MATCH_TAG0; |
| |
| s->callbacked = false; |
| err = fw_iso_context_start(s->context, -1, 0, tag); |
| if (err < 0) |
| goto err_context; |
| |
| mutex_unlock(&s->mutex); |
| |
| return 0; |
| |
| err_context: |
| fw_iso_context_destroy(s->context); |
| s->context = ERR_PTR(-1); |
| err_buffer: |
| iso_packets_buffer_destroy(&s->buffer, s->unit); |
| err_unlock: |
| mutex_unlock(&s->mutex); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(amdtp_stream_start); |
| |
| /** |
| * amdtp_stream_pcm_pointer - get the PCM buffer position |
| * @s: the AMDTP stream that transports the PCM data |
| * |
| * Returns the current buffer position, in frames. |
| */ |
| unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s) |
| { |
| /* |
| * This function is called in software IRQ context of period_tasklet or |
| * process context. |
| * |
| * When the software IRQ context was scheduled by software IRQ context |
| * of IR/IT contexts, queued packets were already handled. Therefore, |
| * no need to flush the queue in buffer anymore. |
| * |
| * When the process context reach here, some packets will be already |
| * queued in the buffer. These packets should be handled immediately |
| * to keep better granularity of PCM pointer. |
| * |
| * Later, the process context will sometimes schedules software IRQ |
| * context of the period_tasklet. Then, no need to flush the queue by |
| * the same reason as described for IR/IT contexts. |
| */ |
| if (!in_interrupt() && amdtp_stream_running(s)) |
| fw_iso_context_flush_completions(s->context); |
| |
| return READ_ONCE(s->pcm_buffer_pointer); |
| } |
| EXPORT_SYMBOL(amdtp_stream_pcm_pointer); |
| |
| /** |
| * amdtp_stream_pcm_ack - acknowledge queued PCM frames |
| * @s: the AMDTP stream that transfers the PCM frames |
| * |
| * Returns zero always. |
| */ |
| int amdtp_stream_pcm_ack(struct amdtp_stream *s) |
| { |
| /* |
| * Process isochronous packets for recent isochronous cycle to handle |
| * queued PCM frames. |
| */ |
| if (amdtp_stream_running(s)) |
| fw_iso_context_flush_completions(s->context); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(amdtp_stream_pcm_ack); |
| |
| /** |
| * amdtp_stream_update - update the stream after a bus reset |
| * @s: the AMDTP stream |
| */ |
| void amdtp_stream_update(struct amdtp_stream *s) |
| { |
| /* Precomputing. */ |
| WRITE_ONCE(s->source_node_id_field, |
| (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); |
| } |
| EXPORT_SYMBOL(amdtp_stream_update); |
| |
| /** |
| * amdtp_stream_stop - stop sending packets |
| * @s: the AMDTP stream to stop |
| * |
| * All PCM and MIDI devices of the stream must be stopped before the stream |
| * itself can be stopped. |
| */ |
| void amdtp_stream_stop(struct amdtp_stream *s) |
| { |
| mutex_lock(&s->mutex); |
| |
| if (!amdtp_stream_running(s)) { |
| mutex_unlock(&s->mutex); |
| return; |
| } |
| |
| tasklet_kill(&s->period_tasklet); |
| fw_iso_context_stop(s->context); |
| fw_iso_context_destroy(s->context); |
| s->context = ERR_PTR(-1); |
| iso_packets_buffer_destroy(&s->buffer, s->unit); |
| |
| s->callbacked = false; |
| |
| mutex_unlock(&s->mutex); |
| } |
| EXPORT_SYMBOL(amdtp_stream_stop); |
| |
| /** |
| * amdtp_stream_pcm_abort - abort the running PCM device |
| * @s: the AMDTP stream about to be stopped |
| * |
| * If the isochronous stream needs to be stopped asynchronously, call this |
| * function first to stop the PCM device. |
| */ |
| void amdtp_stream_pcm_abort(struct amdtp_stream *s) |
| { |
| struct snd_pcm_substream *pcm; |
| |
| pcm = READ_ONCE(s->pcm); |
| if (pcm) |
| snd_pcm_stop_xrun(pcm); |
| } |
| EXPORT_SYMBOL(amdtp_stream_pcm_abort); |