blob: 16e336573b6b3b6b6d0672d1165e82c2bb49e64d [file] [log] [blame]
# Copyright (c) 2015 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import argparse, os, re, getpass
import math
import glob
import inspect
import m5
from m5.objects import *
from m5.util import addToPath
from gem5.isas import ISA
from gem5.runtime import get_runtime_isa
addToPath("../")
from ruby import Ruby
from common import Options
from common import Simulation
from common import GPUTLBOptions, GPUTLBConfig
import hsaTopology
from common import FileSystemConfig
# Adding script options
parser = argparse.ArgumentParser()
Options.addCommonOptions(parser)
Options.addSEOptions(parser)
parser.add_argument(
"--cpu-only-mode",
action="store_true",
default=False,
help="APU mode. Used to take care of problems in "
"Ruby.py while running APU protocols",
)
parser.add_argument(
"-u",
"--num-compute-units",
type=int,
default=4,
help="number of GPU compute units",
),
parser.add_argument(
"--num-cp",
type=int,
default=0,
help="Number of GPU Command Processors (CP)",
)
parser.add_argument(
"--benchmark-root", help="Root of benchmark directory tree"
)
# not super important now, but to avoid putting the number 4 everywhere, make
# it an option/knob
parser.add_argument(
"--cu-per-sqc",
type=int,
default=4,
help="number of CUs" "sharing an SQC (icache, and thus icache TLB)",
)
parser.add_argument(
"--cu-per-scalar-cache",
type=int,
default=4,
help="Number of CUs sharing a scalar cache",
)
parser.add_argument(
"--simds-per-cu", type=int, default=4, help="SIMD units" "per CU"
)
parser.add_argument(
"--cu-per-sa",
type=int,
default=4,
help="Number of CUs per shader array. This must be a "
"multiple of options.cu-per-sqc and options.cu-per-scalar",
)
parser.add_argument(
"--sa-per-complex",
type=int,
default=1,
help="Number of shader arrays per complex",
)
parser.add_argument(
"--num-gpu-complexes", type=int, default=1, help="Number of GPU complexes"
)
parser.add_argument(
"--wf-size", type=int, default=64, help="Wavefront size(in workitems)"
)
parser.add_argument(
"--sp-bypass-path-length",
type=int,
default=4,
help="Number of stages of bypass path in vector ALU for "
"Single Precision ops",
)
parser.add_argument(
"--dp-bypass-path-length",
type=int,
default=4,
help="Number of stages of bypass path in vector ALU for "
"Double Precision ops",
)
# issue period per SIMD unit: number of cycles before issuing another vector
parser.add_argument(
"--issue-period",
type=int,
default=4,
help="Number of cycles per vector instruction issue period",
)
parser.add_argument(
"--glbmem-wr-bus-width",
type=int,
default=32,
help="VGPR to Coalescer (Global Memory) data bus width " "in bytes",
)
parser.add_argument(
"--glbmem-rd-bus-width",
type=int,
default=32,
help="Coalescer to VGPR (Global Memory) data bus width in " "bytes",
)
# Currently we only support 1 local memory pipe
parser.add_argument(
"--shr-mem-pipes-per-cu",
type=int,
default=1,
help="Number of Shared Memory pipelines per CU",
)
# Currently we only support 1 global memory pipe
parser.add_argument(
"--glb-mem-pipes-per-cu",
type=int,
default=1,
help="Number of Global Memory pipelines per CU",
)
parser.add_argument(
"--wfs-per-simd",
type=int,
default=10,
help="Number of " "WF slots per SIMD",
)
parser.add_argument(
"--registerManagerPolicy",
type=str,
default="static",
help="Register manager policy",
)
parser.add_argument(
"--vreg-file-size",
type=int,
default=2048,
help="number of physical vector registers per SIMD",
)
parser.add_argument(
"--vreg-min-alloc",
type=int,
default=4,
help="Minimum number of registers that can be allocated "
"from the VRF. The total number of registers will be "
"aligned to this value.",
)
parser.add_argument(
"--sreg-file-size",
type=int,
default=2048,
help="number of physical vector registers per SIMD",
)
parser.add_argument(
"--sreg-min-alloc",
type=int,
default=4,
help="Minimum number of registers that can be allocated "
"from the SRF. The total number of registers will be "
"aligned to this value.",
)
parser.add_argument(
"--bw-scalor",
type=int,
default=0,
help="bandwidth scalor for scalability analysis",
)
parser.add_argument("--CPUClock", type=str, default="2GHz", help="CPU clock")
parser.add_argument("--gpu-clock", type=str, default="1GHz", help="GPU clock")
parser.add_argument(
"--cpu-voltage",
action="store",
type=str,
default="1.0V",
help="""CPU voltage domain""",
)
parser.add_argument(
"--gpu-voltage",
action="store",
type=str,
default="1.0V",
help="""CPU voltage domain""",
)
parser.add_argument(
"--CUExecPolicy",
type=str,
default="OLDEST-FIRST",
help="WF exec policy (OLDEST-FIRST, ROUND-ROBIN)",
)
parser.add_argument(
"--SegFaultDebug",
action="store_true",
help="checks for GPU seg fault before TLB access",
)
parser.add_argument(
"--FunctionalTLB", action="store_true", help="Assumes TLB has no latency"
)
parser.add_argument(
"--LocalMemBarrier",
action="store_true",
help="Barrier does not wait for writethroughs to complete",
)
parser.add_argument(
"--countPages",
action="store_true",
help="Count Page Accesses and output in per-CU output files",
)
parser.add_argument(
"--max-cu-tokens",
type=int,
default=4,
help="Number of coalescer tokens per CU",
)
parser.add_argument(
"--vrf_lm_bus_latency",
type=int,
default=1,
help="Latency while accessing shared memory",
)
parser.add_argument(
"--TLB-prefetch", type=int, help="prefetch depth for" "TLBs"
)
parser.add_argument(
"--pf-type",
type=str,
help="type of prefetch: " "PF_CU, PF_WF, PF_PHASE, PF_STRIDE",
)
parser.add_argument("--pf-stride", type=int, help="set prefetch stride")
parser.add_argument(
"--numLdsBanks",
type=int,
default=32,
help="number of physical banks per LDS module",
)
parser.add_argument(
"--ldsBankConflictPenalty",
type=int,
default=1,
help="number of cycles per LDS bank conflict",
)
parser.add_argument(
"--lds-size", type=int, default=65536, help="Size of the LDS in bytes"
)
parser.add_argument(
"--fast-forward-pseudo-op",
action="store_true",
help="fast forward using kvm until the m5_switchcpu"
" pseudo-op is encountered, then switch cpus. subsequent"
" m5_switchcpu pseudo-ops will toggle back and forth",
)
parser.add_argument(
"--num-hw-queues",
type=int,
default=10,
help="number of hw queues in packet processor",
)
parser.add_argument(
"--reg-alloc-policy",
type=str,
default="dynamic",
help="register allocation policy (simple/dynamic)",
)
parser.add_argument(
"--dgpu",
action="store_true",
default=False,
help="Configure the system as a dGPU instead of an APU. "
"The dGPU config has its own local memory pool and is not "
"coherent with the host through hardware. Data is "
"transfered from host to device memory using runtime calls "
"that copy data over a PCIe-like IO bus.",
)
# Mtype option
# -- 1 1 1 C_RW_S (Cached-ReadWrite-Shared)
# -- 1 1 0 C_RW_US (Cached-ReadWrite-Unshared)
# -- 1 0 1 C_RO_S (Cached-ReadOnly-Shared)
# -- 1 0 0 C_RO_US (Cached-ReadOnly-Unshared)
# -- 0 1 x UC_L2 (Uncached_GL2)
# -- 0 0 x UC_All (Uncached_All_Load)
# default value: 5/C_RO_S (only allow caching in GL2 for read. Shared)
parser.add_argument(
"--m-type",
type=int,
default=5,
help="Default Mtype for GPU memory accesses. This is the "
"value used for all memory accesses on an APU and is the "
"default mode for dGPU unless explicitly overwritten by "
"the driver on a per-page basis. Valid values are "
"between 0-7",
)
parser.add_argument(
"--gfx-version",
type=str,
default="gfx801",
choices=GfxVersion.vals,
help="Gfx version for gpu" "Note: gfx902 is not fully supported by ROCm",
)
Ruby.define_options(parser)
# add TLB options to the parser
GPUTLBOptions.tlb_options(parser)
args = parser.parse_args()
# The GPU cache coherence protocols only work with the backing store
args.access_backing_store = True
# if benchmark root is specified explicitly, that overrides the search path
if args.benchmark_root:
benchmark_path = [args.benchmark_root]
else:
# Set default benchmark search path to current dir
benchmark_path = ["."]
########################## Sanity Check ########################
# Currently the gpu model requires ruby
if buildEnv["PROTOCOL"] == "None":
fatal("GPU model requires ruby")
# Currently the gpu model requires only timing or detailed CPU
if not (args.cpu_type == "TimingSimpleCPU" or args.cpu_type == "DerivO3CPU"):
fatal("GPU model requires TimingSimpleCPU or DerivO3CPU")
# This file can support multiple compute units
assert args.num_compute_units >= 1
# Currently, the sqc (I-Cache of GPU) is shared by
# multiple compute units(CUs). The protocol works just fine
# even if sqc is not shared. Overriding this option here
# so that the user need not explicitly set this (assuming
# sharing sqc is the common usage)
n_cu = args.num_compute_units
num_sqc = int(math.ceil(float(n_cu) / args.cu_per_sqc))
args.num_sqc = num_sqc # pass this to Ruby
num_scalar_cache = int(math.ceil(float(n_cu) / args.cu_per_scalar_cache))
args.num_scalar_cache = num_scalar_cache
print(
"Num SQC = ",
num_sqc,
"Num scalar caches = ",
num_scalar_cache,
"Num CU = ",
n_cu,
)
########################## Creating the GPU system ########################
# shader is the GPU
shader = Shader(
n_wf=args.wfs_per_simd,
clk_domain=SrcClockDomain(
clock=args.gpu_clock,
voltage_domain=VoltageDomain(voltage=args.gpu_voltage),
),
)
# VIPER GPU protocol implements release consistency at GPU side. So,
# we make their writes visible to the global memory and should read
# from global memory during kernal boundary. The pipeline initiates
# (or do not initiate) the acquire/release operation depending on
# these impl_kern_launch_rel and impl_kern_end_rel flags. The flag=true
# means pipeline initiates a acquire/release operation at kernel launch/end.
# VIPER protocol is write-through based, and thus only impl_kern_launch_acq
# needs to set.
if buildEnv["PROTOCOL"] == "GPU_VIPER":
shader.impl_kern_launch_acq = True
shader.impl_kern_end_rel = False
else:
shader.impl_kern_launch_acq = True
shader.impl_kern_end_rel = True
# Switching off per-lane TLB by default
per_lane = False
if args.TLB_config == "perLane":
per_lane = True
# List of compute units; one GPU can have multiple compute units
compute_units = []
for i in range(n_cu):
compute_units.append(
ComputeUnit(
cu_id=i,
perLaneTLB=per_lane,
num_SIMDs=args.simds_per_cu,
wf_size=args.wf_size,
spbypass_pipe_length=args.sp_bypass_path_length,
dpbypass_pipe_length=args.dp_bypass_path_length,
issue_period=args.issue_period,
coalescer_to_vrf_bus_width=args.glbmem_rd_bus_width,
vrf_to_coalescer_bus_width=args.glbmem_wr_bus_width,
num_global_mem_pipes=args.glb_mem_pipes_per_cu,
num_shared_mem_pipes=args.shr_mem_pipes_per_cu,
n_wf=args.wfs_per_simd,
execPolicy=args.CUExecPolicy,
debugSegFault=args.SegFaultDebug,
functionalTLB=args.FunctionalTLB,
localMemBarrier=args.LocalMemBarrier,
countPages=args.countPages,
max_cu_tokens=args.max_cu_tokens,
vrf_lm_bus_latency=args.vrf_lm_bus_latency,
localDataStore=LdsState(
banks=args.numLdsBanks,
bankConflictPenalty=args.ldsBankConflictPenalty,
size=args.lds_size,
),
)
)
wavefronts = []
vrfs = []
vrf_pool_mgrs = []
srfs = []
srf_pool_mgrs = []
for j in range(args.simds_per_cu):
for k in range(shader.n_wf):
wavefronts.append(
Wavefront(simdId=j, wf_slot_id=k, wf_size=args.wf_size)
)
if args.reg_alloc_policy == "simple":
vrf_pool_mgrs.append(
SimplePoolManager(
pool_size=args.vreg_file_size,
min_alloc=args.vreg_min_alloc,
)
)
srf_pool_mgrs.append(
SimplePoolManager(
pool_size=args.sreg_file_size,
min_alloc=args.vreg_min_alloc,
)
)
elif args.reg_alloc_policy == "dynamic":
vrf_pool_mgrs.append(
DynPoolManager(
pool_size=args.vreg_file_size,
min_alloc=args.vreg_min_alloc,
)
)
srf_pool_mgrs.append(
DynPoolManager(
pool_size=args.sreg_file_size,
min_alloc=args.vreg_min_alloc,
)
)
vrfs.append(
VectorRegisterFile(
simd_id=j, wf_size=args.wf_size, num_regs=args.vreg_file_size
)
)
srfs.append(
ScalarRegisterFile(
simd_id=j, wf_size=args.wf_size, num_regs=args.sreg_file_size
)
)
compute_units[-1].wavefronts = wavefronts
compute_units[-1].vector_register_file = vrfs
compute_units[-1].scalar_register_file = srfs
compute_units[-1].register_manager = RegisterManager(
policy=args.registerManagerPolicy,
vrf_pool_managers=vrf_pool_mgrs,
srf_pool_managers=srf_pool_mgrs,
)
if args.TLB_prefetch:
compute_units[-1].prefetch_depth = args.TLB_prefetch
compute_units[-1].prefetch_prev_type = args.pf_type
# attach the LDS and the CU to the bus (actually a Bridge)
compute_units[-1].ldsPort = compute_units[-1].ldsBus.cpu_side_port
compute_units[-1].ldsBus.mem_side_port = compute_units[
-1
].localDataStore.cuPort
# Attach compute units to GPU
shader.CUs = compute_units
########################## Creating the CPU system ########################
# The shader core will be whatever is after the CPU cores are accounted for
shader_idx = args.num_cpus
# The command processor will be whatever is after the shader is accounted for
cp_idx = shader_idx + 1
cp_list = []
# List of CPUs
cpu_list = []
CpuClass, mem_mode = Simulation.getCPUClass(args.cpu_type)
if CpuClass == AtomicSimpleCPU:
fatal("AtomicSimpleCPU is not supported")
if mem_mode != "timing":
fatal("Only the timing memory mode is supported")
shader.timing = True
if args.fast_forward and args.fast_forward_pseudo_op:
fatal(
"Cannot fast-forward based both on the number of instructions and"
" on pseudo-ops"
)
fast_forward = args.fast_forward or args.fast_forward_pseudo_op
if fast_forward:
FutureCpuClass, future_mem_mode = CpuClass, mem_mode
CpuClass = X86KvmCPU
mem_mode = "atomic_noncaching"
# Leave shader.timing untouched, because its value only matters at the
# start of the simulation and because we require switching cpus
# *before* the first kernel launch.
future_cpu_list = []
# Initial CPUs to be used during fast-forwarding.
for i in range(args.num_cpus):
cpu = CpuClass(
cpu_id=i,
clk_domain=SrcClockDomain(
clock=args.CPUClock,
voltage_domain=VoltageDomain(voltage=args.cpu_voltage),
),
)
cpu_list.append(cpu)
if args.fast_forward:
cpu.max_insts_any_thread = int(args.fast_forward)
if fast_forward:
MainCpuClass = FutureCpuClass
else:
MainCpuClass = CpuClass
# CPs to be used throughout the simulation.
for i in range(args.num_cp):
cp = MainCpuClass(
cpu_id=args.num_cpus + i,
clk_domain=SrcClockDomain(
clock=args.CPUClock,
voltage_domain=VoltageDomain(voltage=args.cpu_voltage),
),
)
cp_list.append(cp)
# Main CPUs (to be used after fast-forwarding if fast-forwarding is specified).
for i in range(args.num_cpus):
cpu = MainCpuClass(
cpu_id=i,
clk_domain=SrcClockDomain(
clock=args.CPUClock,
voltage_domain=VoltageDomain(voltage=args.cpu_voltage),
),
)
if fast_forward:
cpu.switched_out = True
future_cpu_list.append(cpu)
else:
cpu_list.append(cpu)
host_cpu = cpu_list[0]
hsapp_gpu_map_vaddr = 0x200000000
hsapp_gpu_map_size = 0x1000
hsapp_gpu_map_paddr = int(Addr(args.mem_size))
if args.dgpu:
# Default --m-type for dGPU is write-back gl2 with system coherence
# (coherence at the level of the system directory between other dGPUs and
# CPUs) managed by kernel boundary flush operations targeting the gl2.
args.m_type = 6
# HSA kernel mode driver
# dGPUPoolID is 0 because we only have one memory pool
gpu_driver = GPUComputeDriver(
filename="kfd",
isdGPU=args.dgpu,
gfxVersion=args.gfx_version,
dGPUPoolID=0,
m_type=args.m_type,
)
renderDriNum = 128
render_driver = GPURenderDriver(filename=f"dri/renderD{renderDriNum}")
# Creating the GPU kernel launching components: that is the HSA
# packet processor (HSAPP), GPU command processor (CP), and the
# dispatcher.
gpu_hsapp = HSAPacketProcessor(
pioAddr=hsapp_gpu_map_paddr, numHWQueues=args.num_hw_queues
)
dispatcher = GPUDispatcher()
gpu_cmd_proc = GPUCommandProcessor(hsapp=gpu_hsapp, dispatcher=dispatcher)
gpu_driver.device = gpu_cmd_proc
shader.dispatcher = dispatcher
shader.gpu_cmd_proc = gpu_cmd_proc
# Create and assign the workload Check for rel_path in elements of
# base_list using test, returning the first full path that satisfies test
def find_path(base_list, rel_path, test):
for base in base_list:
if not base:
# base could be None if environment var not set
continue
full_path = os.path.join(base, rel_path)
if test(full_path):
return full_path
fatal("%s not found in %s" % (rel_path, base_list))
def find_file(base_list, rel_path):
return find_path(base_list, rel_path, os.path.isfile)
executable = find_path(benchmark_path, args.cmd, os.path.exists)
# It's common for a benchmark to be in a directory with the same
# name as the executable, so we handle that automatically
if os.path.isdir(executable):
benchmark_path = [executable]
executable = find_file(benchmark_path, args.cmd)
if args.env:
with open(args.env, "r") as f:
env = [line.rstrip() for line in f]
else:
env = [
"LD_LIBRARY_PATH=%s"
% ":".join(
[
os.getenv("ROCM_PATH", "/opt/rocm") + "/lib",
os.getenv("HCC_HOME", "/opt/rocm/hcc") + "/lib",
os.getenv("HSA_PATH", "/opt/rocm/hsa") + "/lib",
os.getenv("HIP_PATH", "/opt/rocm/hip") + "/lib",
os.getenv("ROCM_PATH", "/opt/rocm") + "/libhsakmt/lib",
os.getenv("ROCM_PATH", "/opt/rocm") + "/miopen/lib",
os.getenv("ROCM_PATH", "/opt/rocm") + "/miopengemm/lib",
os.getenv("ROCM_PATH", "/opt/rocm") + "/hipblas/lib",
os.getenv("ROCM_PATH", "/opt/rocm") + "/rocblas/lib",
"/usr/lib/x86_64-linux-gnu",
]
),
"HOME=%s" % os.getenv("HOME", "/"),
# Disable the VM fault handler signal creation for dGPUs also
# forces the use of DefaultSignals instead of driver-controlled
# InteruptSignals throughout the runtime. DefaultSignals poll
# on memory in the runtime, while InteruptSignals call into the
# driver.
"HSA_ENABLE_INTERRUPT=1",
# We don't have an SDMA hardware model, so need to fallback to
# vector copy kernels for dGPU memcopies to/from host and device.
"HSA_ENABLE_SDMA=0",
]
process = Process(
executable=executable,
cmd=[args.cmd] + args.options.split(),
drivers=[gpu_driver, render_driver],
env=env,
)
for cpu in cpu_list:
cpu.createThreads()
cpu.workload = process
for cp in cp_list:
cp.workload = host_cpu.workload
if fast_forward:
for i in range(len(future_cpu_list)):
future_cpu_list[i].workload = cpu_list[i].workload
future_cpu_list[i].createThreads()
########################## Create the overall system ########################
# List of CPUs that must be switched when moving between KVM and simulation
if fast_forward:
switch_cpu_list = [
(cpu_list[i], future_cpu_list[i]) for i in range(args.num_cpus)
]
# Full list of processing cores in the system.
cpu_list = cpu_list + [shader] + cp_list
# creating the overall system
# notice the cpu list is explicitly added as a parameter to System
system = System(
cpu=cpu_list,
mem_ranges=[AddrRange(args.mem_size)],
cache_line_size=args.cacheline_size,
mem_mode=mem_mode,
workload=SEWorkload.init_compatible(executable),
)
if fast_forward:
system.future_cpu = future_cpu_list
system.voltage_domain = VoltageDomain(voltage=args.sys_voltage)
system.clk_domain = SrcClockDomain(
clock=args.sys_clock, voltage_domain=system.voltage_domain
)
if fast_forward:
have_kvm_support = "BaseKvmCPU" in globals()
if have_kvm_support and get_runtime_isa() == ISA.X86:
system.vm = KvmVM()
system.m5ops_base = 0xFFFF0000
for i in range(len(host_cpu.workload)):
host_cpu.workload[i].useArchPT = True
host_cpu.workload[i].kvmInSE = True
else:
fatal("KvmCPU can only be used in SE mode with x86")
# configure the TLB hierarchy
GPUTLBConfig.config_tlb_hierarchy(args, system, shader_idx)
# create Ruby system
system.piobus = IOXBar(
width=32, response_latency=0, frontend_latency=0, forward_latency=0
)
dma_list = [gpu_hsapp, gpu_cmd_proc]
Ruby.create_system(args, None, system, None, dma_list, None)
system.ruby.clk_domain = SrcClockDomain(
clock=args.ruby_clock, voltage_domain=system.voltage_domain
)
gpu_cmd_proc.pio = system.piobus.mem_side_ports
gpu_hsapp.pio = system.piobus.mem_side_ports
for i, dma_device in enumerate(dma_list):
exec("system.dma_cntrl%d.clk_domain = system.ruby.clk_domain" % i)
# attach the CPU ports to Ruby
for i in range(args.num_cpus):
ruby_port = system.ruby._cpu_ports[i]
# Create interrupt controller
system.cpu[i].createInterruptController()
# Connect cache port's to ruby
system.cpu[i].icache_port = ruby_port.in_ports
system.cpu[i].dcache_port = ruby_port.in_ports
ruby_port.mem_request_port = system.piobus.cpu_side_ports
if get_runtime_isa() == ISA.X86:
system.cpu[i].interrupts[0].pio = system.piobus.mem_side_ports
system.cpu[i].interrupts[
0
].int_requestor = system.piobus.cpu_side_ports
system.cpu[i].interrupts[
0
].int_responder = system.piobus.mem_side_ports
if fast_forward:
system.cpu[i].mmu.connectWalkerPorts(
ruby_port.in_ports, ruby_port.in_ports
)
# attach CU ports to Ruby
# Because of the peculiarities of the CP core, you may have 1 CPU but 2
# sequencers and thus 2 _cpu_ports created. Your GPUs shouldn't be
# hooked up until after the CP. To make this script generic, figure out
# the index as below, but note that this assumes there is one sequencer
# per compute unit and one sequencer per SQC for the math to work out
# correctly.
gpu_port_idx = (
len(system.ruby._cpu_ports)
- args.num_compute_units
- args.num_sqc
- args.num_scalar_cache
)
gpu_port_idx = gpu_port_idx - args.num_cp * 2
# Connect token ports. For this we need to search through the list of all
# sequencers, since the TCP coalescers will not necessarily be first. Only
# TCP coalescers use a token port for back pressure.
token_port_idx = 0
for i in range(len(system.ruby._cpu_ports)):
if isinstance(system.ruby._cpu_ports[i], VIPERCoalescer):
system.cpu[shader_idx].CUs[
token_port_idx
].gmTokenPort = system.ruby._cpu_ports[i].gmTokenPort
token_port_idx += 1
wavefront_size = args.wf_size
for i in range(n_cu):
# The pipeline issues wavefront_size number of uncoalesced requests
# in one GPU issue cycle. Hence wavefront_size mem ports.
for j in range(wavefront_size):
system.cpu[shader_idx].CUs[i].memory_port[j] = system.ruby._cpu_ports[
gpu_port_idx
].in_ports[j]
gpu_port_idx += 1
for i in range(n_cu):
if i > 0 and not i % args.cu_per_sqc:
print("incrementing idx on ", i)
gpu_port_idx += 1
system.cpu[shader_idx].CUs[i].sqc_port = system.ruby._cpu_ports[
gpu_port_idx
].in_ports
gpu_port_idx = gpu_port_idx + 1
for i in range(n_cu):
if i > 0 and not i % args.cu_per_scalar_cache:
print("incrementing idx on ", i)
gpu_port_idx += 1
system.cpu[shader_idx].CUs[i].scalar_port = system.ruby._cpu_ports[
gpu_port_idx
].in_ports
gpu_port_idx = gpu_port_idx + 1
# attach CP ports to Ruby
for i in range(args.num_cp):
system.cpu[cp_idx].createInterruptController()
system.cpu[cp_idx].dcache_port = system.ruby._cpu_ports[
gpu_port_idx + i * 2
].in_ports
system.cpu[cp_idx].icache_port = system.ruby._cpu_ports[
gpu_port_idx + i * 2 + 1
].in_ports
system.cpu[cp_idx].interrupts[0].pio = system.piobus.mem_side_ports
system.cpu[cp_idx].interrupts[
0
].int_requestor = system.piobus.cpu_side_ports
system.cpu[cp_idx].interrupts[
0
].int_responder = system.piobus.mem_side_ports
cp_idx = cp_idx + 1
################# Connect the CPU and GPU via GPU Dispatcher ##################
# CPU rings the GPU doorbell to notify a pending task
# using this interface.
# And GPU uses this interface to notify the CPU of task completion
# The communcation happens through emulated driver.
# Note this implicit setting of the cpu_pointer, shader_pointer and tlb array
# parameters must be after the explicit setting of the System cpu list
if fast_forward:
shader.cpu_pointer = future_cpu_list[0]
else:
shader.cpu_pointer = host_cpu
########################## Start simulation ########################
redirect_paths = [
RedirectPath(
app_path="/proc", host_paths=["%s/fs/proc" % m5.options.outdir]
),
RedirectPath(
app_path="/sys", host_paths=["%s/fs/sys" % m5.options.outdir]
),
RedirectPath(
app_path="/tmp", host_paths=["%s/fs/tmp" % m5.options.outdir]
),
]
system.redirect_paths = redirect_paths
root = Root(system=system, full_system=False)
# Create the /sys/devices filesystem for the simulator so that the HSA Runtime
# knows what type of GPU hardware we are simulating
if args.dgpu:
assert args.gfx_version in [
"gfx803",
"gfx900",
], "Incorrect gfx version for dGPU"
if args.gfx_version == "gfx803":
hsaTopology.createFijiTopology(args)
elif args.gfx_version == "gfx900":
hsaTopology.createVegaTopology(args)
else:
assert args.gfx_version in [
"gfx801",
"gfx902",
], "Incorrect gfx version for APU"
hsaTopology.createCarrizoTopology(args)
m5.ticks.setGlobalFrequency("1THz")
if args.abs_max_tick:
maxtick = args.abs_max_tick
else:
maxtick = m5.MaxTick
# Benchmarks support work item annotations
Simulation.setWorkCountOptions(system, args)
# Checkpointing is not supported by APU model
if args.checkpoint_dir != None or args.checkpoint_restore != None:
fatal("Checkpointing not supported by apu model")
checkpoint_dir = None
m5.instantiate(checkpoint_dir)
# Map workload to this address space
host_cpu.workload[0].map(0x10000000, 0x200000000, 4096)
if args.fast_forward:
print("Switch at instruction count: %d" % cpu_list[0].max_insts_any_thread)
exit_event = m5.simulate(maxtick)
if args.fast_forward:
if exit_event.getCause() == "a thread reached the max instruction count":
m5.switchCpus(system, switch_cpu_list)
print("Switched CPUS @ tick %s" % (m5.curTick()))
m5.stats.reset()
exit_event = m5.simulate(maxtick - m5.curTick())
elif args.fast_forward_pseudo_op:
while exit_event.getCause() == "switchcpu":
# If we are switching *to* kvm, then the current stats are meaningful
# Note that we don't do any warmup by default
if type(switch_cpu_list[0][0]) == FutureCpuClass:
print("Dumping stats...")
m5.stats.dump()
m5.switchCpus(system, switch_cpu_list)
print("Switched CPUS @ tick %s" % (m5.curTick()))
m5.stats.reset()
# This lets us switch back and forth without keeping a counter
switch_cpu_list = [(x[1], x[0]) for x in switch_cpu_list]
exit_event = m5.simulate(maxtick - m5.curTick())
print("Ticks:", m5.curTick())
print("Exiting because ", exit_event.getCause())
sys.exit(exit_event.getCode())