| /* |
| * Copyright (c) 2010-2013,2016-2018, 2022 Arm Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2007-2008 The Florida State University |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef __ARCH_ARM_INSTS_STATICINST_HH__ |
| #define __ARCH_ARM_INSTS_STATICINST_HH__ |
| |
| #include <memory> |
| |
| #include "arch/arm/faults.hh" |
| #include "arch/arm/utility.hh" |
| #include "arch/arm/isa.hh" |
| #include "arch/arm/pcstate.hh" |
| #include "arch/arm/self_debug.hh" |
| #include "arch/arm/system.hh" |
| #include "base/trace.hh" |
| #include "cpu/exec_context.hh" |
| #include "cpu/static_inst.hh" |
| #include "cpu/thread_context.hh" |
| #include "sim/byteswap.hh" |
| #include "sim/full_system.hh" |
| |
| namespace gem5 |
| { |
| |
| namespace ArmISA |
| { |
| |
| class ArmStaticInst : public StaticInst |
| { |
| protected: |
| bool aarch64; |
| uint8_t intWidth; |
| |
| int32_t shift_rm_imm(uint32_t base, uint32_t shamt, |
| uint32_t type, uint32_t cfval) const; |
| int32_t shift_rm_rs(uint32_t base, uint32_t shamt, |
| uint32_t type, uint32_t cfval) const; |
| |
| bool shift_carry_imm(uint32_t base, uint32_t shamt, |
| uint32_t type, uint32_t cfval) const; |
| bool shift_carry_rs(uint32_t base, uint32_t shamt, |
| uint32_t type, uint32_t cfval) const; |
| |
| int64_t shiftReg64(uint64_t base, uint64_t shiftAmt, |
| ArmShiftType type, uint8_t width) const; |
| int64_t extendReg64(uint64_t base, ArmExtendType type, |
| uint64_t shiftAmt, uint8_t width) const; |
| |
| template<int width> |
| static inline bool |
| saturateOp(int32_t &res, int64_t op1, int64_t op2, bool sub=false) |
| { |
| int64_t midRes = sub ? (op1 - op2) : (op1 + op2); |
| if (bits(midRes, width) != bits(midRes, width - 1)) { |
| if (midRes > 0) |
| res = (1LL << (width - 1)) - 1; |
| else |
| res = -(1LL << (width - 1)); |
| return true; |
| } else { |
| res = midRes; |
| return false; |
| } |
| } |
| |
| static inline bool |
| satInt(int32_t &res, int64_t op, int width) |
| { |
| width--; |
| if (op >= (1LL << width)) { |
| res = (1LL << width) - 1; |
| return true; |
| } else if (op < -(1LL << width)) { |
| res = -(1LL << width); |
| return true; |
| } else { |
| res = op; |
| return false; |
| } |
| } |
| |
| template<int width> |
| static inline bool |
| uSaturateOp(uint32_t &res, int64_t op1, int64_t op2, bool sub=false) |
| { |
| int64_t midRes = sub ? (op1 - op2) : (op1 + op2); |
| if (midRes >= (1LL << width)) { |
| res = (1LL << width) - 1; |
| return true; |
| } else if (midRes < 0) { |
| res = 0; |
| return true; |
| } else { |
| res = midRes; |
| return false; |
| } |
| } |
| |
| static inline bool |
| uSatInt(int32_t &res, int64_t op, int width) |
| { |
| if (op >= (1LL << width)) { |
| res = (1LL << width) - 1; |
| return true; |
| } else if (op < 0) { |
| res = 0; |
| return true; |
| } else { |
| res = op; |
| return false; |
| } |
| } |
| |
| ExtMachInst machInst; |
| |
| // Constructor |
| ArmStaticInst(const char *mnem, ExtMachInst _machInst, |
| OpClass __opClass) |
| : StaticInst(mnem, __opClass), machInst(_machInst) |
| { |
| aarch64 = machInst.aarch64; |
| if (bits(machInst, 28, 24) == 0x10) |
| intWidth = 64; // Force 64-bit width for ADR/ADRP |
| else |
| intWidth = (aarch64 && bits(machInst, 31)) ? 64 : 32; |
| } |
| |
| /// Print a register name for disassembly given the unique |
| /// dependence tag number (FP or int). |
| void printIntReg(std::ostream &os, RegIndex reg_idx, |
| uint8_t opWidth = 0) const; |
| void printFloatReg(std::ostream &os, RegIndex reg_idx) const; |
| void printVecReg(std::ostream &os, RegIndex reg_idx, |
| bool isSveVecReg = false) const; |
| void printVecPredReg(std::ostream &os, RegIndex reg_idx) const; |
| void printCCReg(std::ostream &os, RegIndex reg_idx) const; |
| void printMiscReg(std::ostream &os, RegIndex reg_idx) const; |
| void printMnemonic(std::ostream &os, |
| const std::string &suffix = "", |
| bool withPred = true, |
| bool withCond64 = false, |
| ConditionCode cond64 = COND_UC) const; |
| void printTarget(std::ostream &os, Addr target, |
| const loader::SymbolTable *symtab) const; |
| void printCondition(std::ostream &os, unsigned code, |
| bool noImplicit=false) const; |
| void printMemSymbol(std::ostream &os, const loader::SymbolTable *symtab, |
| const std::string &prefix, const Addr addr, |
| const std::string &suffix) const; |
| void printShiftOperand(std::ostream &os, RegIndex rm, |
| bool immShift, uint32_t shiftAmt, |
| RegIndex rs, ArmShiftType type) const; |
| void printExtendOperand(bool firstOperand, std::ostream &os, |
| RegIndex rm, ArmExtendType type, |
| int64_t shiftAmt) const; |
| void printPFflags(std::ostream &os, int flag) const; |
| |
| void printDataInst(std::ostream &os, bool withImm) const; |
| void printDataInst(std::ostream &os, bool withImm, bool immShift, bool s, |
| RegIndex rd, RegIndex rn, RegIndex rm, |
| RegIndex rs, uint32_t shiftAmt, ArmShiftType type, |
| uint64_t imm) const; |
| |
| void |
| advancePC(PCStateBase &pcState) const override |
| { |
| pcState.as<PCState>().advance(); |
| } |
| |
| void |
| advancePC(ThreadContext *tc) const override |
| { |
| PCState pc = tc->pcState().as<PCState>(); |
| pc.advance(); |
| tc->pcState(pc); |
| } |
| |
| uint64_t getEMI() const override { return machInst; } |
| |
| std::unique_ptr<PCStateBase> |
| buildRetPC(const PCStateBase &cur_pc, |
| const PCStateBase &call_pc) const override |
| { |
| PCStateBase *ret_pc = call_pc.clone(); |
| ret_pc->as<PCState>().uEnd(); |
| return std::unique_ptr<PCStateBase>{ret_pc}; |
| } |
| |
| std::string generateDisassembly( |
| Addr pc, const loader::SymbolTable *symtab) const override; |
| |
| static void |
| activateBreakpoint(ThreadContext *tc) |
| { |
| SelfDebug *sd = ArmISA::ISA::getSelfDebug(tc); |
| sd->activateDebug(); |
| } |
| |
| static inline uint32_t |
| cpsrWriteByInstr(CPSR cpsr, uint32_t val, SCR scr, NSACR nsacr, |
| uint8_t byteMask, bool affectState, bool nmfi, ThreadContext *tc) |
| { |
| bool privileged = (cpsr.mode != MODE_USER); |
| bool haveVirt = ArmSystem::haveEL(tc, EL2); |
| bool isSecure = ArmISA::isSecure(tc); |
| |
| uint32_t bitMask = 0; |
| |
| if (affectState && byteMask==0xF){ |
| activateBreakpoint(tc); |
| } |
| if (bits(byteMask, 3)) { |
| unsigned lowIdx = affectState ? 24 : 27; |
| bitMask = bitMask | mask(31, lowIdx); |
| } |
| if (bits(byteMask, 2)) { |
| bitMask = bitMask | mask(19, 16); |
| } |
| if (bits(byteMask, 1)) { |
| unsigned highIdx = affectState ? 15 : 9; |
| unsigned lowIdx = (privileged && (isSecure || scr.aw || haveVirt)) |
| ? 8 : 9; |
| bitMask = bitMask | mask(highIdx, lowIdx); |
| } |
| if (bits(byteMask, 0)) { |
| if (privileged) { |
| bitMask |= 1 << 7; |
| if ( (!nmfi || !((val >> 6) & 0x1)) && |
| (isSecure || scr.fw || haveVirt) ) { |
| bitMask |= 1 << 6; |
| } |
| // Now check the new mode is allowed |
| OperatingMode newMode = (OperatingMode) (val & mask(5)); |
| OperatingMode oldMode = (OperatingMode)(uint32_t)cpsr.mode; |
| if (!badMode(tc, newMode)) { |
| bool validModeChange = true; |
| // Check for attempts to enter modes only permitted in |
| // Secure state from Non-secure state. These are Monitor |
| // mode ('10110'), and FIQ mode ('10001') if the Security |
| // Extensions have reserved it. |
| if (!isSecure && newMode == MODE_MON) |
| validModeChange = false; |
| if (!isSecure && newMode == MODE_FIQ && nsacr.rfr == '1') |
| validModeChange = false; |
| // There is no Hyp mode ('11010') in Secure state, so that |
| // is UNPREDICTABLE |
| if (scr.ns == 0 && newMode == MODE_HYP) |
| validModeChange = false; |
| // Cannot move into Hyp mode directly from a Non-secure |
| // PL1 mode |
| if (!isSecure && oldMode != MODE_HYP && newMode == MODE_HYP) |
| validModeChange = false; |
| // Cannot move out of Hyp mode with this function except |
| // on an exception return |
| if (oldMode == MODE_HYP && newMode != MODE_HYP && !affectState) |
| validModeChange = false; |
| // Must not change to 64 bit when running in 32 bit mode |
| if (!opModeIs64(oldMode) && opModeIs64(newMode)) |
| validModeChange = false; |
| |
| // If we passed all of the above then set the bit mask to |
| // copy the mode accross |
| if (validModeChange) { |
| bitMask = bitMask | mask(5); |
| } else { |
| warn_once("Illegal change to CPSR mode attempted\n"); |
| } |
| } else { |
| warn_once("Ignoring write of bad mode to CPSR.\n"); |
| } |
| } |
| if (affectState) |
| bitMask = bitMask | (1 << 5); |
| } |
| |
| return ((uint32_t)cpsr & ~bitMask) | (val & bitMask); |
| } |
| |
| static inline uint32_t |
| spsrWriteByInstr(uint32_t spsr, uint32_t val, |
| uint8_t byteMask, bool affectState) |
| { |
| uint32_t bitMask = 0; |
| |
| if (bits(byteMask, 3)) |
| bitMask = bitMask | mask(31, 24); |
| if (bits(byteMask, 2)) |
| bitMask = bitMask | mask(19, 16); |
| if (bits(byteMask, 1)) |
| bitMask = bitMask | mask(15, 8); |
| if (bits(byteMask, 0)) |
| bitMask = bitMask | mask(7, 0); |
| |
| return ((spsr & ~bitMask) | (val & bitMask)); |
| } |
| |
| static inline Addr |
| readPC(ExecContext *xc) |
| { |
| return xc->pcState().as<PCState>().instPC(); |
| } |
| |
| static inline void |
| setNextPC(ExecContext *xc, Addr val) |
| { |
| PCState pc = xc->pcState().as<PCState>(); |
| pc.instNPC(val); |
| xc->pcState(pc); |
| } |
| |
| template<class T> |
| static inline T |
| cSwap(T val, bool big) |
| { |
| if (big) { |
| return letobe(val); |
| } else { |
| return val; |
| } |
| } |
| |
| template<class T, class E> |
| static inline T |
| cSwap(T val, bool big) |
| { |
| const unsigned count = sizeof(T) / sizeof(E); |
| union |
| { |
| T tVal; |
| E eVals[count]; |
| } conv; |
| conv.tVal = htole(val); |
| if (big) { |
| for (unsigned i = 0; i < count; i++) { |
| conv.eVals[i] = letobe(conv.eVals[i]); |
| } |
| } else { |
| for (unsigned i = 0; i < count; i++) { |
| conv.eVals[i] = conv.eVals[i]; |
| } |
| } |
| return letoh(conv.tVal); |
| } |
| |
| // Perform an interworking branch. |
| static inline void |
| setIWNextPC(ExecContext *xc, Addr val) |
| { |
| PCState pc = xc->pcState().as<PCState>(); |
| pc.instIWNPC(val); |
| xc->pcState(pc); |
| } |
| |
| // Perform an interworking branch in ARM mode, a regular branch |
| // otherwise. |
| static inline void |
| setAIWNextPC(ExecContext *xc, Addr val) |
| { |
| PCState pc = xc->pcState().as<PCState>(); |
| pc.instAIWNPC(val); |
| xc->pcState(pc); |
| } |
| |
| inline Fault disabledFault() const { return undefined(true); } |
| |
| // Utility function used by checkForWFxTrap32 and checkForWFxTrap64 |
| // Returns true if processor has to trap a WFI/WFE instruction. |
| bool isWFxTrapping(ThreadContext *tc, |
| ExceptionLevel targetEL, bool isWfe) const; |
| |
| /** |
| * Trigger a Software Breakpoint. |
| * |
| * See aarch32/exceptions/debug/AArch32.SoftwareBreakpoint in the |
| * ARM ARM psueodcode library. |
| */ |
| Fault softwareBreakpoint32(ExecContext *xc, uint16_t imm) const; |
| |
| /** |
| * Trap an access to Advanced SIMD or FP registers due to access |
| * control bits. |
| * |
| * See aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap in the |
| * ARM ARM psueodcode library. |
| * |
| * @param el Target EL for the trap |
| */ |
| Fault advSIMDFPAccessTrap64(ExceptionLevel el) const; |
| |
| |
| /** |
| * Check an Advaned SIMD access against CPTR_EL2 and CPTR_EL3. |
| * |
| * See aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap in the |
| * ARM ARM psueodcode library. |
| */ |
| Fault checkFPAdvSIMDTrap64(ThreadContext *tc, CPSR cpsr) const; |
| |
| /** |
| * Check an Advaned SIMD access against CPACR_EL1, CPTR_EL2, and |
| * CPTR_EL3. |
| * |
| * See aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled in the |
| * ARM ARM psueodcode library. |
| */ |
| Fault checkFPAdvSIMDEnabled64(ThreadContext *tc, |
| CPSR cpsr, CPACR cpacr) const; |
| |
| /** |
| * Check if a VFP/SIMD access from aarch32 should be allowed. |
| * |
| * See aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled in the |
| * ARM ARM psueodcode library. |
| */ |
| Fault checkAdvSIMDOrFPEnabled32(ThreadContext *tc, |
| CPSR cpsr, CPACR cpacr, |
| NSACR nsacr, FPEXC fpexc, |
| bool fpexc_check, bool advsimd) const; |
| |
| /** |
| * Check if WFE/WFI instruction execution in aarch32 should be trapped. |
| * |
| * See aarch32/exceptions/traps/AArch32.checkForWFxTrap in the |
| * ARM ARM psueodcode library. |
| */ |
| Fault checkForWFxTrap32(ThreadContext *tc, |
| ExceptionLevel tgtEl, bool isWfe) const; |
| |
| /** |
| * Check if WFE/WFI instruction execution in aarch64 should be trapped. |
| * |
| * See aarch64/exceptions/traps/AArch64.checkForWFxTrap in the |
| * ARM ARM psueodcode library. |
| */ |
| Fault checkForWFxTrap64(ThreadContext *tc, |
| ExceptionLevel tgtEl, bool isWfe) const; |
| |
| /** |
| * WFE/WFI trapping helper function. |
| */ |
| Fault trapWFx(ThreadContext *tc, CPSR cpsr, SCR scr, bool isWfe) const; |
| |
| /** |
| * Check if SETEND instruction execution in aarch32 should be trapped. |
| * |
| * See aarch32/exceptions/traps/AArch32.CheckSETENDEnabled in the |
| * ARM ARM pseudocode library. |
| */ |
| Fault checkSETENDEnabled(ThreadContext *tc, CPSR cpsr) const; |
| |
| /** |
| * UNDEFINED behaviour in AArch32 |
| * |
| * See aarch32/exceptions/traps/AArch32.UndefinedFault in the |
| * ARM ARM pseudocode library. |
| */ |
| Fault undefinedFault32(ThreadContext *tc, ExceptionLevel el) const; |
| |
| /** |
| * UNDEFINED behaviour in AArch64 |
| * |
| * See aarch64/exceptions/traps/AArch64.UndefinedFault in the |
| * ARM ARM pseudocode library. |
| */ |
| Fault undefinedFault64(ThreadContext *tc, ExceptionLevel el) const; |
| |
| /** |
| * Trap an access to SVE registers due to access control bits. |
| * |
| * @param el Target EL for the trap. |
| */ |
| Fault sveAccessTrap(ExceptionLevel el) const; |
| |
| /** |
| * Check an SVE access against CPACR_EL1, CPTR_EL2, and CPTR_EL3. |
| */ |
| Fault checkSveEnabled(ThreadContext *tc, CPSR cpsr, CPACR cpacr) const; |
| |
| /** |
| * Get the new PSTATE from a SPSR register in preparation for an |
| * exception return. |
| * |
| * See shared/functions/system/SetPSTATEFromPSR in the ARM ARM |
| * pseudocode library. |
| */ |
| CPSR getPSTATEFromPSR(ThreadContext *tc, CPSR cpsr, CPSR spsr) const; |
| |
| /** |
| * Return true if exceptions normally routed to EL1 are being handled |
| * at an Exception level using AArch64, because either EL1 is using |
| * AArch64 or TGE is in force and EL2 is using AArch64. |
| * |
| * See aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64 |
| * in the ARM ARM pseudocode library. |
| */ |
| bool generalExceptionsToAArch64(ThreadContext *tc, |
| ExceptionLevel pstateEL) const; |
| |
| public: |
| virtual void |
| annotateFault(ArmFault *fault) {} |
| |
| uint8_t |
| getIntWidth() const |
| { |
| return intWidth; |
| } |
| |
| /** Returns the byte size of current instruction */ |
| ssize_t |
| instSize() const |
| { |
| return (!machInst.thumb || machInst.bigThumb) ? 4 : 2; |
| } |
| |
| /** |
| * Returns the real encoding of the instruction: |
| * the machInst field is in fact always 64 bit wide and |
| * contains some instruction metadata, which means it differs |
| * from the real opcode. |
| */ |
| MachInst |
| encoding() const |
| { |
| return static_cast<MachInst>(machInst & (mask(instSize() * 8))); |
| } |
| |
| size_t |
| asBytes(void *buf, size_t max_size) override |
| { |
| return simpleAsBytes(buf, max_size, machInst); |
| } |
| |
| static unsigned getCurSveVecLenInBits(ThreadContext *tc); |
| |
| static unsigned |
| getCurSveVecLenInQWords(ThreadContext *tc) |
| { |
| return getCurSveVecLenInBits(tc) >> 6; |
| } |
| |
| template<typename T> |
| static unsigned |
| getCurSveVecLen(ThreadContext *tc) |
| { |
| return getCurSveVecLenInBits(tc) / (8 * sizeof(T)); |
| } |
| |
| inline Fault |
| undefined(bool disabled=false) const |
| { |
| return std::make_shared<UndefinedInstruction>( |
| machInst, false, mnemonic, disabled); |
| } |
| }; |
| |
| } // namespace ArmISA |
| } // namespace gem5 |
| |
| #endif //__ARCH_ARM_INSTS_STATICINST_HH__ |