blob: cdd7bc402ece86a778059a83fc866acfab182489 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
******************************************************************************/
#define _IEEE80211_C
#include <drv_types.h>
#include <linux/ieee80211.h>
#include <ieee80211.h>
#include <wifi.h>
#include <osdep_service.h>
#include <wlan_bssdef.h>
u8 RTW_WPA_OUI23A_TYPE[] = { 0x00, 0x50, 0xf2, 1 };
u16 RTW_WPA_VERSION23A = 1;
u8 WPA_AUTH_KEY_MGMT_NONE23A[] = { 0x00, 0x50, 0xf2, 0 };
u8 WPA_AUTH_KEY_MGMT_UNSPEC_802_1X23A[] = { 0x00, 0x50, 0xf2, 1 };
u8 WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X23A[] = { 0x00, 0x50, 0xf2, 2 };
u8 WPA_CIPHER_SUITE_NONE23A[] = { 0x00, 0x50, 0xf2, 0 };
u8 WPA_CIPHER_SUITE_WEP4023A[] = { 0x00, 0x50, 0xf2, 1 };
u8 WPA_CIPHER_SUITE_TKIP23A[] = { 0x00, 0x50, 0xf2, 2 };
u8 WPA_CIPHER_SUITE_WRAP23A[] = { 0x00, 0x50, 0xf2, 3 };
u8 WPA_CIPHER_SUITE_CCMP23A[] = { 0x00, 0x50, 0xf2, 4 };
u8 WPA_CIPHER_SUITE_WEP10423A[] = { 0x00, 0x50, 0xf2, 5 };
u8 RSN_AUTH_KEY_MGMT_UNSPEC_802_1X23A[] = { 0x00, 0x0f, 0xac, 1 };
u8 RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X23A[] = { 0x00, 0x0f, 0xac, 2 };
u8 RSN_CIPHER_SUITE_NONE23A[] = { 0x00, 0x0f, 0xac, 0 };
u8 RSN_CIPHER_SUITE_WEP4023A[] = { 0x00, 0x0f, 0xac, 1 };
u8 RSN_CIPHER_SUITE_TKIP23A[] = { 0x00, 0x0f, 0xac, 2 };
u8 RSN_CIPHER_SUITE_WRAP23A[] = { 0x00, 0x0f, 0xac, 3 };
u8 RSN_CIPHER_SUITE_CCMP23A[] = { 0x00, 0x0f, 0xac, 4 };
u8 RSN_CIPHER_SUITE_WEP10423A[] = { 0x00, 0x0f, 0xac, 5 };
/* */
/* for adhoc-master to generate ie and provide supported-rate to fw */
/* */
static u8 WIFI_CCKRATES[] = {
IEEE80211_CCK_RATE_1MB | IEEE80211_BASIC_RATE_MASK,
IEEE80211_CCK_RATE_2MB | IEEE80211_BASIC_RATE_MASK,
IEEE80211_CCK_RATE_5MB | IEEE80211_BASIC_RATE_MASK,
IEEE80211_CCK_RATE_11MB | IEEE80211_BASIC_RATE_MASK
};
static u8 WIFI_OFDMRATES[] = {
IEEE80211_OFDM_RATE_6MB,
IEEE80211_OFDM_RATE_9MB,
IEEE80211_OFDM_RATE_12MB,
IEEE80211_OFDM_RATE_18MB,
IEEE80211_OFDM_RATE_24MB,
IEEE80211_OFDM_RATE_36MB,
IEEE80211_OFDM_RATE_48MB,
IEEE80211_OFDM_RATE_54MB
};
int rtw_get_bit_value_from_ieee_value23a(u8 val)
{
unsigned char dot11_rate_table[]=
{2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108, 0};
int i = 0;
while (dot11_rate_table[i] != 0) {
if (dot11_rate_table[i] == val)
return BIT(i);
i++;
}
return 0;
}
static bool rtw_is_cckrates_included(u8 *rate)
{
u32 i = 0;
while (rate[i]) {
if ((rate[i] & 0x7f) == 2 || (rate[i] & 0x7f) == 4 ||
(rate[i] & 0x7f) == 11 || (rate[i] & 0x7f) == 22)
return true;
i++;
}
return false;
}
static bool rtw_is_cckratesonly_included(u8 *rate)
{
u32 i = 0;
while (rate[i]) {
if ((rate[i] & 0x7f) != 2 && (rate[i] & 0x7f) != 4 &&
(rate[i] & 0x7f) != 11 && (rate[i] & 0x7f) != 22)
return false;
i++;
}
return true;
}
int rtw_check_network_type23a(unsigned char *rate, int ratelen, int channel)
{
if (channel > 14) {
if (rtw_is_cckrates_included(rate))
return WIRELESS_INVALID;
else
return WIRELESS_11A;
} else { /* could be pure B, pure G, or B/G */
if (rtw_is_cckratesonly_included(rate))
return WIRELESS_11B;
else if (rtw_is_cckrates_included(rate))
return WIRELESS_11BG;
else
return WIRELESS_11G;
}
}
/* rtw_set_ie23a will update frame length */
u8 *rtw_set_ie23a(u8 *pbuf, int index, uint len, const u8 *source, uint *frlen)
{
*pbuf = (u8)index;
*(pbuf + 1) = (u8)len;
if (len > 0)
memcpy((void *)(pbuf + 2), (void *)source, len);
*frlen = *frlen + (len + 2);
return pbuf + len + 2;
}
inline u8 *rtw_set_ie23a_ch_switch (u8 *buf, u32 *buf_len, u8 ch_switch_mode,
u8 new_ch, u8 ch_switch_cnt)
{
u8 ie_data[3];
ie_data[0] = ch_switch_mode;
ie_data[1] = new_ch;
ie_data[2] = ch_switch_cnt;
return rtw_set_ie23a(buf, WLAN_EID_CHANNEL_SWITCH, 3, ie_data, buf_len);
}
inline u8 hal_ch_offset_to_secondary_ch_offset23a(u8 ch_offset)
{
if (ch_offset == HAL_PRIME_CHNL_OFFSET_LOWER)
return IEEE80211_HT_PARAM_CHA_SEC_BELOW;
else if (ch_offset == HAL_PRIME_CHNL_OFFSET_UPPER)
return IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
return IEEE80211_HT_PARAM_CHA_SEC_NONE;
}
inline u8 *rtw_set_ie23a_secondary_ch_offset(u8 *buf, u32 *buf_len,
u8 secondary_ch_offset)
{
return rtw_set_ie23a(buf, WLAN_EID_SECONDARY_CHANNEL_OFFSET,
1, &secondary_ch_offset, buf_len);
}
/*----------------------------------------------------------------------------
index: the information element id index, limit is the limit for search
-----------------------------------------------------------------------------*/
u8 *rtw_get_ie23a(u8 *pbuf, int index, int *len, int limit)
{
int tmp, i;
u8 *p;
if (limit < 1) {
return NULL;
}
p = pbuf;
i = 0;
*len = 0;
while (1) {
if (*p == index) {
*len = *(p + 1);
return p;
} else {
tmp = *(p + 1);
p += (tmp + 2);
i += (tmp + 2);
}
if (i >= limit)
break;
}
return NULL;
}
/**
* rtw_get_ie23a_ex - Search specific IE from a series of IEs
* @in_ie: Address of IEs to search
* @in_len: Length limit from in_ie
* @eid: Element ID to match
* @oui: OUI to match
* @oui_len: OUI length
* @ie: If not NULL and the specific IE is found, the IE will be copied
* to the buf starting from the specific IE
* @ielen: If not NULL and the specific IE is found, will set to the length
* of the entire IE
*
* Returns: The address of the specific IE found, or NULL
*/
u8 *rtw_get_ie23a_ex(u8 *in_ie, uint in_len, u8 eid, u8 *oui, u8 oui_len,
u8 *ie, uint *ielen)
{
uint cnt;
u8 *target_ie = NULL;
if (ielen)
*ielen = 0;
if (!in_ie || in_len <= 0)
return target_ie;
cnt = 0;
while (cnt < in_len) {
if (eid == in_ie[cnt] &&
(!oui || !memcmp(&in_ie[cnt+2], oui, oui_len))) {
target_ie = &in_ie[cnt];
if (ie)
memcpy(ie, &in_ie[cnt], in_ie[cnt+1]+2);
if (ielen)
*ielen = in_ie[cnt+1]+2;
break;
} else {
cnt += in_ie[cnt + 1] + 2; /* goto next */
}
}
return target_ie;
}
/**
* rtw_ies_remove_ie23a - Find matching IEs and remove
* @ies: Address of IEs to search
* @ies_len: Pointer of length of ies, will update to new length
* @offset: The offset to start search
* @eid: Element ID to match
* @oui: OUI to match
* @oui_len: OUI length
*
* Returns: _SUCCESS: ies is updated, _FAIL: not updated
*/
int rtw_ies_remove_ie23a(u8 *ies, uint *ies_len, uint offset, u8 eid,
u8 *oui, u8 oui_len)
{
int ret = _FAIL;
u8 *target_ie;
u32 target_ielen;
u8 *start;
uint search_len;
if (!ies || !ies_len || *ies_len <= offset)
goto exit;
start = ies + offset;
search_len = *ies_len - offset;
while (1) {
target_ie = rtw_get_ie23a_ex(start, search_len, eid, oui, oui_len,
NULL, &target_ielen);
if (target_ie && target_ielen) {
u8 buf[MAX_IE_SZ] = {0};
u8 *remain_ies = target_ie + target_ielen;
uint remain_len = search_len - (remain_ies - start);
memcpy(buf, remain_ies, remain_len);
memcpy(target_ie, buf, remain_len);
*ies_len = *ies_len - target_ielen;
ret = _SUCCESS;
start = target_ie;
search_len = remain_len;
} else {
break;
}
}
exit:
return ret;
}
void rtw_set_supported_rate23a(u8 *SupportedRates, uint mode)
{
memset(SupportedRates, 0, NDIS_802_11_LENGTH_RATES_EX);
switch (mode) {
case WIRELESS_11B:
memcpy(SupportedRates, WIFI_CCKRATES, IEEE80211_CCK_RATE_LEN);
break;
case WIRELESS_11G:
case WIRELESS_11A:
case WIRELESS_11_5N:
case WIRELESS_11A_5N:/* Todo: no basic rate for ofdm ? */
memcpy(SupportedRates, WIFI_OFDMRATES,
IEEE80211_NUM_OFDM_RATESLEN);
break;
case WIRELESS_11BG:
case WIRELESS_11G_24N:
case WIRELESS_11_24N:
case WIRELESS_11BG_24N:
memcpy(SupportedRates, WIFI_CCKRATES, IEEE80211_CCK_RATE_LEN);
memcpy(SupportedRates + IEEE80211_CCK_RATE_LEN, WIFI_OFDMRATES,
IEEE80211_NUM_OFDM_RATESLEN);
break;
}
}
uint rtw_get_rateset_len23a(u8 *rateset)
{
uint i = 0;
while(1) {
if (rateset[i] == 0)
break;
if (i > 12)
break;
i++;
}
return i;
}
int rtw_generate_ie23a(struct registry_priv *pregistrypriv)
{
u8 wireless_mode;
int sz = 0, rateLen;
struct wlan_bssid_ex* pdev_network = &pregistrypriv->dev_network;
u8* ie = pdev_network->IEs;
u16 cap;
pdev_network->tsf = 0;
cap = WLAN_CAPABILITY_IBSS;
if (pregistrypriv->preamble == PREAMBLE_SHORT)
cap |= WLAN_CAPABILITY_SHORT_PREAMBLE;
if (pdev_network->Privacy)
cap |= WLAN_CAPABILITY_PRIVACY;
pdev_network->capability = cap;
/* SSID */
ie = rtw_set_ie23a(ie, WLAN_EID_SSID, pdev_network->Ssid.ssid_len,
pdev_network->Ssid.ssid, &sz);
/* supported rates */
if (pregistrypriv->wireless_mode == WIRELESS_11ABGN) {
if (pdev_network->DSConfig > 14)
wireless_mode = WIRELESS_11A_5N;
else
wireless_mode = WIRELESS_11BG_24N;
} else {
wireless_mode = pregistrypriv->wireless_mode;
}
rtw_set_supported_rate23a(pdev_network->SupportedRates, wireless_mode) ;
rateLen = rtw_get_rateset_len23a(pdev_network->SupportedRates);
if (rateLen > 8) {
ie = rtw_set_ie23a(ie, WLAN_EID_SUPP_RATES, 8,
pdev_network->SupportedRates, &sz);
/* ie = rtw_set_ie23a(ie, _EXT_SUPPORTEDRATES_IE_, (rateLen - 8), (pdev_network->SupportedRates + 8), &sz); */
} else {
ie = rtw_set_ie23a(ie, WLAN_EID_SUPP_RATES, rateLen,
pdev_network->SupportedRates, &sz);
}
/* DS parameter set */
ie = rtw_set_ie23a(ie, WLAN_EID_DS_PARAMS, 1,
(u8 *)&pdev_network->DSConfig, &sz);
/* IBSS Parameter Set */
ie = rtw_set_ie23a(ie, WLAN_EID_IBSS_PARAMS, 2,
(u8 *)&pdev_network->ATIMWindow, &sz);
if (rateLen > 8) {
ie = rtw_set_ie23a(ie, WLAN_EID_EXT_SUPP_RATES, (rateLen - 8),
(pdev_network->SupportedRates + 8), &sz);
}
/* return _SUCCESS; */
return sz;
}
static int rtw_get_wpa_cipher_suite(const u8 *s)
{
if (!memcmp(s, WPA_CIPHER_SUITE_NONE23A, WPA_SELECTOR_LEN))
return WPA_CIPHER_NONE;
if (!memcmp(s, WPA_CIPHER_SUITE_WEP4023A, WPA_SELECTOR_LEN))
return WPA_CIPHER_WEP40;
if (!memcmp(s, WPA_CIPHER_SUITE_TKIP23A, WPA_SELECTOR_LEN))
return WPA_CIPHER_TKIP;
if (!memcmp(s, WPA_CIPHER_SUITE_CCMP23A, WPA_SELECTOR_LEN))
return WPA_CIPHER_CCMP;
if (!memcmp(s, WPA_CIPHER_SUITE_WEP10423A, WPA_SELECTOR_LEN))
return WPA_CIPHER_WEP104;
return 0;
}
static int rtw_get_wpa2_cipher_suite(const u8 *s)
{
if (!memcmp(s, RSN_CIPHER_SUITE_NONE23A, RSN_SELECTOR_LEN))
return WPA_CIPHER_NONE;
if (!memcmp(s, RSN_CIPHER_SUITE_WEP4023A, RSN_SELECTOR_LEN))
return WPA_CIPHER_WEP40;
if (!memcmp(s, RSN_CIPHER_SUITE_TKIP23A, RSN_SELECTOR_LEN))
return WPA_CIPHER_TKIP;
if (!memcmp(s, RSN_CIPHER_SUITE_CCMP23A, RSN_SELECTOR_LEN))
return WPA_CIPHER_CCMP;
if (!memcmp(s, RSN_CIPHER_SUITE_WEP10423A, RSN_SELECTOR_LEN))
return WPA_CIPHER_WEP104;
return 0;
}
int rtw_parse_wpa_ie23a(const u8* wpa_ie, int wpa_ie_len, int *group_cipher, int *pairwise_cipher, int *is_8021x)
{
int i, ret = _SUCCESS;
int left, count;
const u8 *pos;
if (wpa_ie_len <= 0) {
/* No WPA IE - fail silently */
return _FAIL;
}
if (wpa_ie[1] != (u8)(wpa_ie_len - 2))
return _FAIL;
pos = wpa_ie;
pos += 8;
left = wpa_ie_len - 8;
/* group_cipher */
if (left >= WPA_SELECTOR_LEN) {
*group_cipher = rtw_get_wpa_cipher_suite(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
} else if (left > 0) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_,
"%s: ie length mismatch, %u too much\n",
__func__, left);
return _FAIL;
}
/* pairwise_cipher */
if (left >= 2) {
/* count = le16_to_cpu(*(u16*)pos); */
count = get_unaligned_le16(pos);
pos += 2;
left -= 2;
if (count == 0 || left < count * WPA_SELECTOR_LEN) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_,
"%s: ie count botch (pairwise), count %u left %u\n",
__func__, count, left);
return _FAIL;
}
for (i = 0; i < count; i++) {
*pairwise_cipher |= rtw_get_wpa_cipher_suite(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_,
"%s: ie too short (for key mgmt)\n", __func__);
return _FAIL;
}
if (is_8021x) {
if (left >= 6) {
pos += 2;
if (!memcmp(pos, RTW_WPA_OUI23A_TYPE, 4)) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"%s : there has 802.1x auth\n",
__func__);
*is_8021x = 1;
}
}
}
return ret;
}
int rtw_parse_wpa2_ie23a(const u8 *rsn_ie, int rsn_ie_len, int *group_cipher,
int *pairwise_cipher, int *is_8021x)
{
int i, ret = _SUCCESS;
int left, count;
const u8 *pos;
u8 SUITE_1X[4] = {0x00, 0x0f, 0xac, 0x01};
if (rsn_ie_len <= 0) {
/* No RSN IE - fail silently */
return _FAIL;
}
if (*rsn_ie != WLAN_EID_RSN || *(rsn_ie+1) != (u8)(rsn_ie_len - 2)) {
return _FAIL;
}
pos = rsn_ie;
pos += 4;
left = rsn_ie_len - 4;
/* group_cipher */
if (left >= RSN_SELECTOR_LEN) {
*group_cipher = rtw_get_wpa2_cipher_suite(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
} else if (left > 0) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_,
"%s: ie length mismatch, %u too much\n",
__func__, left);
return _FAIL;
}
/* pairwise_cipher */
if (left >= 2) {
/* count = le16_to_cpu(*(u16*)pos); */
count = get_unaligned_le16(pos);
pos += 2;
left -= 2;
if (count == 0 || left < count * RSN_SELECTOR_LEN) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_,
"%s: ie count botch (pairwise), count %u left %u\n",
__func__, count, left);
return _FAIL;
}
for (i = 0; i < count; i++) {
*pairwise_cipher |= rtw_get_wpa2_cipher_suite(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
} else if (left == 1) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_err_,
"%s: ie too short (for key mgmt)\n", __func__);
return _FAIL;
}
if (is_8021x) {
if (left >= 6) {
pos += 2;
if (!memcmp(pos, SUITE_1X, 4)) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"%s (): there has 802.1x auth\n",
__func__);
*is_8021x = 1;
}
}
}
return ret;
}
/**
* rtw_get_wps_attr23a - Search a specific WPS attribute from a given WPS IE
* @wps_ie: Address of WPS IE to search
* @wps_ielen: Length limit from wps_ie
* @target_attr_id: The attribute ID of WPS attribute to search
* @buf_attr: If not NULL and the WPS attribute is found, WPS attribute
* will be copied to the buf starting from buf_attr
* @len_attr: If not NULL and the WPS attribute is found, will set to the
* length of the entire WPS attribute
*
* Returns: the address of the specific WPS attribute found, or NULL
*/
const u8 *rtw_get_wps_attr23a(const u8 *wps_ie, uint wps_ielen,
u16 target_attr_id, u8 *buf_attr, u32 *len_attr)
{
const u8 *attr_ptr = NULL;
const u8 *target_attr_ptr = NULL;
u8 wps_oui[4] = {0x00, 0x50, 0xF2, 0x04};
if (len_attr)
*len_attr = 0;
if (wps_ie[0] != WLAN_EID_VENDOR_SPECIFIC ||
memcmp(wps_ie + 2, wps_oui, 4)) {
return attr_ptr;
}
/* 6 = 1(Element ID) + 1(Length) + 4(WPS OUI) */
attr_ptr = wps_ie + 6; /* goto first attr */
while (attr_ptr - wps_ie < wps_ielen) {
/* 4 = 2(Attribute ID) + 2(Length) */
u16 attr_id = get_unaligned_be16(attr_ptr);
u16 attr_data_len = get_unaligned_be16(attr_ptr + 2);
u16 attr_len = attr_data_len + 4;
/* DBG_8723A("%s attr_ptr:%p, id:%u, length:%u\n", __func__, attr_ptr, attr_id, attr_data_len); */
if (attr_id == target_attr_id) {
target_attr_ptr = attr_ptr;
if (buf_attr)
memcpy(buf_attr, attr_ptr, attr_len);
if (len_attr)
*len_attr = attr_len;
break;
} else {
attr_ptr += attr_len; /* goto next */
}
}
return target_attr_ptr;
}
/**
* rtw_get_wps_attr_content23a - Search a specific WPS attribute content
* from a given WPS IE
* @wps_ie: Address of WPS IE to search
* @wps_ielen: Length limit from wps_ie
* @target_attr_id: The attribute ID of WPS attribute to search
* @buf_content: If not NULL and the WPS attribute is found, WPS attribute
* content will be copied to the buf starting from buf_content
* @len_content: If not NULL and the WPS attribute is found, will set to the
* length of the WPS attribute content
*
* Returns: the address of the specific WPS attribute content found, or NULL
*/
const u8 *rtw_get_wps_attr_content23a(const u8 *wps_ie, uint wps_ielen,
u16 target_attr_id, u8 *buf_content)
{
const u8 *attr_ptr;
u32 attr_len;
attr_ptr = rtw_get_wps_attr23a(wps_ie, wps_ielen, target_attr_id,
NULL, &attr_len);
if (attr_ptr && attr_len) {
if (buf_content)
memcpy(buf_content, attr_ptr + 4, attr_len - 4);
return attr_ptr + 4;
}
return NULL;
}
static int rtw_get_cipher_info(struct wlan_network *pnetwork)
{
const u8 *pbuf;
int group_cipher = 0, pairwise_cipher = 0, is8021x = 0;
int ret = _FAIL;
int r, plen;
char *pie;
pie = pnetwork->network.IEs;
plen = pnetwork->network.IELength;
pbuf = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
WLAN_OUI_TYPE_MICROSOFT_WPA, pie, plen);
if (pbuf && pbuf[1] > 0) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"rtw_get_cipher_info: wpa_ielen: %d\n", pbuf[1]);
r = rtw_parse_wpa_ie23a(pbuf, pbuf[1] + 2, &group_cipher,
&pairwise_cipher, &is8021x);
if (r == _SUCCESS) {
pnetwork->BcnInfo.pairwise_cipher = pairwise_cipher;
pnetwork->BcnInfo.group_cipher = group_cipher;
pnetwork->BcnInfo.is_8021x = is8021x;
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"%s: pnetwork->pairwise_cipher: %d, is_8021x is %d\n",
__func__, pnetwork->BcnInfo.pairwise_cipher,
pnetwork->BcnInfo.is_8021x);
ret = _SUCCESS;
}
} else {
pbuf = cfg80211_find_ie(WLAN_EID_RSN, pie, plen);
if (pbuf && pbuf[1] > 0) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"get RSN IE\n");
r = rtw_parse_wpa2_ie23a(pbuf, pbuf[1] + 2,
&group_cipher, &pairwise_cipher,
&is8021x);
if (r == _SUCCESS) {
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"get RSN IE OK!!!\n");
pnetwork->BcnInfo.pairwise_cipher =
pairwise_cipher;
pnetwork->BcnInfo.group_cipher = group_cipher;
pnetwork->BcnInfo.is_8021x = is8021x;
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"%s: pnetwork->pairwise_cipher: %d,pnetwork->group_cipher is %d, is_8021x is %d\n",
__func__,
pnetwork->BcnInfo.pairwise_cipher,
pnetwork->BcnInfo.group_cipher,
pnetwork->BcnInfo.is_8021x);
ret = _SUCCESS;
}
}
}
return ret;
}
void rtw_get_bcn_info23a(struct wlan_network *pnetwork)
{
u8 bencrypt = 0;
int pie_len;
u8 *pie;
const u8 *p;
if (pnetwork->network.capability & WLAN_CAPABILITY_PRIVACY) {
bencrypt = 1;
pnetwork->network.Privacy = 1;
} else
pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_OPENSYS;
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"%s: ssid =%s\n", __func__, pnetwork->network.Ssid.ssid);
pie = pnetwork->network.IEs;
pie_len = pnetwork->network.IELength;
p = cfg80211_find_ie(WLAN_EID_RSN, pie, pie_len);
if (p && p[1]) {
pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WPA2;
} else if (cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
WLAN_OUI_TYPE_MICROSOFT_WPA,
pie, pie_len)) {
pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WPA;
} else {
if (bencrypt)
pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WEP;
}
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"%s: pnetwork->encryp_protocol is %x\n", __func__,
pnetwork->BcnInfo.encryp_protocol);
RT_TRACE(_module_rtl871x_mlme_c_, _drv_info_,
"%s: pnetwork->encryp_protocol is %x\n", __func__,
pnetwork->BcnInfo.encryp_protocol);
rtw_get_cipher_info(pnetwork);
/* get bwmode and ch_offset */
}
/* show MCS rate, unit: 100Kbps */
u16 rtw_mcs_rate23a(u8 rf_type, u8 bw_40MHz, u8 short_GI_20, u8 short_GI_40,
struct ieee80211_mcs_info *mcs)
{
u16 max_rate = 0;
if (rf_type == RF_1T1R) {
if (mcs->rx_mask[0] & BIT(7))
max_rate = (bw_40MHz) ? ((short_GI_40)?1500:1350):
((short_GI_20)?722:650);
else if (mcs->rx_mask[0] & BIT(6))
max_rate = (bw_40MHz) ? ((short_GI_40)?1350:1215):
((short_GI_20)?650:585);
else if (mcs->rx_mask[0] & BIT(5))
max_rate = (bw_40MHz) ? ((short_GI_40)?1200:1080):
((short_GI_20)?578:520);
else if (mcs->rx_mask[0] & BIT(4))
max_rate = (bw_40MHz) ? ((short_GI_40)?900:810):
((short_GI_20)?433:390);
else if (mcs->rx_mask[0] & BIT(3))
max_rate = (bw_40MHz) ? ((short_GI_40)?600:540):
((short_GI_20)?289:260);
else if (mcs->rx_mask[0] & BIT(2))
max_rate = (bw_40MHz) ? ((short_GI_40)?450:405):
((short_GI_20)?217:195);
else if (mcs->rx_mask[0] & BIT(1))
max_rate = (bw_40MHz) ? ((short_GI_40)?300:270):
((short_GI_20)?144:130);
else if (mcs->rx_mask[0] & BIT(0))
max_rate = (bw_40MHz) ? ((short_GI_40)?150:135):
((short_GI_20)?72:65);
} else {
if (mcs->rx_mask[1]) {
if (mcs->rx_mask[1] & BIT(7))
max_rate = (bw_40MHz) ? ((short_GI_40)?3000:2700):((short_GI_20)?1444:1300);
else if (mcs->rx_mask[1] & BIT(6))
max_rate = (bw_40MHz) ? ((short_GI_40)?2700:2430):((short_GI_20)?1300:1170);
else if (mcs->rx_mask[1] & BIT(5))
max_rate = (bw_40MHz) ? ((short_GI_40)?2400:2160):((short_GI_20)?1156:1040);
else if (mcs->rx_mask[1] & BIT(4))
max_rate = (bw_40MHz) ? ((short_GI_40)?1800:1620):((short_GI_20)?867:780);
else if (mcs->rx_mask[1] & BIT(3))
max_rate = (bw_40MHz) ? ((short_GI_40)?1200:1080):((short_GI_20)?578:520);
else if (mcs->rx_mask[1] & BIT(2))
max_rate = (bw_40MHz) ? ((short_GI_40)?900:810):((short_GI_20)?433:390);
else if (mcs->rx_mask[1] & BIT(1))
max_rate = (bw_40MHz) ? ((short_GI_40)?600:540):((short_GI_20)?289:260);
else if (mcs->rx_mask[1] & BIT(0))
max_rate = (bw_40MHz) ? ((short_GI_40)?300:270):((short_GI_20)?144:130);
} else {
if (mcs->rx_mask[0] & BIT(7))
max_rate = (bw_40MHz) ? ((short_GI_40)?1500:1350):((short_GI_20)?722:650);
else if (mcs->rx_mask[0] & BIT(6))
max_rate = (bw_40MHz) ? ((short_GI_40)?1350:1215):((short_GI_20)?650:585);
else if (mcs->rx_mask[0] & BIT(5))
max_rate = (bw_40MHz) ? ((short_GI_40)?1200:1080):((short_GI_20)?578:520);
else if (mcs->rx_mask[0] & BIT(4))
max_rate = (bw_40MHz) ? ((short_GI_40)?900:810):((short_GI_20)?433:390);
else if (mcs->rx_mask[0] & BIT(3))
max_rate = (bw_40MHz) ? ((short_GI_40)?600:540):((short_GI_20)?289:260);
else if (mcs->rx_mask[0] & BIT(2))
max_rate = (bw_40MHz) ? ((short_GI_40)?450:405):((short_GI_20)?217:195);
else if (mcs->rx_mask[0] & BIT(1))
max_rate = (bw_40MHz) ? ((short_GI_40)?300:270):((short_GI_20)?144:130);
else if (mcs->rx_mask[0] & BIT(0))
max_rate = (bw_40MHz) ? ((short_GI_40)?150:135):((short_GI_20)?72:65);
}
}
return max_rate;
}