| /* |
| * Physical mapping layer for MTD using the Axis partitiontable format |
| * |
| * Copyright (c) 2001-2007 Axis Communications AB |
| * |
| * This file is under the GPL. |
| * |
| * First partition is always sector 0 regardless of if we find a partitiontable |
| * or not. In the start of the next sector, there can be a partitiontable that |
| * tells us what other partitions to define. If there isn't, we use a default |
| * partition split defined below. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| |
| #include <linux/mtd/concat.h> |
| #include <linux/mtd/map.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/mtdram.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include <asm/axisflashmap.h> |
| #include <asm/mmu.h> |
| |
| #define MEM_CSE0_SIZE (0x04000000) |
| #define MEM_CSE1_SIZE (0x04000000) |
| |
| #define FLASH_UNCACHED_ADDR KSEG_E |
| #define FLASH_CACHED_ADDR KSEG_F |
| |
| #define PAGESIZE (512) |
| |
| #if CONFIG_ETRAX_FLASH_BUSWIDTH==1 |
| #define flash_data __u8 |
| #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2 |
| #define flash_data __u16 |
| #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4 |
| #define flash_data __u32 |
| #endif |
| |
| /* From head.S */ |
| extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */ |
| extern unsigned long romfs_start, romfs_length; |
| extern unsigned long nand_boot; /* 1 when booted from nand flash */ |
| |
| struct partition_name { |
| char name[6]; |
| }; |
| |
| /* The master mtd for the entire flash. */ |
| struct mtd_info* axisflash_mtd = NULL; |
| |
| /* Map driver functions. */ |
| |
| static map_word flash_read(struct map_info *map, unsigned long ofs) |
| { |
| map_word tmp; |
| tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs); |
| return tmp; |
| } |
| |
| static void flash_copy_from(struct map_info *map, void *to, |
| unsigned long from, ssize_t len) |
| { |
| memcpy(to, (void *)(map->map_priv_1 + from), len); |
| } |
| |
| static void flash_write(struct map_info *map, map_word d, unsigned long adr) |
| { |
| *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0]; |
| } |
| |
| /* |
| * The map for chip select e0. |
| * |
| * We run into tricky coherence situations if we mix cached with uncached |
| * accesses to we only use the uncached version here. |
| * |
| * The size field is the total size where the flash chips may be mapped on the |
| * chip select. MTD probes should find all devices there and it does not matter |
| * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD |
| * probes will ignore them. |
| * |
| * The start address in map_priv_1 is in virtual memory so we cannot use |
| * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start |
| * address of cse0. |
| */ |
| static struct map_info map_cse0 = { |
| .name = "cse0", |
| .size = MEM_CSE0_SIZE, |
| .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, |
| .read = flash_read, |
| .copy_from = flash_copy_from, |
| .write = flash_write, |
| .map_priv_1 = FLASH_UNCACHED_ADDR |
| }; |
| |
| /* |
| * The map for chip select e1. |
| * |
| * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong |
| * address, but there isn't. |
| */ |
| static struct map_info map_cse1 = { |
| .name = "cse1", |
| .size = MEM_CSE1_SIZE, |
| .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, |
| .read = flash_read, |
| .copy_from = flash_copy_from, |
| .write = flash_write, |
| .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE |
| }; |
| |
| #define MAX_PARTITIONS 7 |
| #ifdef CONFIG_ETRAX_NANDBOOT |
| #define NUM_DEFAULT_PARTITIONS 4 |
| #define DEFAULT_ROOTFS_PARTITION_NO 2 |
| #define DEFAULT_MEDIA_SIZE 0x2000000 /* 32 megs */ |
| #else |
| #define NUM_DEFAULT_PARTITIONS 3 |
| #define DEFAULT_ROOTFS_PARTITION_NO (-1) |
| #define DEFAULT_MEDIA_SIZE 0x800000 /* 8 megs */ |
| #endif |
| |
| #if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS) |
| #error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS |
| #endif |
| |
| /* Initialize the ones normally used. */ |
| static struct mtd_partition axis_partitions[MAX_PARTITIONS] = { |
| { |
| .name = "part0", |
| .size = CONFIG_ETRAX_PTABLE_SECTOR, |
| .offset = 0 |
| }, |
| { |
| .name = "part1", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part2", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part3", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part4", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part5", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part6", |
| .size = 0, |
| .offset = 0 |
| }, |
| }; |
| |
| |
| /* If no partition-table was found, we use this default-set. |
| * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most |
| * likely the size of one flash block and "filesystem"-partition needs |
| * to be >=5 blocks to be able to use JFFS. |
| */ |
| static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = { |
| { |
| .name = "boot firmware", |
| .size = CONFIG_ETRAX_PTABLE_SECTOR, |
| .offset = 0 |
| }, |
| { |
| .name = "kernel", |
| .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR, |
| .offset = CONFIG_ETRAX_PTABLE_SECTOR |
| }, |
| #define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR) |
| #ifdef CONFIG_ETRAX_NANDBOOT |
| { |
| .name = "rootfs", |
| .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR, |
| .offset = FILESYSTEM_SECTOR |
| }, |
| #undef FILESYSTEM_SECTOR |
| #define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR) |
| #endif |
| { |
| .name = "rwfs", |
| .size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR, |
| .offset = FILESYSTEM_SECTOR |
| } |
| }; |
| |
| #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE |
| /* Main flash device */ |
| static struct mtd_partition main_partition = { |
| .name = "main", |
| .size = 0, |
| .offset = 0 |
| }; |
| #endif |
| |
| /* Auxiliary partition if we find another flash */ |
| static struct mtd_partition aux_partition = { |
| .name = "aux", |
| .size = 0, |
| .offset = 0 |
| }; |
| |
| /* |
| * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash |
| * chips in that order (because the amd_flash-driver is faster). |
| */ |
| static struct mtd_info *probe_cs(struct map_info *map_cs) |
| { |
| struct mtd_info *mtd_cs = NULL; |
| |
| printk(KERN_INFO |
| "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n", |
| map_cs->name, map_cs->size, map_cs->map_priv_1); |
| |
| #ifdef CONFIG_MTD_CFI |
| mtd_cs = do_map_probe("cfi_probe", map_cs); |
| #endif |
| #ifdef CONFIG_MTD_JEDECPROBE |
| if (!mtd_cs) |
| mtd_cs = do_map_probe("jedec_probe", map_cs); |
| #endif |
| |
| return mtd_cs; |
| } |
| |
| /* |
| * Probe each chip select individually for flash chips. If there are chips on |
| * both cse0 and cse1, the mtd_info structs will be concatenated to one struct |
| * so that MTD partitions can cross chip boundries. |
| * |
| * The only known restriction to how you can mount your chips is that each |
| * chip select must hold similar flash chips. But you need external hardware |
| * to do that anyway and you can put totally different chips on cse0 and cse1 |
| * so it isn't really much of a restriction. |
| */ |
| extern struct mtd_info* __init crisv32_nand_flash_probe (void); |
| static struct mtd_info *flash_probe(void) |
| { |
| struct mtd_info *mtd_cse0; |
| struct mtd_info *mtd_cse1; |
| struct mtd_info *mtd_total; |
| struct mtd_info *mtds[2]; |
| int count = 0; |
| |
| if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL) |
| mtds[count++] = mtd_cse0; |
| if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL) |
| mtds[count++] = mtd_cse1; |
| |
| if (!mtd_cse0 && !mtd_cse1) { |
| /* No chip found. */ |
| return NULL; |
| } |
| |
| if (count > 1) { |
| /* Since the concatenation layer adds a small overhead we |
| * could try to figure out if the chips in cse0 and cse1 are |
| * identical and reprobe the whole cse0+cse1 window. But since |
| * flash chips are slow, the overhead is relatively small. |
| * So we use the MTD concatenation layer instead of further |
| * complicating the probing procedure. |
| */ |
| mtd_total = mtd_concat_create(mtds, count, "cse0+cse1"); |
| if (!mtd_total) { |
| printk(KERN_ERR "%s and %s: Concatenation failed!\n", |
| map_cse0.name, map_cse1.name); |
| |
| /* The best we can do now is to only use what we found |
| * at cse0. */ |
| mtd_total = mtd_cse0; |
| map_destroy(mtd_cse1); |
| } |
| } else |
| mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1; |
| |
| return mtd_total; |
| } |
| |
| /* |
| * Probe the flash chip(s) and, if it succeeds, read the partition-table |
| * and register the partitions with MTD. |
| */ |
| static int __init init_axis_flash(void) |
| { |
| struct mtd_info *main_mtd; |
| struct mtd_info *aux_mtd = NULL; |
| int err = 0; |
| int pidx = 0; |
| struct partitiontable_head *ptable_head = NULL; |
| struct partitiontable_entry *ptable; |
| int ptable_ok = 0; |
| static char page[PAGESIZE]; |
| size_t len; |
| int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */ |
| int part; |
| struct mtd_partition *partition; |
| |
| /* We need a root fs. If it resides in RAM, we need to use an |
| * MTDRAM device, so it must be enabled in the kernel config, |
| * but its size must be configured as 0 so as not to conflict |
| * with our usage. |
| */ |
| #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0) |
| if (!romfs_in_flash && !nand_boot) { |
| printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM " |
| "device; configure CONFIG_MTD_MTDRAM with size = 0!\n"); |
| panic("This kernel cannot boot from RAM!\n"); |
| } |
| #endif |
| |
| main_mtd = flash_probe(); |
| if (main_mtd) |
| printk(KERN_INFO "%s: 0x%08llx bytes of NOR flash memory.\n", |
| main_mtd->name, main_mtd->size); |
| |
| #ifdef CONFIG_ETRAX_NANDFLASH |
| aux_mtd = crisv32_nand_flash_probe(); |
| if (aux_mtd) |
| printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n", |
| aux_mtd->name, aux_mtd->size); |
| |
| #ifdef CONFIG_ETRAX_NANDBOOT |
| { |
| struct mtd_info *tmp_mtd; |
| |
| printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, " |
| "making NAND flash primary device.\n"); |
| tmp_mtd = main_mtd; |
| main_mtd = aux_mtd; |
| aux_mtd = tmp_mtd; |
| } |
| #endif /* CONFIG_ETRAX_NANDBOOT */ |
| #endif /* CONFIG_ETRAX_NANDFLASH */ |
| |
| if (!main_mtd && !aux_mtd) { |
| /* There's no reason to use this module if no flash chip can |
| * be identified. Make sure that's understood. |
| */ |
| printk(KERN_INFO "axisflashmap: Found no flash chip.\n"); |
| } |
| |
| #if 0 /* Dump flash memory so we can see what is going on */ |
| if (main_mtd) { |
| int sectoraddr; |
| for (sectoraddr = 0; sectoraddr < 2*65536+4096; |
| sectoraddr += PAGESIZE) { |
| main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len, |
| page); |
| printk(KERN_INFO |
| "Sector at %d (length %d):\n", |
| sectoraddr, len); |
| print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, page, PAGESIZE, false); |
| } |
| } |
| #endif |
| |
| if (main_mtd) { |
| loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR; |
| main_mtd->owner = THIS_MODULE; |
| axisflash_mtd = main_mtd; |
| |
| |
| /* First partition (rescue) is always set to the default. */ |
| pidx++; |
| #ifdef CONFIG_ETRAX_NANDBOOT |
| /* We know where the partition table should be located, |
| * it will be in first good block after that. |
| */ |
| int blockstat; |
| do { |
| blockstat = mtd_block_isbad(main_mtd, ptable_sector); |
| if (blockstat < 0) |
| ptable_sector = 0; /* read error */ |
| else if (blockstat) |
| ptable_sector += main_mtd->erasesize; |
| } while (blockstat && ptable_sector); |
| #endif |
| if (ptable_sector) { |
| mtd_read(main_mtd, ptable_sector, PAGESIZE, &len, |
| page); |
| ptable_head = &((struct partitiontable *) page)->head; |
| } |
| |
| #if 0 /* Dump partition table so we can see what is going on */ |
| printk(KERN_INFO |
| "axisflashmap: flash read %d bytes at 0x%08x, data: %8ph\n", |
| len, CONFIG_ETRAX_PTABLE_SECTOR, page); |
| printk(KERN_INFO |
| "axisflashmap: partition table offset %d, data: %8ph\n", |
| PARTITION_TABLE_OFFSET, page + PARTITION_TABLE_OFFSET); |
| #endif |
| } |
| |
| if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC) |
| && (ptable_head->size < |
| (MAX_PARTITIONS * sizeof(struct partitiontable_entry) + |
| PARTITIONTABLE_END_MARKER_SIZE)) |
| && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) + |
| ptable_head->size - |
| PARTITIONTABLE_END_MARKER_SIZE) |
| == PARTITIONTABLE_END_MARKER)) { |
| /* Looks like a start, sane length and end of a |
| * partition table, lets check csum etc. |
| */ |
| struct partitiontable_entry *max_addr = |
| (struct partitiontable_entry *) |
| ((unsigned long)ptable_head + sizeof(*ptable_head) + |
| ptable_head->size); |
| unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR; |
| unsigned char *p; |
| unsigned long csum = 0; |
| |
| ptable = (struct partitiontable_entry *) |
| ((unsigned long)ptable_head + sizeof(*ptable_head)); |
| |
| /* Lets be PARANOID, and check the checksum. */ |
| p = (unsigned char*) ptable; |
| |
| while (p <= (unsigned char*)max_addr) { |
| csum += *p++; |
| csum += *p++; |
| csum += *p++; |
| csum += *p++; |
| } |
| ptable_ok = (csum == ptable_head->checksum); |
| |
| /* Read the entries and use/show the info. */ |
| printk(KERN_INFO "axisflashmap: " |
| "Found a%s partition table at 0x%p-0x%p.\n", |
| (ptable_ok ? " valid" : "n invalid"), ptable_head, |
| max_addr); |
| |
| /* We have found a working bootblock. Now read the |
| * partition table. Scan the table. It ends with 0xffffffff. |
| */ |
| while (ptable_ok |
| && ptable->offset != PARTITIONTABLE_END_MARKER |
| && ptable < max_addr |
| && pidx < MAX_PARTITIONS - 1) { |
| |
| axis_partitions[pidx].offset = offset + ptable->offset; |
| #ifdef CONFIG_ETRAX_NANDFLASH |
| if (main_mtd->type == MTD_NANDFLASH) { |
| axis_partitions[pidx].size = |
| (((ptable+1)->offset == |
| PARTITIONTABLE_END_MARKER) ? |
| main_mtd->size : |
| ((ptable+1)->offset + offset)) - |
| (ptable->offset + offset); |
| |
| } else |
| #endif /* CONFIG_ETRAX_NANDFLASH */ |
| axis_partitions[pidx].size = ptable->size; |
| #ifdef CONFIG_ETRAX_NANDBOOT |
| /* Save partition number of jffs2 ro partition. |
| * Needed if RAM booting or root file system in RAM. |
| */ |
| if (!nand_boot && |
| ram_rootfs_partition < 0 && /* not already set */ |
| ptable->type == PARTITION_TYPE_JFFS2 && |
| (ptable->flags & PARTITION_FLAGS_READONLY_MASK) == |
| PARTITION_FLAGS_READONLY) |
| ram_rootfs_partition = pidx; |
| #endif /* CONFIG_ETRAX_NANDBOOT */ |
| pidx++; |
| ptable++; |
| } |
| } |
| |
| /* Decide whether to use default partition table. */ |
| /* Only use default table if we actually have a device (main_mtd) */ |
| |
| partition = &axis_partitions[0]; |
| if (main_mtd && !ptable_ok) { |
| memcpy(axis_partitions, axis_default_partitions, |
| sizeof(axis_default_partitions)); |
| pidx = NUM_DEFAULT_PARTITIONS; |
| ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO; |
| } |
| |
| /* Add artificial partitions for rootfs if necessary */ |
| if (romfs_in_flash) { |
| /* rootfs is in directly accessible flash memory = NOR flash. |
| Add an overlapping device for the rootfs partition. */ |
| printk(KERN_INFO "axisflashmap: Adding partition for " |
| "overlapping root file system image\n"); |
| axis_partitions[pidx].size = romfs_length; |
| axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR; |
| axis_partitions[pidx].name = "romfs"; |
| axis_partitions[pidx].mask_flags |= MTD_WRITEABLE; |
| ram_rootfs_partition = -1; |
| pidx++; |
| } else if (romfs_length && !nand_boot) { |
| /* romfs exists in memory, but not in flash, so must be in RAM. |
| * Configure an MTDRAM partition. */ |
| if (ram_rootfs_partition < 0) { |
| /* None set yet, put it at the end */ |
| ram_rootfs_partition = pidx; |
| pidx++; |
| } |
| printk(KERN_INFO "axisflashmap: Adding partition for " |
| "root file system image in RAM\n"); |
| axis_partitions[ram_rootfs_partition].size = romfs_length; |
| axis_partitions[ram_rootfs_partition].offset = romfs_start; |
| axis_partitions[ram_rootfs_partition].name = "romfs"; |
| axis_partitions[ram_rootfs_partition].mask_flags |= |
| MTD_WRITEABLE; |
| } |
| |
| #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE |
| if (main_mtd) { |
| main_partition.size = main_mtd->size; |
| err = mtd_device_register(main_mtd, &main_partition, 1); |
| if (err) |
| panic("axisflashmap: Could not initialize " |
| "partition for whole main mtd device!\n"); |
| } |
| #endif |
| |
| /* Now, register all partitions with mtd. |
| * We do this one at a time so we can slip in an MTDRAM device |
| * in the proper place if required. */ |
| |
| for (part = 0; part < pidx; part++) { |
| if (part == ram_rootfs_partition) { |
| /* add MTDRAM partition here */ |
| struct mtd_info *mtd_ram; |
| |
| mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL); |
| if (!mtd_ram) |
| panic("axisflashmap: Couldn't allocate memory " |
| "for mtd_info!\n"); |
| printk(KERN_INFO "axisflashmap: Adding RAM partition " |
| "for rootfs image.\n"); |
| err = mtdram_init_device(mtd_ram, |
| (void *)(u_int32_t)partition[part].offset, |
| partition[part].size, |
| partition[part].name); |
| if (err) |
| panic("axisflashmap: Could not initialize " |
| "MTD RAM device!\n"); |
| /* JFFS2 likes to have an erasesize. Keep potential |
| * JFFS2 rootfs happy by providing one. Since image |
| * was most likely created for main mtd, use that |
| * erasesize, if available. Otherwise, make a guess. */ |
| mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize : |
| CONFIG_ETRAX_PTABLE_SECTOR); |
| } else { |
| err = mtd_device_register(main_mtd, &partition[part], |
| 1); |
| if (err) |
| panic("axisflashmap: Could not add mtd " |
| "partition %d\n", part); |
| } |
| } |
| |
| if (aux_mtd) { |
| aux_partition.size = aux_mtd->size; |
| err = mtd_device_register(aux_mtd, &aux_partition, 1); |
| if (err) |
| panic("axisflashmap: Could not initialize " |
| "aux mtd device!\n"); |
| |
| } |
| |
| return err; |
| } |
| |
| /* This adds the above to the kernels init-call chain. */ |
| module_init(init_axis_flash); |
| |
| EXPORT_SYMBOL(axisflash_mtd); |