|  | #ifndef _INTEL_RINGBUFFER_H_ | 
|  | #define _INTEL_RINGBUFFER_H_ | 
|  |  | 
|  | #include <linux/hashtable.h> | 
|  | #include "i915_gem_batch_pool.h" | 
|  | #include "i915_gem_request.h" | 
|  |  | 
|  | #define I915_CMD_HASH_ORDER 9 | 
|  |  | 
|  | /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, | 
|  | * but keeps the logic simple. Indeed, the whole purpose of this macro is just | 
|  | * to give some inclination as to some of the magic values used in the various | 
|  | * workarounds! | 
|  | */ | 
|  | #define CACHELINE_BYTES 64 | 
|  | #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t)) | 
|  |  | 
|  | /* | 
|  | * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use" | 
|  | * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use" | 
|  | * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use" | 
|  | * | 
|  | * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same | 
|  | * cacheline, the Head Pointer must not be greater than the Tail | 
|  | * Pointer." | 
|  | */ | 
|  | #define I915_RING_FREE_SPACE 64 | 
|  |  | 
|  | struct intel_hw_status_page { | 
|  | struct i915_vma *vma; | 
|  | u32 *page_addr; | 
|  | u32 ggtt_offset; | 
|  | }; | 
|  |  | 
|  | #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base)) | 
|  | #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val) | 
|  |  | 
|  | #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base)) | 
|  | #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val) | 
|  |  | 
|  | #define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base)) | 
|  | #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val) | 
|  |  | 
|  | #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base)) | 
|  | #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val) | 
|  |  | 
|  | #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base)) | 
|  | #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val) | 
|  |  | 
|  | #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base)) | 
|  | #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val) | 
|  |  | 
|  | /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to | 
|  | * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. | 
|  | */ | 
|  | #define gen8_semaphore_seqno_size sizeof(uint64_t) | 
|  | #define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \ | 
|  | (((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size) | 
|  | #define GEN8_SIGNAL_OFFSET(__ring, to)			     \ | 
|  | (dev_priv->semaphore->node.start + \ | 
|  | GEN8_SEMAPHORE_OFFSET((__ring)->id, (to))) | 
|  | #define GEN8_WAIT_OFFSET(__ring, from)			     \ | 
|  | (dev_priv->semaphore->node.start + \ | 
|  | GEN8_SEMAPHORE_OFFSET(from, (__ring)->id)) | 
|  |  | 
|  | enum intel_engine_hangcheck_action { | 
|  | HANGCHECK_IDLE = 0, | 
|  | HANGCHECK_WAIT, | 
|  | HANGCHECK_ACTIVE, | 
|  | HANGCHECK_KICK, | 
|  | HANGCHECK_HUNG, | 
|  | }; | 
|  |  | 
|  | #define HANGCHECK_SCORE_RING_HUNG 31 | 
|  |  | 
|  | struct intel_engine_hangcheck { | 
|  | u64 acthd; | 
|  | u32 seqno; | 
|  | int score; | 
|  | enum intel_engine_hangcheck_action action; | 
|  | int deadlock; | 
|  | u32 instdone[I915_NUM_INSTDONE_REG]; | 
|  | }; | 
|  |  | 
|  | struct intel_ring { | 
|  | struct i915_vma *vma; | 
|  | void *vaddr; | 
|  |  | 
|  | struct intel_engine_cs *engine; | 
|  |  | 
|  | struct list_head request_list; | 
|  |  | 
|  | u32 head; | 
|  | u32 tail; | 
|  | int space; | 
|  | int size; | 
|  | int effective_size; | 
|  |  | 
|  | /** We track the position of the requests in the ring buffer, and | 
|  | * when each is retired we increment last_retired_head as the GPU | 
|  | * must have finished processing the request and so we know we | 
|  | * can advance the ringbuffer up to that position. | 
|  | * | 
|  | * last_retired_head is set to -1 after the value is consumed so | 
|  | * we can detect new retirements. | 
|  | */ | 
|  | u32 last_retired_head; | 
|  | }; | 
|  |  | 
|  | struct i915_gem_context; | 
|  | struct drm_i915_reg_table; | 
|  |  | 
|  | /* | 
|  | * we use a single page to load ctx workarounds so all of these | 
|  | * values are referred in terms of dwords | 
|  | * | 
|  | * struct i915_wa_ctx_bb: | 
|  | *  offset: specifies batch starting position, also helpful in case | 
|  | *    if we want to have multiple batches at different offsets based on | 
|  | *    some criteria. It is not a requirement at the moment but provides | 
|  | *    an option for future use. | 
|  | *  size: size of the batch in DWORDS | 
|  | */ | 
|  | struct i915_ctx_workarounds { | 
|  | struct i915_wa_ctx_bb { | 
|  | u32 offset; | 
|  | u32 size; | 
|  | } indirect_ctx, per_ctx; | 
|  | struct i915_vma *vma; | 
|  | }; | 
|  |  | 
|  | struct drm_i915_gem_request; | 
|  |  | 
|  | struct intel_engine_cs { | 
|  | struct drm_i915_private *i915; | 
|  | const char	*name; | 
|  | enum intel_engine_id { | 
|  | RCS = 0, | 
|  | BCS, | 
|  | VCS, | 
|  | VCS2,	/* Keep instances of the same type engine together. */ | 
|  | VECS | 
|  | } id; | 
|  | #define I915_NUM_ENGINES 5 | 
|  | #define _VCS(n) (VCS + (n)) | 
|  | unsigned int exec_id; | 
|  | enum intel_engine_hw_id { | 
|  | RCS_HW = 0, | 
|  | VCS_HW, | 
|  | BCS_HW, | 
|  | VECS_HW, | 
|  | VCS2_HW | 
|  | } hw_id; | 
|  | enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */ | 
|  | u64 fence_context; | 
|  | u32		mmio_base; | 
|  | unsigned int irq_shift; | 
|  | struct intel_ring *buffer; | 
|  |  | 
|  | /* Rather than have every client wait upon all user interrupts, | 
|  | * with the herd waking after every interrupt and each doing the | 
|  | * heavyweight seqno dance, we delegate the task (of being the | 
|  | * bottom-half of the user interrupt) to the first client. After | 
|  | * every interrupt, we wake up one client, who does the heavyweight | 
|  | * coherent seqno read and either goes back to sleep (if incomplete), | 
|  | * or wakes up all the completed clients in parallel, before then | 
|  | * transferring the bottom-half status to the next client in the queue. | 
|  | * | 
|  | * Compared to walking the entire list of waiters in a single dedicated | 
|  | * bottom-half, we reduce the latency of the first waiter by avoiding | 
|  | * a context switch, but incur additional coherent seqno reads when | 
|  | * following the chain of request breadcrumbs. Since it is most likely | 
|  | * that we have a single client waiting on each seqno, then reducing | 
|  | * the overhead of waking that client is much preferred. | 
|  | */ | 
|  | struct intel_breadcrumbs { | 
|  | struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */ | 
|  | bool irq_posted; | 
|  |  | 
|  | spinlock_t lock; /* protects the lists of requests */ | 
|  | struct rb_root waiters; /* sorted by retirement, priority */ | 
|  | struct rb_root signals; /* sorted by retirement */ | 
|  | struct intel_wait *first_wait; /* oldest waiter by retirement */ | 
|  | struct task_struct *signaler; /* used for fence signalling */ | 
|  | struct drm_i915_gem_request *first_signal; | 
|  | struct timer_list fake_irq; /* used after a missed interrupt */ | 
|  | struct timer_list hangcheck; /* detect missed interrupts */ | 
|  |  | 
|  | unsigned long timeout; | 
|  |  | 
|  | bool irq_enabled : 1; | 
|  | bool rpm_wakelock : 1; | 
|  | } breadcrumbs; | 
|  |  | 
|  | /* | 
|  | * A pool of objects to use as shadow copies of client batch buffers | 
|  | * when the command parser is enabled. Prevents the client from | 
|  | * modifying the batch contents after software parsing. | 
|  | */ | 
|  | struct i915_gem_batch_pool batch_pool; | 
|  |  | 
|  | struct intel_hw_status_page status_page; | 
|  | struct i915_ctx_workarounds wa_ctx; | 
|  | struct i915_vma *scratch; | 
|  |  | 
|  | u32             irq_keep_mask; /* always keep these interrupts */ | 
|  | u32		irq_enable_mask; /* bitmask to enable ring interrupt */ | 
|  | void		(*irq_enable)(struct intel_engine_cs *engine); | 
|  | void		(*irq_disable)(struct intel_engine_cs *engine); | 
|  |  | 
|  | int		(*init_hw)(struct intel_engine_cs *engine); | 
|  | void		(*reset_hw)(struct intel_engine_cs *engine, | 
|  | struct drm_i915_gem_request *req); | 
|  |  | 
|  | int		(*init_context)(struct drm_i915_gem_request *req); | 
|  |  | 
|  | int		(*emit_flush)(struct drm_i915_gem_request *request, | 
|  | u32 mode); | 
|  | #define EMIT_INVALIDATE	BIT(0) | 
|  | #define EMIT_FLUSH	BIT(1) | 
|  | #define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH) | 
|  | int		(*emit_bb_start)(struct drm_i915_gem_request *req, | 
|  | u64 offset, u32 length, | 
|  | unsigned int dispatch_flags); | 
|  | #define I915_DISPATCH_SECURE BIT(0) | 
|  | #define I915_DISPATCH_PINNED BIT(1) | 
|  | #define I915_DISPATCH_RS     BIT(2) | 
|  | int		(*emit_request)(struct drm_i915_gem_request *req); | 
|  |  | 
|  | /* Pass the request to the hardware queue (e.g. directly into | 
|  | * the legacy ringbuffer or to the end of an execlist). | 
|  | * | 
|  | * This is called from an atomic context with irqs disabled; must | 
|  | * be irq safe. | 
|  | */ | 
|  | void		(*submit_request)(struct drm_i915_gem_request *req); | 
|  |  | 
|  | /* Some chipsets are not quite as coherent as advertised and need | 
|  | * an expensive kick to force a true read of the up-to-date seqno. | 
|  | * However, the up-to-date seqno is not always required and the last | 
|  | * seen value is good enough. Note that the seqno will always be | 
|  | * monotonic, even if not coherent. | 
|  | */ | 
|  | void		(*irq_seqno_barrier)(struct intel_engine_cs *engine); | 
|  | void		(*cleanup)(struct intel_engine_cs *engine); | 
|  |  | 
|  | /* GEN8 signal/wait table - never trust comments! | 
|  | *	  signal to	signal to    signal to   signal to      signal to | 
|  | *	    RCS		   VCS          BCS        VECS		 VCS2 | 
|  | *      -------------------------------------------------------------------- | 
|  | *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) | | 
|  | *	|------------------------------------------------------------------- | 
|  | *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) | | 
|  | *	|------------------------------------------------------------------- | 
|  | *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) | | 
|  | *	|------------------------------------------------------------------- | 
|  | * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) | | 
|  | *	|------------------------------------------------------------------- | 
|  | * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) | | 
|  | *	|------------------------------------------------------------------- | 
|  | * | 
|  | * Generalization: | 
|  | *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id) | 
|  | *  ie. transpose of g(x, y) | 
|  | * | 
|  | *	 sync from	sync from    sync from    sync from	sync from | 
|  | *	    RCS		   VCS          BCS        VECS		 VCS2 | 
|  | *      -------------------------------------------------------------------- | 
|  | *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) | | 
|  | *	|------------------------------------------------------------------- | 
|  | *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) | | 
|  | *	|------------------------------------------------------------------- | 
|  | *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) | | 
|  | *	|------------------------------------------------------------------- | 
|  | * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) | | 
|  | *	|------------------------------------------------------------------- | 
|  | * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) | | 
|  | *	|------------------------------------------------------------------- | 
|  | * | 
|  | * Generalization: | 
|  | *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id) | 
|  | *  ie. transpose of f(x, y) | 
|  | */ | 
|  | struct { | 
|  | u32	sync_seqno[I915_NUM_ENGINES-1]; | 
|  |  | 
|  | union { | 
|  | #define GEN6_SEMAPHORE_LAST	VECS_HW | 
|  | #define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1) | 
|  | #define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0) | 
|  | struct { | 
|  | /* our mbox written by others */ | 
|  | u32		wait[GEN6_NUM_SEMAPHORES]; | 
|  | /* mboxes this ring signals to */ | 
|  | i915_reg_t	signal[GEN6_NUM_SEMAPHORES]; | 
|  | } mbox; | 
|  | u64		signal_ggtt[I915_NUM_ENGINES]; | 
|  | }; | 
|  |  | 
|  | /* AKA wait() */ | 
|  | int	(*sync_to)(struct drm_i915_gem_request *req, | 
|  | struct drm_i915_gem_request *signal); | 
|  | int	(*signal)(struct drm_i915_gem_request *req); | 
|  | } semaphore; | 
|  |  | 
|  | /* Execlists */ | 
|  | struct tasklet_struct irq_tasklet; | 
|  | spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */ | 
|  | struct execlist_port { | 
|  | struct drm_i915_gem_request *request; | 
|  | unsigned int count; | 
|  | } execlist_port[2]; | 
|  | struct list_head execlist_queue; | 
|  | unsigned int fw_domains; | 
|  | bool disable_lite_restore_wa; | 
|  | bool preempt_wa; | 
|  | u32 ctx_desc_template; | 
|  |  | 
|  | /** | 
|  | * List of breadcrumbs associated with GPU requests currently | 
|  | * outstanding. | 
|  | */ | 
|  | struct list_head request_list; | 
|  |  | 
|  | /** | 
|  | * Seqno of request most recently submitted to request_list. | 
|  | * Used exclusively by hang checker to avoid grabbing lock while | 
|  | * inspecting request list. | 
|  | */ | 
|  | u32 last_submitted_seqno; | 
|  | u32 last_pending_seqno; | 
|  |  | 
|  | /* An RCU guarded pointer to the last request. No reference is | 
|  | * held to the request, users must carefully acquire a reference to | 
|  | * the request using i915_gem_active_get_rcu(), or hold the | 
|  | * struct_mutex. | 
|  | */ | 
|  | struct i915_gem_active last_request; | 
|  |  | 
|  | struct i915_gem_context *last_context; | 
|  |  | 
|  | struct intel_engine_hangcheck hangcheck; | 
|  |  | 
|  | bool needs_cmd_parser; | 
|  |  | 
|  | /* | 
|  | * Table of commands the command parser needs to know about | 
|  | * for this engine. | 
|  | */ | 
|  | DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER); | 
|  |  | 
|  | /* | 
|  | * Table of registers allowed in commands that read/write registers. | 
|  | */ | 
|  | const struct drm_i915_reg_table *reg_tables; | 
|  | int reg_table_count; | 
|  |  | 
|  | /* | 
|  | * Returns the bitmask for the length field of the specified command. | 
|  | * Return 0 for an unrecognized/invalid command. | 
|  | * | 
|  | * If the command parser finds an entry for a command in the engine's | 
|  | * cmd_tables, it gets the command's length based on the table entry. | 
|  | * If not, it calls this function to determine the per-engine length | 
|  | * field encoding for the command (i.e. different opcode ranges use | 
|  | * certain bits to encode the command length in the header). | 
|  | */ | 
|  | u32 (*get_cmd_length_mask)(u32 cmd_header); | 
|  | }; | 
|  |  | 
|  | static inline bool | 
|  | intel_engine_initialized(const struct intel_engine_cs *engine) | 
|  | { | 
|  | return engine->i915 != NULL; | 
|  | } | 
|  |  | 
|  | static inline unsigned | 
|  | intel_engine_flag(const struct intel_engine_cs *engine) | 
|  | { | 
|  | return 1 << engine->id; | 
|  | } | 
|  |  | 
|  | static inline u32 | 
|  | intel_engine_sync_index(struct intel_engine_cs *engine, | 
|  | struct intel_engine_cs *other) | 
|  | { | 
|  | int idx; | 
|  |  | 
|  | /* | 
|  | * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2; | 
|  | * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs; | 
|  | * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs; | 
|  | * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs; | 
|  | * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs; | 
|  | */ | 
|  |  | 
|  | idx = (other - engine) - 1; | 
|  | if (idx < 0) | 
|  | idx += I915_NUM_ENGINES; | 
|  |  | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | intel_flush_status_page(struct intel_engine_cs *engine, int reg) | 
|  | { | 
|  | mb(); | 
|  | clflush(&engine->status_page.page_addr[reg]); | 
|  | mb(); | 
|  | } | 
|  |  | 
|  | static inline u32 | 
|  | intel_read_status_page(struct intel_engine_cs *engine, int reg) | 
|  | { | 
|  | /* Ensure that the compiler doesn't optimize away the load. */ | 
|  | return READ_ONCE(engine->status_page.page_addr[reg]); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | intel_write_status_page(struct intel_engine_cs *engine, | 
|  | int reg, u32 value) | 
|  | { | 
|  | engine->status_page.page_addr[reg] = value; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads a dword out of the status page, which is written to from the command | 
|  | * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or | 
|  | * MI_STORE_DATA_IMM. | 
|  | * | 
|  | * The following dwords have a reserved meaning: | 
|  | * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. | 
|  | * 0x04: ring 0 head pointer | 
|  | * 0x05: ring 1 head pointer (915-class) | 
|  | * 0x06: ring 2 head pointer (915-class) | 
|  | * 0x10-0x1b: Context status DWords (GM45) | 
|  | * 0x1f: Last written status offset. (GM45) | 
|  | * 0x20-0x2f: Reserved (Gen6+) | 
|  | * | 
|  | * The area from dword 0x30 to 0x3ff is available for driver usage. | 
|  | */ | 
|  | #define I915_GEM_HWS_INDEX		0x30 | 
|  | #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT) | 
|  | #define I915_GEM_HWS_SCRATCH_INDEX	0x40 | 
|  | #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT) | 
|  |  | 
|  | struct intel_ring * | 
|  | intel_engine_create_ring(struct intel_engine_cs *engine, int size); | 
|  | int intel_ring_pin(struct intel_ring *ring); | 
|  | void intel_ring_unpin(struct intel_ring *ring); | 
|  | void intel_ring_free(struct intel_ring *ring); | 
|  |  | 
|  | void intel_engine_stop(struct intel_engine_cs *engine); | 
|  | void intel_engine_cleanup(struct intel_engine_cs *engine); | 
|  |  | 
|  | void intel_legacy_submission_resume(struct drm_i915_private *dev_priv); | 
|  |  | 
|  | int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request); | 
|  |  | 
|  | int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n); | 
|  | int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req); | 
|  |  | 
|  | static inline void intel_ring_emit(struct intel_ring *ring, u32 data) | 
|  | { | 
|  | *(uint32_t *)(ring->vaddr + ring->tail) = data; | 
|  | ring->tail += 4; | 
|  | } | 
|  |  | 
|  | static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg) | 
|  | { | 
|  | intel_ring_emit(ring, i915_mmio_reg_offset(reg)); | 
|  | } | 
|  |  | 
|  | static inline void intel_ring_advance(struct intel_ring *ring) | 
|  | { | 
|  | /* Dummy function. | 
|  | * | 
|  | * This serves as a placeholder in the code so that the reader | 
|  | * can compare against the preceding intel_ring_begin() and | 
|  | * check that the number of dwords emitted matches the space | 
|  | * reserved for the command packet (i.e. the value passed to | 
|  | * intel_ring_begin()). | 
|  | */ | 
|  | } | 
|  |  | 
|  | static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value) | 
|  | { | 
|  | /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */ | 
|  | return value & (ring->size - 1); | 
|  | } | 
|  |  | 
|  | int __intel_ring_space(int head, int tail, int size); | 
|  | void intel_ring_update_space(struct intel_ring *ring); | 
|  |  | 
|  | void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno); | 
|  |  | 
|  | void intel_engine_setup_common(struct intel_engine_cs *engine); | 
|  | int intel_engine_init_common(struct intel_engine_cs *engine); | 
|  | int intel_engine_create_scratch(struct intel_engine_cs *engine, int size); | 
|  | void intel_engine_cleanup_common(struct intel_engine_cs *engine); | 
|  |  | 
|  | static inline int intel_engine_idle(struct intel_engine_cs *engine, | 
|  | unsigned int flags) | 
|  | { | 
|  | /* Wait upon the last request to be completed */ | 
|  | return i915_gem_active_wait_unlocked(&engine->last_request, | 
|  | flags, NULL, NULL); | 
|  | } | 
|  |  | 
|  | int intel_init_render_ring_buffer(struct intel_engine_cs *engine); | 
|  | int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine); | 
|  | int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine); | 
|  | int intel_init_blt_ring_buffer(struct intel_engine_cs *engine); | 
|  | int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine); | 
|  |  | 
|  | u64 intel_engine_get_active_head(struct intel_engine_cs *engine); | 
|  | static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine) | 
|  | { | 
|  | return intel_read_status_page(engine, I915_GEM_HWS_INDEX); | 
|  | } | 
|  |  | 
|  | int init_workarounds_ring(struct intel_engine_cs *engine); | 
|  |  | 
|  | /* | 
|  | * Arbitrary size for largest possible 'add request' sequence. The code paths | 
|  | * are complex and variable. Empirical measurement shows that the worst case | 
|  | * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However, | 
|  | * we need to allocate double the largest single packet within that emission | 
|  | * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW). | 
|  | */ | 
|  | #define MIN_SPACE_FOR_ADD_REQUEST 336 | 
|  |  | 
|  | static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine) | 
|  | { | 
|  | return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR; | 
|  | } | 
|  |  | 
|  | /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */ | 
|  | int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine); | 
|  |  | 
|  | static inline void intel_wait_init(struct intel_wait *wait, u32 seqno) | 
|  | { | 
|  | wait->tsk = current; | 
|  | wait->seqno = seqno; | 
|  | } | 
|  |  | 
|  | static inline bool intel_wait_complete(const struct intel_wait *wait) | 
|  | { | 
|  | return RB_EMPTY_NODE(&wait->node); | 
|  | } | 
|  |  | 
|  | bool intel_engine_add_wait(struct intel_engine_cs *engine, | 
|  | struct intel_wait *wait); | 
|  | void intel_engine_remove_wait(struct intel_engine_cs *engine, | 
|  | struct intel_wait *wait); | 
|  | void intel_engine_enable_signaling(struct drm_i915_gem_request *request); | 
|  |  | 
|  | static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine) | 
|  | { | 
|  | return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh); | 
|  | } | 
|  |  | 
|  | static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine) | 
|  | { | 
|  | bool wakeup = false; | 
|  |  | 
|  | /* Note that for this not to dangerously chase a dangling pointer, | 
|  | * we must hold the rcu_read_lock here. | 
|  | * | 
|  | * Also note that tsk is likely to be in !TASK_RUNNING state so an | 
|  | * early test for tsk->state != TASK_RUNNING before wake_up_process() | 
|  | * is unlikely to be beneficial. | 
|  | */ | 
|  | if (intel_engine_has_waiter(engine)) { | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh); | 
|  | if (tsk) | 
|  | wakeup = wake_up_process(tsk); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | return wakeup; | 
|  | } | 
|  |  | 
|  | void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine); | 
|  | void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine); | 
|  | unsigned int intel_kick_waiters(struct drm_i915_private *i915); | 
|  | unsigned int intel_kick_signalers(struct drm_i915_private *i915); | 
|  |  | 
|  | static inline bool intel_engine_is_active(struct intel_engine_cs *engine) | 
|  | { | 
|  | return i915_gem_active_isset(&engine->last_request); | 
|  | } | 
|  |  | 
|  | #endif /* _INTEL_RINGBUFFER_H_ */ |