| /* |
| * Copyright (c) 2012, 2020 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "arch/arm/kvm/arm_cpu.hh" |
| |
| #include <linux/kvm.h> |
| |
| #include <algorithm> |
| #include <cerrno> |
| #include <memory> |
| #include <set> |
| |
| #include "arch/arm/interrupts.hh" |
| #include "arch/arm/regs/int.hh" |
| #include "arch/arm/regs/misc.hh" |
| #include "cpu/kvm/base.hh" |
| #include "debug/Kvm.hh" |
| #include "debug/KvmContext.hh" |
| #include "debug/KvmInt.hh" |
| #include "sim/pseudo_inst.hh" |
| |
| namespace gem5 |
| { |
| |
| using namespace ArmISA; |
| |
| namespace |
| { |
| |
| constexpr uint64_t |
| extractField(uint64_t val, uint64_t mask, size_t shift) |
| { |
| return (val & mask) >> shift; |
| } |
| |
| constexpr bool |
| regIsArm(uint64_t id) |
| { |
| return (id & KVM_REG_ARCH_MASK) == KVM_REG_ARM; |
| } |
| |
| constexpr bool |
| regIs32Bit(uint64_t id) |
| { |
| return (id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32; |
| } |
| |
| constexpr bool |
| regIs64Bit(uint64_t id) |
| { |
| return (id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64; |
| } |
| |
| constexpr bool |
| regIsCp(uint64_t id, uint64_t cp) |
| { |
| return (id & KVM_REG_ARM_COPROC_MASK) == cp; |
| } |
| |
| constexpr bool |
| regIsCore(uint64_t id) |
| { |
| return regIsCp(id, KVM_REG_ARM_CORE); |
| } |
| |
| constexpr bool |
| regIsVfp(uint64_t id) |
| { |
| return regIsCp(id, KVM_REG_ARM_VFP); |
| } |
| |
| constexpr uint64_t |
| regVfpReg(uint64_t id) |
| { |
| return id & KVM_REG_ARM_VFP_MASK; |
| } |
| |
| // HACK: These aren't really defined in any of the headers, so we'll |
| // assume some reasonable values for now. |
| constexpr bool |
| regIsVfpReg(uint64_t id) |
| { |
| return regVfpReg(id) < 0x100; |
| } |
| constexpr bool |
| regIsVfpCtrl(uint64_t id) |
| { |
| return regVfpReg(id) >= 0x100; |
| } |
| |
| constexpr bool |
| regIsDemux(uint64_t id) |
| { |
| return regIsCp(id, KVM_REG_ARM_DEMUX); |
| } |
| |
| |
| // There is no constant in the kernel headers defining the mask to use |
| // to get the core register index. We'll just do what they do |
| // internally. |
| constexpr uint64_t |
| regCoreIdx(uint64_t id) |
| { |
| return ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE); |
| } |
| |
| constexpr uint64_t |
| regCp(uint64_t id) |
| { |
| return extractField(id, KVM_REG_ARM_COPROC_MASK, KVM_REG_ARM_COPROC_SHIFT); |
| } |
| |
| constexpr uint64_t |
| regCrn(uint64_t id) |
| { |
| return extractField(id, KVM_REG_ARM_32_CRN_MASK, KVM_REG_ARM_32_CRN_SHIFT); |
| } |
| |
| constexpr uint64_t |
| regOpc1(uint64_t id) |
| { |
| return extractField(id, KVM_REG_ARM_OPC1_MASK, KVM_REG_ARM_OPC1_SHIFT); |
| } |
| |
| constexpr uint64_t |
| regCrm(uint64_t id) |
| { |
| return extractField(id, KVM_REG_ARM_CRM_MASK, KVM_REG_ARM_CRM_SHIFT); |
| } |
| |
| constexpr uint64_t |
| regOpc2(uint64_t id) |
| { |
| return extractField(id, KVM_REG_ARM_32_OPC2_MASK, |
| KVM_REG_ARM_32_OPC2_SHIFT); |
| } |
| |
| constexpr uint64_t |
| regCp32(uint64_t cpnum, uint64_t crn, uint64_t opc1, uint64_t crm, |
| uint64_t opc2) |
| { |
| return KVM_REG_ARM | KVM_REG_SIZE_U32 | |
| (cpnum << KVM_REG_ARM_COPROC_SHIFT) | |
| (crn << KVM_REG_ARM_32_CRN_SHIFT) | |
| (opc1 << KVM_REG_ARM_OPC1_SHIFT) | |
| (crm << KVM_REG_ARM_CRM_SHIFT) | |
| (opc2 << KVM_REG_ARM_32_OPC2_SHIFT); |
| } |
| |
| constexpr uint64_t |
| regCp64(uint64_t cpnum, uint64_t opc1, uint64_t crm) |
| { |
| return KVM_REG_ARM | KVM_REG_SIZE_U64 | |
| (cpnum << KVM_REG_ARM_COPROC_SHIFT) | |
| (opc1 << KVM_REG_ARM_OPC1_SHIFT) | |
| (crm << KVM_REG_ARM_CRM_SHIFT); |
| } |
| |
| constexpr KvmIntRegInfo |
| regCore32(off_t offset, RegIndex idx, const char *name) |
| { |
| return { KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | offset, |
| idx, name }; |
| } |
| |
| constexpr uint64_t |
| regVfp32(uint64_t regno) |
| { |
| return KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | regno; |
| } |
| |
| constexpr uint64_t |
| regVfp64(uint64_t regno) |
| { |
| return KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | regno; |
| } |
| |
| constexpr uint64_t |
| regDemux32(uint64_t dmxid, uint64_t val) |
| { |
| return KVM_REG_ARM | KVM_REG_SIZE_U32 | dmxid | val; |
| } |
| |
| constexpr uint64_t |
| interruptId(uint64_t type, uint64_t vcpu, uint64_t irq) |
| { |
| return (type << KVM_ARM_IRQ_TYPE_SHIFT) | |
| (vcpu << KVM_ARM_IRQ_VCPU_SHIFT) | |
| (irq << KVM_ARM_IRQ_NUM_SHIFT); |
| } |
| |
| constexpr uint64_t |
| interruptVcpuIrq(uint64_t vcpu) |
| { |
| return interruptId(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_IRQ); |
| } |
| |
| constexpr uint64_t |
| interruptVcpuFiq(uint64_t vcpu) |
| { |
| return interruptId(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_FIQ); |
| } |
| |
| } // anonymous namespace |
| |
| // Some of the co-processor registers are invariants and must have the |
| // same value on both the host and the guest. We need to keep a list |
| // of these to prevent gem5 from fiddling with them on the guest. |
| static uint64_t invariant_reg_vector[] = { |
| regCp32(15, 0, 0, 0, 0), // MIDR |
| regCp32(15, 0, 0, 0, 1), // CTR |
| regCp32(15, 0, 0, 0, 2), // TCMTR |
| regCp32(15, 0, 0, 0, 3), // TLBTR |
| regCp32(15, 0, 0, 0, 6), // REVIDR |
| |
| regCp32(15, 0, 0, 1, 0), // ID_PFR0 |
| regCp32(15, 0, 0, 1, 1), // ID_PFR1 |
| regCp32(15, 0, 0, 1, 2), // ID_DFR0 |
| regCp32(15, 0, 0, 1, 3), // ID_AFR0 |
| regCp32(15, 0, 0, 1, 4), // ID_MMFR0 |
| regCp32(15, 0, 0, 1, 5), // ID_MMFR1 |
| regCp32(15, 0, 0, 1, 6), // ID_MMFR2 |
| regCp32(15, 0, 0, 1, 7), // ID_MMFR3 |
| |
| regCp32(15, 0, 0, 2, 0), // ID_ISAR0 |
| regCp32(15, 0, 0, 2, 1), // ID_ISAR1 |
| regCp32(15, 0, 0, 2, 2), // ID_ISAR2 |
| regCp32(15, 0, 0, 2, 3), // ID_ISAR3 |
| regCp32(15, 0, 0, 2, 4), // ID_ISAR4 |
| regCp32(15, 0, 0, 2, 5), // ID_ISAR5 |
| regCp32(15, 0, 0, 2, 6), // ID_MMFR4 |
| regCp32(15, 0, 0, 2, 7), // ID_ISAR6 |
| |
| regCp32(15, 0, 1, 0, 0), // CSSIDR |
| regCp32(15, 0, 1, 0, 1), // CLIDR |
| regCp32(15, 0, 1, 0, 7), // AIDR |
| |
| regVfp32(KVM_REG_ARM_VFP_MVFR0), |
| regVfp32(KVM_REG_ARM_VFP_MVFR1), |
| regVfp32(KVM_REG_ARM_VFP_FPSID), |
| |
| regDemux32(KVM_REG_ARM_DEMUX_ID_CCSIDR, 0), |
| }; |
| |
| const static uint64_t KVM_REG64_TTBR0(regCp64(15, 0, 2)); |
| const static uint64_t KVM_REG64_TTBR1(regCp64(15, 1, 2)); |
| |
| |
| const std::set<uint64_t> ArmKvmCPU::invariant_regs( |
| std::begin(invariant_reg_vector), std::end(invariant_reg_vector)); |
| |
| |
| ArmKvmCPU::KvmIntRegInfo ArmKvmCPU::kvmIntRegs[] = { |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r0), int_reg::R0, "R0"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r1), int_reg::R1, "R1"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r2), int_reg::R2, "R2"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r3), int_reg::R3, "R3"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r4), int_reg::R4, "R4"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r5), int_reg::R5, "R5"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r6), int_reg::R6, "R6"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r7), int_reg::R7, "R7"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r8), int_reg::R8, "R8"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r9), int_reg::R9, "R9"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r10), int_reg::R10, "R10"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_fp), int_reg::R11, "R11"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_ip), int_reg::R12, "R12"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_sp), int_reg::R13, "R13(USR)"), |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_lr), int_reg::R14, "R14(USR)"), |
| |
| regCore32(KVM_REG_ARM_CORE_REG(svc_regs[0]), int_reg::SpSvc, "R13(SVC)"), |
| regCore32(KVM_REG_ARM_CORE_REG(svc_regs[1]), int_reg::LrSvc, "R14(SVC)"), |
| |
| regCore32(KVM_REG_ARM_CORE_REG(abt_regs[0]), int_reg::SpAbt, "R13(ABT)"), |
| regCore32(KVM_REG_ARM_CORE_REG(abt_regs[1]), int_reg::LrAbt, "R14(ABT)"), |
| |
| regCore32(KVM_REG_ARM_CORE_REG(und_regs[0]), int_reg::SpUnd, "R13(UND)"), |
| regCore32(KVM_REG_ARM_CORE_REG(und_regs[1]), int_reg::LrUnd, "R14(UND)"), |
| |
| regCore32(KVM_REG_ARM_CORE_REG(irq_regs[0]), int_reg::SpIrq, "R13(IRQ)"), |
| regCore32(KVM_REG_ARM_CORE_REG(irq_regs[1]), int_reg::LrIrq, "R14(IRQ)"), |
| |
| |
| regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[0]), int_reg::R8Fiq, "R8(FIQ)"), |
| regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[1]), int_reg::R9Fiq, "R9(FIQ)"), |
| regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[2]), int_reg::R10Fiq, "R10(FIQ)"), |
| regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[3]), int_reg::R11Fiq, "R11(FIQ)"), |
| regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[4]), int_reg::R12Fiq, "R12(FIQ)"), |
| regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[5]), int_reg::R13Fiq, "R13(FIQ)"), |
| regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[6]), int_reg::R14Fiq, "R14(FIQ)"), |
| { 0, int_reg::NumRegs, NULL } |
| }; |
| |
| ArmKvmCPU::KvmCoreMiscRegInfo ArmKvmCPU::kvmCoreMiscRegs[] = { |
| regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr), MISCREG_CPSR, "CPSR"), |
| regCore32(KVM_REG_ARM_CORE_REG(svc_regs[2]), MISCREG_SPSR_SVC, |
| "SPSR(SVC)"), |
| regCore32(KVM_REG_ARM_CORE_REG(abt_regs[2]), MISCREG_SPSR_ABT, |
| "SPSR(ABT)"), |
| regCore32(KVM_REG_ARM_CORE_REG(und_regs[2]), MISCREG_SPSR_UND, |
| "SPSR(UND)"), |
| regCore32(KVM_REG_ARM_CORE_REG(irq_regs[2]), MISCREG_SPSR_IRQ, |
| "SPSR(IRQ)"), |
| regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[2]), MISCREG_SPSR_FIQ, |
| "SPSR(FIQ)"), |
| { 0, NUM_MISCREGS } |
| }; |
| |
| ArmKvmCPU::ArmKvmCPU(const ArmKvmCPUParams ¶ms) |
| : BaseKvmCPU(params), |
| irqAsserted(false), fiqAsserted(false) |
| { |
| } |
| |
| ArmKvmCPU::~ArmKvmCPU() |
| { |
| } |
| |
| void |
| ArmKvmCPU::startup() |
| { |
| BaseKvmCPU::startup(); |
| |
| /* TODO: This needs to be moved when we start to support VMs with |
| * multiple threads since kvmArmVCpuInit requires that all CPUs in |
| * the VM have been created. |
| */ |
| /* TODO: The CPU type needs to be configurable once KVM on ARM |
| * starts to support more CPUs. |
| */ |
| kvmArmVCpuInit(KVM_ARM_TARGET_CORTEX_A15); |
| } |
| |
| Tick |
| ArmKvmCPU::kvmRun(Tick ticks) |
| { |
| auto interrupt = static_cast<ArmISA::Interrupts *>(interrupts[0]); |
| const bool simFIQ = interrupt->checkRaw(INT_FIQ); |
| const bool simIRQ = interrupt->checkRaw(INT_IRQ); |
| |
| if (fiqAsserted != simFIQ) { |
| fiqAsserted = simFIQ; |
| DPRINTF(KvmInt, "KVM: Update FIQ state: %i\n", simFIQ); |
| vm->setIRQLine(interruptVcpuFiq(vcpuID), simFIQ); |
| } |
| if (irqAsserted != simIRQ) { |
| irqAsserted = simIRQ; |
| DPRINTF(KvmInt, "KVM: Update IRQ state: %i\n", simIRQ); |
| vm->setIRQLine(interruptVcpuIrq(vcpuID), simIRQ); |
| } |
| |
| return BaseKvmCPU::kvmRun(ticks); |
| } |
| |
| void |
| ArmKvmCPU::dump() |
| { |
| dumpKvmStateCore(); |
| dumpKvmStateMisc(); |
| } |
| |
| void |
| ArmKvmCPU::updateKvmState() |
| { |
| DPRINTF(KvmContext, "Updating KVM state...\n"); |
| |
| updateKvmStateCore(); |
| updateKvmStateMisc(); |
| } |
| |
| void |
| ArmKvmCPU::updateThreadContext() |
| { |
| DPRINTF(KvmContext, "Updating gem5 state...\n"); |
| |
| updateTCStateCore(); |
| updateTCStateMisc(); |
| } |
| |
| const ArmKvmCPU::RegIndexVector & |
| ArmKvmCPU::getRegList() const |
| { |
| if (_regIndexList.size() == 0) { |
| std::unique_ptr<struct kvm_reg_list, void(*)(void *p)> |
| regs(nullptr, [](void *p) { operator delete(p); }); |
| uint64_t i = 1; |
| |
| do { |
| i <<= 1; |
| regs.reset((struct kvm_reg_list *) |
| operator new(sizeof(struct kvm_reg_list) + |
| i * sizeof(uint64_t))); |
| regs->n = i; |
| } while (!getRegList(*regs)); |
| _regIndexList.assign(regs->reg, |
| regs->reg + regs->n); |
| } |
| |
| return _regIndexList; |
| } |
| |
| void |
| ArmKvmCPU::kvmArmVCpuInit(uint32_t target) |
| { |
| struct kvm_vcpu_init init; |
| |
| memset(&init, 0, sizeof(init)); |
| |
| init.target = target; |
| |
| kvmArmVCpuInit(init); |
| } |
| |
| void |
| ArmKvmCPU::kvmArmVCpuInit(const struct kvm_vcpu_init &init) |
| { |
| if (ioctl(KVM_ARM_VCPU_INIT, (void *)&init) == -1) |
| panic("KVM: Failed to initialize vCPU\n"); |
| } |
| |
| MiscRegIndex |
| ArmKvmCPU::decodeCoProcReg(uint64_t id) const |
| { |
| const unsigned cp = regCp(id); |
| const bool is_reg32 = regIs32Bit(id); |
| const bool is_reg64 = regIs64Bit(id); |
| |
| // CP numbers larger than 15 are reserved for KVM extensions |
| if (cp > 15) |
| return NUM_MISCREGS; |
| |
| const unsigned crm = regCrm(id); |
| const unsigned crn = regCrn(id); |
| const unsigned opc1 = regOpc1(id); |
| const unsigned opc2 = regOpc2(id); |
| |
| if (is_reg32) { |
| switch (cp) { |
| case 14: |
| return decodeCP14Reg(crn, opc1, crm, opc2); |
| |
| case 15: |
| return decodeCP15Reg(crn, opc1, crm, opc2); |
| |
| default: |
| return NUM_MISCREGS; |
| } |
| } else if (is_reg64) { |
| return NUM_MISCREGS; |
| } else { |
| warn("Unhandled register length, register (0x%x) ignored.\n"); |
| return NUM_MISCREGS; |
| } |
| } |
| |
| ArmISA::MiscRegIndex |
| ArmKvmCPU::decodeVFPCtrlReg(uint64_t id) const |
| { |
| if (!regIsArm(id) || !regIsVfp(id) || !regIsVfpCtrl(id)) |
| return NUM_MISCREGS; |
| |
| const unsigned vfp_reg = regVfpReg(id); |
| switch (vfp_reg) { |
| case KVM_REG_ARM_VFP_FPSID: return MISCREG_FPSID; |
| case KVM_REG_ARM_VFP_FPSCR: return MISCREG_FPSCR; |
| case KVM_REG_ARM_VFP_MVFR0: return MISCREG_MVFR0; |
| case KVM_REG_ARM_VFP_MVFR1: return MISCREG_MVFR1; |
| case KVM_REG_ARM_VFP_FPEXC: return MISCREG_FPEXC; |
| |
| case KVM_REG_ARM_VFP_FPINST: |
| case KVM_REG_ARM_VFP_FPINST2: |
| warn_once("KVM: FPINST not implemented.\n"); |
| return NUM_MISCREGS; |
| |
| default: |
| return NUM_MISCREGS; |
| } |
| } |
| |
| bool |
| ArmKvmCPU::isInvariantReg(uint64_t id) |
| { |
| /* Mask away the value field from multiplexed registers, we assume |
| * that entire groups of multiplexed registers can be treated as |
| * invariant. */ |
| if (regIsArm(id) && regIsDemux(id)) |
| id &= ~KVM_REG_ARM_DEMUX_VAL_MASK; |
| |
| return invariant_regs.find(id) != invariant_regs.end(); |
| } |
| |
| bool |
| ArmKvmCPU::getRegList(struct kvm_reg_list ®s) const |
| { |
| if (ioctl(KVM_GET_REG_LIST, (void *)®s) == -1) { |
| if (errno == E2BIG) { |
| return false; |
| } else { |
| panic("KVM: Failed to get vCPU register list (errno: %i)\n", |
| errno); |
| } |
| } else { |
| return true; |
| } |
| } |
| |
| void |
| ArmKvmCPU::dumpKvmStateCore() |
| { |
| /* Print core registers */ |
| uint32_t pc = getOneRegU32(REG_CORE32(usr_regs.ARM_pc)); |
| inform("PC: 0x%x\n", pc); |
| |
| for (const KvmIntRegInfo *ri(kvmIntRegs); |
| ri->idx != int_reg::NumRegs; ++ri) { |
| |
| uint32_t value(getOneRegU32(ri->id)); |
| inform("%s: 0x%x\n", ri->name, value); |
| } |
| |
| for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs); |
| ri->idx != NUM_MISCREGS; ++ri) { |
| |
| uint32_t value(getOneRegU32(ri->id)); |
| inform("%s: 0x%x\n", miscRegName[ri->idx], value); |
| } |
| } |
| |
| void |
| ArmKvmCPU::dumpKvmStateMisc() |
| { |
| /* Print co-processor registers */ |
| const RegIndexVector ®_ids = getRegList(); |
| for (RegIndexVector::const_iterator it(reg_ids.begin()); |
| it != reg_ids.end(); ++it) { |
| uint64_t id = *it; |
| |
| if (regIsArm(id) && regCp(id) <= 15) { |
| dumpKvmStateCoProc(id); |
| } else if (regIsArm(id) && regIsVfp(id)) { |
| dumpKvmStateVFP(id); |
| } else if (regIsArm(id) && regIsDemux(id)) { |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| inform("CCSIDR [0x%x]: %s\n", |
| extractField(id, KVM_REG_ARM_DEMUX_VAL_MASK, |
| KVM_REG_ARM_DEMUX_VAL_SHIFT), |
| getAndFormatOneReg(id)); |
| break; |
| default: |
| inform("DEMUX [0x%x, 0x%x]: %s\n", |
| extractField(id, KVM_REG_ARM_DEMUX_ID_MASK, |
| KVM_REG_ARM_DEMUX_ID_SHIFT), |
| extractField(id, KVM_REG_ARM_DEMUX_VAL_MASK, |
| KVM_REG_ARM_DEMUX_VAL_SHIFT), |
| getAndFormatOneReg(id)); |
| break; |
| } |
| } else if (!regIsCore(id)) { |
| inform("0x%x: %s\n", id, getAndFormatOneReg(id)); |
| } |
| } |
| } |
| |
| void |
| ArmKvmCPU::dumpKvmStateCoProc(uint64_t id) |
| { |
| assert(regIsArm(id)); |
| assert(regCp(id) <= 15); |
| |
| if (regIs32Bit(id)) { |
| // 32-bit co-proc registers |
| MiscRegIndex idx = decodeCoProcReg(id); |
| uint32_t value = getOneRegU32(id); |
| |
| if (idx != NUM_MISCREGS && |
| !(idx >= MISCREG_CP15_UNIMP_START && idx < MISCREG_CP15_END)) { |
| const char *name = miscRegName[idx]; |
| const unsigned m5_ne = tc->readMiscRegNoEffect(idx); |
| const unsigned m5_e = tc->readMiscReg(idx); |
| inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: " |
| "[%s]: 0x%x/0x%x\n", |
| regCp(id), regCrn(id), regOpc1(id), regCrm(id), |
| regOpc2(id), isInvariantReg(id), |
| name, value, m5_e); |
| if (m5_e != m5_ne) { |
| inform("readMiscReg: %x, readMiscRegNoEffect: %x\n", |
| m5_e, m5_ne); |
| } |
| } else { |
| const char *name = idx != NUM_MISCREGS ? miscRegName[idx] : "-"; |
| inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: " |
| "[%s]: 0x%x\n", |
| regCp(id), regCrn(id), regOpc1(id), regCrm(id), |
| regOpc2(id), isInvariantReg(id), name, value); |
| } |
| } else { |
| inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i " |
| "len: 0x%x]: %s\n", |
| regCp(id), regCrn(id), regOpc1(id), regCrm(id), |
| regOpc2(id), isInvariantReg(id), |
| extractField(id, KVM_REG_SIZE_MASK, KVM_REG_SIZE_SHIFT), |
| getAndFormatOneReg(id)); |
| } |
| } |
| |
| void |
| ArmKvmCPU::dumpKvmStateVFP(uint64_t id) |
| { |
| assert(regIsArm(id)); |
| assert(regIsVfp(id)); |
| |
| if (regIsVfpReg(id)) { |
| const unsigned idx = id & KVM_REG_ARM_VFP_MASK; |
| inform("VFP reg %i: %s", idx, getAndFormatOneReg(id)); |
| } else if (regIsVfpCtrl(id)) { |
| MiscRegIndex idx = decodeVFPCtrlReg(id); |
| if (idx != NUM_MISCREGS) { |
| inform("VFP [%s]: %s", miscRegName[idx], getAndFormatOneReg(id)); |
| } else { |
| inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id)); |
| } |
| } else { |
| inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id)); |
| } |
| } |
| |
| void |
| ArmKvmCPU::updateKvmStateCore() |
| { |
| for (const KvmIntRegInfo *ri(kvmIntRegs); |
| ri->idx != init_reg::NumRegs; ++ri) { |
| |
| uint64_t value = tc->getReg(flatIntRegClass[ri->idx]); |
| DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value); |
| setOneReg(ri->id, value); |
| } |
| |
| DPRINTF(KvmContext, "kvm(PC) := 0x%x\n", tc->pcState().instAddr()); |
| setOneReg(REG_CORE32(usr_regs.ARM_pc), tc->pcState().instAddr()); |
| |
| for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs); |
| ri->idx != NUM_MISCREGS; ++ri) { |
| |
| uint64_t value = tc->readMiscReg(ri->idx); |
| DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value); |
| setOneReg(ri->id, value); |
| } |
| |
| if (debug::KvmContext) |
| dumpKvmStateCore(); |
| } |
| |
| void |
| ArmKvmCPU::updateKvmStateMisc() |
| { |
| static bool warned = false; // We can't use warn_once since we want |
| // to show /all/ registers |
| |
| const RegIndexVector ®s = getRegList(); |
| |
| for (RegIndexVector::const_iterator it(regs.begin()); |
| it != regs.end(); |
| ++it) { |
| |
| if (!regIsArm(*it)) { |
| if (!warned) |
| warn("Skipping non-ARM register: 0x%x\n", *it); |
| } else if (isInvariantReg(*it)) { |
| DPRINTF(Kvm, "Skipping invariant register: 0x%x\n", *it); |
| } else if (regIsCore(*it)) { |
| // Core registers are handled in updateKvmStateCore |
| continue; |
| } else if (regCp(*it) <= 15) { |
| updateKvmStateCoProc(*it, !warned); |
| } else if (regIsVfp(*it)) { |
| updateKvmStateVFP(*it, !warned); |
| } else { |
| if (!warned) { |
| warn("Skipping register with unknown CP (%i) id: 0x%x\n", |
| regCp(*it), *it); |
| } |
| } |
| |
| } |
| |
| warned = true; |
| if (debug::KvmContext) |
| dumpKvmStateMisc(); |
| } |
| |
| void |
| ArmKvmCPU::updateKvmStateCoProc(uint64_t id, bool show_warnings) |
| { |
| MiscRegIndex reg = decodeCoProcReg(id); |
| |
| assert(regIsArm(id)); |
| assert(regCp(id) <= 15); |
| |
| if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) { |
| // HACK HACK HACK: Workaround for 64-bit TTBRx |
| reg = (id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1); |
| if (show_warnings) |
| hack("KVM: 64-bit TTBBRx workaround\n"); |
| } |
| |
| if (reg == NUM_MISCREGS) { |
| if (show_warnings) { |
| warn("KVM: Ignoring unknown KVM co-processor register (0x%.8x):\n", |
| id); |
| warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i" |
| " opc2: %i]\n", |
| id, regCp(id), regIs64Bit(id), regCrn(id), |
| regOpc1(id), regCrm(id), regOpc2(id)); |
| } |
| } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) { |
| if (show_warnings) |
| warn("KVM: Co-processor reg. %s not implemented by gem5.\n", |
| miscRegName[reg]); |
| } else { |
| setOneReg(id, tc->readMiscRegNoEffect(reg)); |
| } |
| } |
| |
| |
| void |
| ArmKvmCPU::updateKvmStateVFP(uint64_t id, bool show_warnings) |
| { |
| assert(regIsArm(id)); |
| assert(regIsVfp(id)); |
| |
| if (regIsVfpReg(id)) { |
| if (!regIs64Bit(id)) { |
| if (show_warnings) |
| warn("Unexpected VFP register length (reg: 0x%x).\n", id); |
| return; |
| } |
| const unsigned idx = id & KVM_REG_ARM_VFP_MASK; |
| const unsigned idx_base = idx << 1; |
| const unsigned idx_hi = idx_base + 1; |
| const unsigned idx_lo = idx_base + 0; |
| uint64_t value = (tc->getReg(floatRegClass[idx_hi]) << 32) | |
| tc->getReg(floatRegClass[idx_lo]); |
| |
| setOneReg(id, value); |
| } else if (regIsVfpCtrl(id)) { |
| MiscRegIndex idx = decodeVFPCtrlReg(id); |
| if (idx == NUM_MISCREGS) { |
| if (show_warnings) |
| warn("Unhandled VFP control register: 0x%x\n", id); |
| return; |
| } |
| if (!regIs32Bit(id)) { |
| if (show_warnings) |
| warn("Ignoring VFP control register (%s) with " |
| "unexpected size.\n", |
| miscRegName[idx]); |
| return; |
| } |
| setOneReg(id, (uint32_t)tc->readMiscReg(idx)); |
| } else { |
| if (show_warnings) |
| warn("Unhandled VFP register: 0x%x\n", id); |
| } |
| } |
| |
| void |
| ArmKvmCPU::updateTCStateCore() |
| { |
| for (const KvmIntRegInfo *ri(kvmIntRegs); |
| ri->idx != int_reg::NumRegs; ++ri) { |
| |
| tc->setReg(intRegClass[ri->idx], getOneRegU32(ri->id)); |
| } |
| |
| for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs); |
| ri->idx != NUM_MISCREGS; ++ri) { |
| |
| tc->setMiscRegNoEffect(ri->idx, getOneRegU32(ri->id)); |
| } |
| |
| /* We want the simulator to execute all side-effects of the CPSR |
| * update since this updates PC state and register maps. |
| */ |
| tc->setMiscReg(MISCREG_CPSR, tc->readMiscRegNoEffect(MISCREG_CPSR)); |
| |
| // We update the PC state after we have updated the CPSR the |
| // contents of the CPSR affects how the npc is updated. |
| PCState pc = tc->pcState().as<PCState>(); |
| pc.set(getOneRegU32(REG_CORE32(usr_regs.ARM_pc))); |
| tc->pcState(pc); |
| |
| if (debug::KvmContext) |
| dumpKvmStateCore(); |
| } |
| |
| void |
| ArmKvmCPU::updateTCStateMisc() |
| { |
| static bool warned(false); // We can't use warn_once since we want |
| // to show /all/ registers |
| |
| const RegIndexVector ®_ids = getRegList(); |
| for (RegIndexVector::const_iterator it(reg_ids.begin()); |
| it != reg_ids.end(); ++it) { |
| |
| if (!regIsArm(*it)) { |
| if (!warned) |
| warn("Skipping non-ARM register: 0x%x\n", *it); |
| } else if (regIsCore(*it)) { |
| // Core registers are handled in updateKvmStateCore |
| } else if (regCp(*it) <= 15) { |
| updateTCStateCoProc(*it, !warned); |
| } else if (regIsVfp(*it)) { |
| updateTCStateVFP(*it, !warned); |
| } else { |
| if (!warned) { |
| warn("Skipping register with unknown CP (%i) id: 0x%x\n", |
| regCp(*it), *it); |
| } |
| } |
| } |
| |
| warned = true; |
| |
| if (debug::KvmContext) |
| dumpKvmStateMisc(); |
| } |
| |
| void |
| ArmKvmCPU::updateTCStateCoProc(uint64_t id, bool show_warnings) |
| { |
| MiscRegIndex reg = decodeCoProcReg(id); |
| |
| assert(regIsArm(id)); |
| assert(regCp(id) <= 15); |
| |
| if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) { |
| // HACK HACK HACK: We don't currently support 64-bit TTBR0/TTBR1 |
| hack_once("KVM: 64-bit TTBRx workaround\n"); |
| tc->setMiscRegNoEffect( |
| id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1, |
| (uint32_t)(getOneRegU64(id) & 0xFFFFFFFF)); |
| } else if (reg == MISCREG_TTBCR) { |
| uint32_t value = getOneRegU64(id); |
| if (value & 0x80000000) |
| panic("KVM: Guest tried to enable LPAE.\n"); |
| tc->setMiscRegNoEffect(reg, value); |
| } else if (reg == NUM_MISCREGS) { |
| if (show_warnings) { |
| warn("KVM: Ignoring unknown KVM co-processor register:\n", id); |
| warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i" |
| " opc2: %i]\n", |
| id, regCp(id), regIs64Bit(id), regCrn(id), |
| regOpc1(id), regCrm(id), regOpc2(id)); |
| } |
| } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) { |
| if (show_warnings) |
| warn_once("KVM: Co-processor reg. %s not implemented by gem5.\n", |
| miscRegName[reg]); |
| } else { |
| tc->setMiscRegNoEffect(reg, getOneRegU32(id)); |
| } |
| } |
| |
| void |
| ArmKvmCPU::updateTCStateVFP(uint64_t id, bool show_warnings) |
| { |
| assert(regIsArm(id)); |
| assert(regIsVfp(id)); |
| |
| if (regIsVfpReg(id)) { |
| if (!regIs64Bit(id)) { |
| if (show_warnings) |
| warn("Unexpected VFP register length (reg: 0x%x).\n", id); |
| return; |
| } |
| const unsigned idx = id & KVM_REG_ARM_VFP_MASK; |
| const unsigned idx_base = idx << 1; |
| const unsigned idx_hi = idx_base + 1; |
| const unsigned idx_lo = idx_base + 0; |
| uint64_t value = getOneRegU64(id); |
| |
| tc->setReg(floatRegClass[idx_hi], (value >> 32) & 0xFFFFFFFF); |
| tc->setReg(floatRegClass[idx_lo], value & 0xFFFFFFFF); |
| } else if (regIsVfpCtrl(id)) { |
| MiscRegIndex idx = decodeVFPCtrlReg(id); |
| if (idx == NUM_MISCREGS) { |
| if (show_warnings) |
| warn("Unhandled VFP control register: 0x%x\n", id); |
| return; |
| } |
| if (!regIs32Bit(id)) { |
| if (show_warnings) |
| warn("Ignoring VFP control register (%s) with " |
| "unexpected size.\n", |
| miscRegName[idx]); |
| return; |
| } |
| tc->setMiscReg(idx, getOneRegU64(id)); |
| } else { |
| if (show_warnings) |
| warn("Unhandled VFP register: 0x%x\n", id); |
| } |
| } |
| |
| } // namespace gem5 |