blob: 8fd447fdf4a68ade7cf9e986d270f2565e34d095 [file] [log] [blame]
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* AMD's contributions to the MOESI hammer protocol do not constitute an
* endorsement of its similarity to any AMD products.
*/
machine(MachineType:Directory, "AMD Hammer-like protocol")
: DirectoryMemory * directory;
CacheMemory * probeFilter;
Cycles from_memory_controller_latency := 2;
Cycles to_memory_controller_latency := 1;
bool probe_filter_enabled := "False";
bool full_bit_dir_enabled := "False";
MessageBuffer * forwardFromDir, network="To", virtual_network="3",
vnet_type="forward";
MessageBuffer * responseFromDir, network="To", virtual_network="4",
vnet_type="response";
// For a finite buffered network, note that the DMA response network only
// works at this relatively lower numbered (lower priority) virtual network
// because the trigger queue decouples cache responses from DMA responses.
MessageBuffer * dmaResponseFromDir, network="To", virtual_network="1",
vnet_type="response";
MessageBuffer * unblockToDir, network="From", virtual_network="5",
vnet_type="unblock";
MessageBuffer * responseToDir, network="From", virtual_network="4",
vnet_type="response";
MessageBuffer * requestToDir, network="From", virtual_network="2",
vnet_type="request";
MessageBuffer * dmaRequestToDir, network="From", virtual_network="0",
vnet_type="request";
MessageBuffer * triggerQueue;
MessageBuffer * requestToMemory;
MessageBuffer * responseFromMemory;
{
// STATES
state_declaration(State, desc="Directory states", default="Directory_State_E") {
// Base states
NX, AccessPermission:Maybe_Stale, desc="Not Owner, probe filter entry exists, block in O at Owner";
NO, AccessPermission:Maybe_Stale, desc="Not Owner, probe filter entry exists, block in E/M at Owner";
S, AccessPermission:Read_Only, desc="Data clean, probe filter entry exists pointing to the current owner";
O, AccessPermission:Read_Only, desc="Data clean, probe filter entry exists";
E, AccessPermission:Read_Write, desc="Exclusive Owner, no probe filter entry";
O_R, AccessPermission:Read_Only, desc="Was data Owner, replacing probe filter entry";
S_R, AccessPermission:Read_Only, desc="Was Not Owner or Sharer, replacing probe filter entry";
NO_R, AccessPermission:Busy, desc="Was Not Owner or Sharer, replacing probe filter entry";
NO_B, AccessPermission:Busy, "NO^B", desc="Not Owner, Blocked";
NO_B_X, AccessPermission:Busy, "NO^B", desc="Not Owner, Blocked, next queued request GETX";
NO_B_S, AccessPermission:Busy, "NO^B", desc="Not Owner, Blocked, next queued request GETS";
NO_B_S_W, AccessPermission:Busy, "NO^B", desc="Not Owner, Blocked, forwarded merged GETS, waiting for responses";
O_B, AccessPermission:Busy, "O^B", desc="Owner, Blocked";
NO_B_W, AccessPermission:Busy, desc="Not Owner, Blocked, waiting for Dram";
O_B_W, AccessPermission:Busy, desc="Owner, Blocked, waiting for Dram";
NO_W, AccessPermission:Busy, desc="Not Owner, waiting for Dram";
O_W, AccessPermission:Busy, desc="Owner, waiting for Dram";
NO_DW_B_W, AccessPermission:Busy, desc="Not Owner, Dma Write waiting for Dram and cache responses";
NO_DR_B_W, AccessPermission:Busy, desc="Not Owner, Dma Read waiting for Dram and cache responses";
NO_DR_B_D, AccessPermission:Busy, desc="Not Owner, Dma Read waiting for cache responses including dirty data";
NO_DR_B, AccessPermission:Busy, desc="Not Owner, Dma Read waiting for cache responses";
NO_DW_W, AccessPermission:Busy, desc="Not Owner, Dma Write waiting for Dram";
O_DR_B_W, AccessPermission:Busy, desc="Owner, Dma Read waiting for Dram and cache responses";
O_DR_B, AccessPermission:Busy, desc="Owner, Dma Read waiting for cache responses";
WB, AccessPermission:Busy, desc="Blocked on a writeback";
WB_O_W, AccessPermission:Busy, desc="Blocked on memory write, will go to O";
WB_E_W, AccessPermission:Busy, desc="Blocked on memory write, will go to E";
NO_F, AccessPermission:Busy, desc="Blocked on a flush";
NO_F_W, AccessPermission:Busy, desc="Not Owner, Blocked, waiting for Dram";
}
// Events
enumeration(Event, desc="Directory events") {
GETX, desc="A GETX arrives";
GETS, desc="A GETS arrives";
PUT, desc="A PUT arrives";
Unblock, desc="An unblock message arrives";
UnblockS, desc="An unblock message arrives";
UnblockM, desc="An unblock message arrives";
Writeback_Clean, desc="The final part of a PutX (no data)";
Writeback_Dirty, desc="The final part of a PutX (data)";
Writeback_Exclusive_Clean, desc="The final part of a PutX (no data, exclusive)";
Writeback_Exclusive_Dirty, desc="The final part of a PutX (data, exclusive)";
// Probe filter
Pf_Replacement, desc="probe filter replacement";
// DMA requests
DMA_READ, desc="A DMA Read memory request";
DMA_WRITE, desc="A DMA Write memory request";
// Memory Controller
Memory_Data, desc="Fetched data from memory arrives";
Memory_Ack, desc="Writeback Ack from memory arrives";
// Cache responses required to handle DMA
Ack, desc="Received an ack message";
Shared_Ack, desc="Received an ack message, responder has a shared copy";
Shared_Data, desc="Received a data message, responder has a shared copy";
Data, desc="Received a data message, responder had a owner or exclusive copy, they gave it to us";
Exclusive_Data, desc="Received a data message, responder had an exclusive copy, they gave it to us";
// Triggers
All_acks_and_shared_data, desc="Received shared data and message acks";
All_acks_and_owner_data, desc="Received shared data and message acks";
All_acks_and_data_no_sharers, desc="Received all acks and no other processor has a shared copy";
All_Unblocks, desc="Received all unblocks for a merged gets request";
GETF, desc="A GETF arrives";
PUTF, desc="A PUTF arrives";
}
// TYPES
// DirectoryEntry
structure(Entry, desc="...", interface="AbstractCacheEntry", main="false") {
State DirectoryState, desc="Directory state";
}
// ProbeFilterEntry
structure(PfEntry, desc="...", interface="AbstractCacheEntry") {
State PfState, desc="Directory state";
MachineID Owner, desc="Owner node";
Set Sharers, desc="sharing vector for full bit directory";
}
// TBE entries for DMA requests
structure(TBE, desc="TBE entries for outstanding DMA requests") {
Addr PhysicalAddress, desc="physical address";
State TBEState, desc="Transient State";
CoherenceResponseType ResponseType, desc="The type for the subsequent response message";
int Acks, default="0", desc="The number of acks that the waiting response represents";
int SilentAcks, default="0", desc="The number of silent acks associated with this transaction";
DataBlock DmaDataBlk, desc="DMA Data to be written. Partial blocks need to merged with system memory";
DataBlock DataBlk, desc="The current view of system memory";
int Len, desc="...";
MachineID DmaRequestor, desc="DMA requestor";
NetDest GetSRequestors, desc="GETS merged requestors";
int NumPendingMsgs, desc="Number of pending acks/messages";
bool CacheDirty, default="false", desc="Indicates whether a cache has responded with dirty data";
bool Sharers, default="false", desc="Indicates whether a cache has indicated it is currently a sharer";
bool Owned, default="false", desc="Indicates whether a cache has indicated it is currently a sharer";
}
structure(TBETable, external="yes") {
TBE lookup(Addr);
void allocate(Addr);
void deallocate(Addr);
bool isPresent(Addr);
}
Tick clockEdge();
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE a);
void unset_tbe();
void wakeUpBuffers(Addr a);
Cycles curCycle();
// ** OBJECTS **
Set fwd_set;
TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs";
Entry getDirectoryEntry(Addr addr), return_by_pointer="yes" {
Entry dir_entry := static_cast(Entry, "pointer", directory[addr]);
if (is_valid(dir_entry)) {
return dir_entry;
}
dir_entry := static_cast(Entry, "pointer",
directory.allocate(addr, new Entry));
return dir_entry;
}
PfEntry getProbeFilterEntry(Addr addr), return_by_pointer="yes" {
if (probe_filter_enabled || full_bit_dir_enabled) {
PfEntry pfEntry := static_cast(PfEntry, "pointer", probeFilter.lookup(addr));
return pfEntry;
}
return OOD;
}
State getState(TBE tbe, PfEntry pf_entry, Addr addr) {
if (is_valid(tbe)) {
return tbe.TBEState;
} else {
if (probe_filter_enabled || full_bit_dir_enabled) {
if (is_valid(pf_entry)) {
assert(pf_entry.PfState == getDirectoryEntry(addr).DirectoryState);
}
}
return getDirectoryEntry(addr).DirectoryState;
}
}
void setState(TBE tbe, PfEntry pf_entry, Addr addr, State state) {
if (is_valid(tbe)) {
tbe.TBEState := state;
}
if (probe_filter_enabled || full_bit_dir_enabled) {
if (is_valid(pf_entry)) {
pf_entry.PfState := state;
}
if (state == State:NX || state == State:NO || state == State:S || state == State:O) {
assert(is_valid(pf_entry));
}
if (state == State:E) {
assert(is_valid(pf_entry) == false);
}
}
if (state == State:E || state == State:NX || state == State:NO || state == State:S ||
state == State:O) {
assert(is_valid(tbe) == false);
}
getDirectoryEntry(addr).DirectoryState := state;
}
AccessPermission getAccessPermission(Addr addr) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
return Directory_State_to_permission(tbe.TBEState);
}
if(directory.isPresent(addr)) {
return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState);
}
return AccessPermission:NotPresent;
}
void setAccessPermission(PfEntry pf_entry, Addr addr, State state) {
getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state));
}
void functionalRead(Addr addr, Packet *pkt) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
testAndRead(addr, tbe.DataBlk, pkt);
} else {
functionalMemoryRead(pkt);
}
}
int functionalWrite(Addr addr, Packet *pkt) {
int num_functional_writes := 0;
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
num_functional_writes := num_functional_writes +
testAndWrite(addr, tbe.DataBlk, pkt);
}
num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt);
return num_functional_writes;
}
Event cache_request_to_event(CoherenceRequestType type) {
if (type == CoherenceRequestType:GETS) {
return Event:GETS;
} else if (type == CoherenceRequestType:GETX) {
return Event:GETX;
} else if (type == CoherenceRequestType:GETF) {
return Event:GETF;
} else {
error("Invalid CoherenceRequestType");
}
}
// ** OUT_PORTS **
out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests
out_port(forwardNetwork_out, RequestMsg, forwardFromDir);
out_port(memQueue_out, MemoryMsg, requestToMemory);
out_port(responseNetwork_out, ResponseMsg, responseFromDir);
out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir);
out_port(triggerQueue_out, TriggerMsg, triggerQueue);
// ** IN_PORTS **
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue, rank=5) {
if (triggerQueue_in.isReady(clockEdge())) {
peek(triggerQueue_in, TriggerMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == TriggerType:ALL_ACKS) {
trigger(Event:All_acks_and_owner_data, in_msg.addr,
pf_entry, tbe);
} else if (in_msg.Type == TriggerType:ALL_ACKS_OWNER_EXISTS) {
trigger(Event:All_acks_and_shared_data, in_msg.addr,
pf_entry, tbe);
} else if (in_msg.Type == TriggerType:ALL_ACKS_NO_SHARERS) {
trigger(Event:All_acks_and_data_no_sharers, in_msg.addr,
pf_entry, tbe);
} else if (in_msg.Type == TriggerType:ALL_UNBLOCKS) {
trigger(Event:All_Unblocks, in_msg.addr,
pf_entry, tbe);
} else {
error("Unexpected message");
}
}
}
}
in_port(unblockNetwork_in, ResponseMsg, unblockToDir, rank=4) {
if (unblockNetwork_in.isReady(clockEdge())) {
peek(unblockNetwork_in, ResponseMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == CoherenceResponseType:UNBLOCK) {
trigger(Event:Unblock, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:UNBLOCKS) {
trigger(Event:UnblockS, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:UNBLOCKM) {
trigger(Event:UnblockM, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:WB_CLEAN) {
trigger(Event:Writeback_Clean, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:WB_DIRTY) {
trigger(Event:Writeback_Dirty, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:WB_EXCLUSIVE_CLEAN) {
trigger(Event:Writeback_Exclusive_Clean, in_msg.addr,
pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:WB_EXCLUSIVE_DIRTY) {
trigger(Event:Writeback_Exclusive_Dirty, in_msg.addr,
pf_entry, tbe);
} else {
error("Invalid message");
}
}
}
}
// Response Network
in_port(responseToDir_in, ResponseMsg, responseToDir, rank=3) {
if (responseToDir_in.isReady(clockEdge())) {
peek(responseToDir_in, ResponseMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:Ack, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:ACK_SHARED) {
trigger(Event:Shared_Ack, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:DATA_SHARED) {
trigger(Event:Shared_Data, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:DATA) {
trigger(Event:Data, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
trigger(Event:Exclusive_Data, in_msg.addr, pf_entry, tbe);
} else {
error("Unexpected message");
}
}
}
}
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, responseFromMemory, rank=2) {
if (memQueue_in.isReady(clockEdge())) {
peek(memQueue_in, MemoryMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
trigger(Event:Memory_Data, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
trigger(Event:Memory_Ack, in_msg.addr, pf_entry, tbe);
} else {
DPRINTF(RubySlicc, "%d\n", in_msg.Type);
error("Invalid message");
}
}
}
}
in_port(requestQueue_in, RequestMsg, requestToDir, rank=1) {
if (requestQueue_in.isReady(clockEdge())) {
peek(requestQueue_in, RequestMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if (in_msg.Type == CoherenceRequestType:PUT) {
trigger(Event:PUT, in_msg.addr, pf_entry, tbe);
} else if (in_msg.Type == CoherenceRequestType:PUTF) {
trigger(Event:PUTF, in_msg.addr, pf_entry, tbe);
} else {
if (probe_filter_enabled || full_bit_dir_enabled) {
if (is_valid(pf_entry)) {
trigger(cache_request_to_event(in_msg.Type), in_msg.addr,
pf_entry, tbe);
} else {
if (probeFilter.cacheAvail(in_msg.addr)) {
trigger(cache_request_to_event(in_msg.Type), in_msg.addr,
pf_entry, tbe);
} else {
Addr victim := probeFilter.cacheProbe(in_msg.addr);
trigger(Event:Pf_Replacement,
victim, getProbeFilterEntry(victim), TBEs[victim]);
}
}
} else {
trigger(cache_request_to_event(in_msg.Type), in_msg.addr,
pf_entry, tbe);
}
}
}
}
}
in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir, rank=0) {
if (dmaRequestQueue_in.isReady(clockEdge())) {
peek(dmaRequestQueue_in, DMARequestMsg) {
PfEntry pf_entry := getProbeFilterEntry(in_msg.LineAddress);
TBE tbe := TBEs[in_msg.LineAddress];
if (in_msg.Type == DMARequestType:READ) {
trigger(Event:DMA_READ, in_msg.LineAddress, pf_entry, tbe);
} else if (in_msg.Type == DMARequestType:WRITE) {
trigger(Event:DMA_WRITE, in_msg.LineAddress, pf_entry, tbe);
} else {
error("Invalid message");
}
}
}
}
// Actions
action(r_setMRU, "\rr", desc="manually set the MRU bit for pf entry" ) {
if (probe_filter_enabled || full_bit_dir_enabled) {
assert(is_valid(cache_entry));
probeFilter.setMRU(address);
}
}
action(auno_assertUnblockerNotOwner, "auno", desc="assert unblocker not owner") {
if (probe_filter_enabled || full_bit_dir_enabled) {
assert(is_valid(cache_entry));
peek(unblockNetwork_in, ResponseMsg) {
assert(cache_entry.Owner != in_msg.Sender);
if (full_bit_dir_enabled) {
assert(cache_entry.Sharers.isElement(machineIDToNodeID(in_msg.Sender)) == false);
}
}
}
}
action(uo_updateOwnerIfPf, "uo", desc="update owner") {
if (probe_filter_enabled || full_bit_dir_enabled) {
assert(is_valid(cache_entry));
peek(unblockNetwork_in, ResponseMsg) {
cache_entry.Owner := in_msg.Sender;
if (full_bit_dir_enabled) {
cache_entry.Sharers.clear();
cache_entry.Sharers.add(machineIDToNodeID(in_msg.Sender));
APPEND_TRANSITION_COMMENT(cache_entry.Sharers);
DPRINTF(RubySlicc, "Sharers = %d\n", cache_entry.Sharers);
}
}
}
}
action(us_updateSharerIfFBD, "us", desc="update sharer if full-bit directory") {
if (full_bit_dir_enabled) {
assert(probeFilter.isTagPresent(address));
peek(unblockNetwork_in, ResponseMsg) {
cache_entry.Sharers.add(machineIDToNodeID(in_msg.Sender));
}
}
}
action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:WB_ACK;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(oc_sendBlockAck, "oc", desc="Send block ack to the owner") {
peek(requestQueue_in, RequestMsg) {
if (((probe_filter_enabled || full_bit_dir_enabled) && (in_msg.Requestor == cache_entry.Owner)) || machineCount(MachineType:L1Cache) == 1) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:BLOCK_ACK;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
}
action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:WB_NACK;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(pfa_probeFilterAllocate, "pfa", desc="Allocate ProbeFilterEntry") {
if (probe_filter_enabled || full_bit_dir_enabled) {
peek(requestQueue_in, RequestMsg) {
set_cache_entry(probeFilter.allocate(address, new PfEntry));
cache_entry.Owner := in_msg.Requestor;
cache_entry.Sharers.setSize(machineCount(MachineType:L1Cache));
}
}
}
action(pfd_probeFilterDeallocate, "pfd", desc="Deallocate ProbeFilterEntry") {
if (probe_filter_enabled || full_bit_dir_enabled) {
probeFilter.deallocate(address);
unset_cache_entry();
}
}
action(ppfd_possibleProbeFilterDeallocate, "ppfd", desc="Deallocate ProbeFilterEntry") {
if ((probe_filter_enabled || full_bit_dir_enabled) && is_valid(cache_entry)) {
probeFilter.deallocate(address);
unset_cache_entry();
}
}
action(v_allocateTBE, "v", desc="Allocate TBE") {
check_allocate(TBEs);
peek(requestQueue_in, RequestMsg) {
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.PhysicalAddress := address;
tbe.ResponseType := CoherenceResponseType:NULL;
}
}
action(vd_allocateDmaRequestInTBE, "vd", desc="Record Data in TBE") {
check_allocate(TBEs);
peek(dmaRequestQueue_in, DMARequestMsg) {
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.DmaDataBlk := in_msg.DataBlk;
tbe.PhysicalAddress := in_msg.PhysicalAddress;
tbe.Len := in_msg.Len;
tbe.DmaRequestor := in_msg.Requestor;
tbe.ResponseType := CoherenceResponseType:DATA_EXCLUSIVE;
//
// One ack for each last-level cache
//
tbe.NumPendingMsgs := machineCount(MachineType:L1Cache);
//
// Assume initially that the caches store a clean copy and that memory
// will provide the data
//
tbe.CacheDirty := false;
}
}
action(pa_setPendingMsgsToAll, "pa", desc="set pending msgs to all") {
assert(is_valid(tbe));
if (full_bit_dir_enabled) {
assert(is_valid(cache_entry));
tbe.NumPendingMsgs := cache_entry.Sharers.count();
} else {
tbe.NumPendingMsgs := machineCount(MachineType:L1Cache);
}
}
action(po_setPendingMsgsToOne, "po", desc="set pending msgs to one") {
assert(is_valid(tbe));
tbe.NumPendingMsgs := 1;
}
action(w_deallocateTBE, "w", desc="Deallocate TBE") {
TBEs.deallocate(address);
unset_tbe();
}
action(sa_setAcksToOne, "sa", desc="Forwarded request, set the ack amount to one") {
assert(is_valid(tbe));
peek(requestQueue_in, RequestMsg) {
if (full_bit_dir_enabled) {
assert(is_valid(cache_entry));
//
// If we are using the full-bit directory and no sharers exists beyond
// the requestor, then we must set the ack number to all, not one
//
fwd_set := cache_entry.Sharers;
fwd_set.remove(machineIDToNodeID(in_msg.Requestor));
if (fwd_set.count() > 0) {
tbe.Acks := 1;
tbe.SilentAcks := machineCount(MachineType:L1Cache) - fwd_set.count();
tbe.SilentAcks := tbe.SilentAcks - 1;
} else {
tbe.Acks := machineCount(MachineType:L1Cache);
tbe.SilentAcks := 0;
}
} else {
tbe.Acks := 1;
}
}
}
action(saa_setAcksToAllIfPF, "saa", desc="Non-forwarded request, set the ack amount to all") {
assert(is_valid(tbe));
if (probe_filter_enabled || full_bit_dir_enabled) {
tbe.Acks := machineCount(MachineType:L1Cache);
tbe.SilentAcks := 0;
} else {
tbe.Acks := 1;
}
}
action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") {
peek(responseToDir_in, ResponseMsg) {
assert(is_valid(tbe));
assert(in_msg.Acks > 0);
DPRINTF(RubySlicc, "%d\n", tbe.NumPendingMsgs);
//
// Note that cache data responses will have an ack count of 2. However,
// directory DMA requests must wait for acks from all LLC caches, so
// only decrement by 1.
//
if ((in_msg.Type == CoherenceResponseType:DATA_SHARED) ||
(in_msg.Type == CoherenceResponseType:DATA) ||
(in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE)) {
tbe.NumPendingMsgs := tbe.NumPendingMsgs - 1;
} else {
tbe.NumPendingMsgs := tbe.NumPendingMsgs - in_msg.Acks;
}
DPRINTF(RubySlicc, "%d\n", tbe.NumPendingMsgs);
}
}
action(mu_decrementNumberOfUnblocks, "mu", desc="Decrement the number of messages for which we're waiting") {
peek(unblockNetwork_in, ResponseMsg) {
assert(is_valid(tbe));
assert(in_msg.Type == CoherenceResponseType:UNBLOCKS);
DPRINTF(RubySlicc, "%d\n", tbe.NumPendingMsgs);
tbe.NumPendingMsgs := tbe.NumPendingMsgs - 1;
DPRINTF(RubySlicc, "%d\n", tbe.NumPendingMsgs);
}
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseToDir_in.dequeue(clockEdge());
}
action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") {
assert(is_valid(tbe));
if (tbe.NumPendingMsgs == 0) {
enqueue(triggerQueue_out, TriggerMsg) {
out_msg.addr := address;
if (tbe.Sharers) {
if (tbe.Owned) {
out_msg.Type := TriggerType:ALL_ACKS_OWNER_EXISTS;
} else {
out_msg.Type := TriggerType:ALL_ACKS;
}
} else {
out_msg.Type := TriggerType:ALL_ACKS_NO_SHARERS;
}
}
}
}
action(os_checkForMergedGetSCompletion, "os", desc="Check for merged GETS completion") {
assert(is_valid(tbe));
if (tbe.NumPendingMsgs == 0) {
enqueue(triggerQueue_out, TriggerMsg) {
out_msg.addr := address;
out_msg.Type := TriggerType:ALL_UNBLOCKS;
}
}
}
action(sp_setPendingMsgsToMergedSharers, "sp", desc="Set pending messages to waiting sharers") {
assert(is_valid(tbe));
tbe.NumPendingMsgs := tbe.GetSRequestors.count();
}
action(spa_setPendingAcksToZeroIfPF, "spa", desc="if probe filter, no need to wait for acks") {
if (probe_filter_enabled || full_bit_dir_enabled) {
assert(is_valid(tbe));
tbe.NumPendingMsgs := 0;
}
}
action(sc_signalCompletionIfPF, "sc", desc="indicate that we should skip waiting for cpu acks") {
assert(is_valid(tbe));
if (tbe.NumPendingMsgs == 0) {
assert(probe_filter_enabled || full_bit_dir_enabled);
enqueue(triggerQueue_out, TriggerMsg) {
out_msg.addr := address;
out_msg.Type := TriggerType:ALL_ACKS_NO_SHARERS;
}
}
}
action(d_sendData, "d", desc="Send data to requestor") {
peek(memQueue_in, MemoryMsg) {
enqueue(responseNetwork_out, ResponseMsg, 1) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := tbe.ResponseType;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.OriginalRequestorMachId);
out_msg.DataBlk := in_msg.DataBlk;
DPRINTF(RubySlicc, "%s\n", out_msg.DataBlk);
out_msg.Dirty := false; // By definition, the block is now clean
out_msg.Acks := tbe.Acks;
out_msg.SilentAcks := tbe.SilentAcks;
DPRINTF(RubySlicc, "%d\n", out_msg.Acks);
assert(out_msg.Acks > 0);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(dr_sendDmaData, "dr", desc="Send Data to DMA controller from memory") {
peek(memQueue_in, MemoryMsg) {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
assert(is_valid(tbe));
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:DATA;
//
// we send the entire data block and rely on the dma controller to
// split it up if need be
//
out_msg.DataBlk := in_msg.DataBlk;
out_msg.Destination.add(tbe.DmaRequestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(dt_sendDmaDataFromTbe, "dt", desc="Send Data to DMA controller from tbe") {
peek(triggerQueue_in, TriggerMsg) {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
assert(is_valid(tbe));
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:DATA;
//
// we send the entire data block and rely on the dma controller to
// split it up if need be
//
out_msg.DataBlk := tbe.DataBlk;
out_msg.Destination.add(tbe.DmaRequestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(da_sendDmaAck, "da", desc="Send Ack to DMA controller") {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
assert(is_valid(tbe));
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:ACK;
out_msg.Destination.add(tbe.DmaRequestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(rx_recordExclusiveInTBE, "rx", desc="Record Exclusive in TBE") {
peek(requestQueue_in, RequestMsg) {
assert(is_valid(tbe));
tbe.ResponseType := CoherenceResponseType:DATA_EXCLUSIVE;
}
}
action(r_recordDataInTBE, "rt", desc="Record Data in TBE") {
peek(requestQueue_in, RequestMsg) {
assert(is_valid(tbe));
if (full_bit_dir_enabled) {
fwd_set := cache_entry.Sharers;
fwd_set.remove(machineIDToNodeID(in_msg.Requestor));
if (fwd_set.count() > 0) {
tbe.ResponseType := CoherenceResponseType:DATA;
} else {
tbe.ResponseType := CoherenceResponseType:DATA_EXCLUSIVE;
}
} else {
tbe.ResponseType := CoherenceResponseType:DATA;
}
}
}
action(rs_recordGetSRequestor, "rs", desc="Record GETS requestor in TBE") {
peek(requestQueue_in, RequestMsg) {
assert(is_valid(tbe));
tbe.GetSRequestors.add(in_msg.Requestor);
}
}
action(r_setSharerBit, "r", desc="We saw other sharers") {
assert(is_valid(tbe));
tbe.Sharers := true;
}
action(so_setOwnerBit, "so", desc="We saw other sharers") {
assert(is_valid(tbe));
tbe.Sharers := true;
tbe.Owned := true;
}
action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
peek(requestQueue_in, RequestMsg) {
enqueue(memQueue_out, MemoryMsg, to_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := in_msg.Requestor;
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.Len := 0;
}
}
}
action(qd_queueMemoryRequestFromDmaRead, "qd", desc="Queue off-chip fetch request") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(memQueue_out, MemoryMsg, to_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := in_msg.Requestor;
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.Len := 0;
}
}
}
action(fn_forwardRequestIfNecessary, "fn", desc="Forward requests if necessary") {
assert(is_valid(tbe));
if ((machineCount(MachineType:L1Cache) > 1) && (tbe.Acks <= 1)) {
if (full_bit_dir_enabled) {
assert(is_valid(cache_entry));
peek(requestQueue_in, RequestMsg) {
fwd_set := cache_entry.Sharers;
fwd_set.remove(machineIDToNodeID(in_msg.Requestor));
if (fwd_set.count() > 0) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.setNetDest(MachineType:L1Cache, fwd_set);
out_msg.MessageSize := MessageSizeType:Multicast_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := curCycle();
assert(tbe.SilentAcks > 0);
out_msg.SilentAcks := tbe.SilentAcks;
}
}
}
} else {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.broadcast(MachineType:L1Cache); // Send to all L1 caches
out_msg.Destination.remove(in_msg.Requestor); // Don't include the original requestor
out_msg.MessageSize := MessageSizeType:Broadcast_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := curCycle();
}
}
}
}
}
action(ia_invalidateAllRequest, "ia", desc="invalidate all copies") {
if (machineCount(MachineType:L1Cache) > 1) {
if (full_bit_dir_enabled) {
assert(cache_entry.Sharers.count() > 0);
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := machineID;
out_msg.Destination.setNetDest(MachineType:L1Cache, cache_entry.Sharers);
out_msg.MessageSize := MessageSizeType:Multicast_Control;
}
}
} else {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := machineID;
out_msg.Destination.broadcast(MachineType:L1Cache); // Send to all L1 caches
out_msg.MessageSize := MessageSizeType:Broadcast_Control;
}
}
}
}
action(io_invalidateOwnerRequest, "io", desc="invalidate all copies") {
if (machineCount(MachineType:L1Cache) > 1) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := machineID;
out_msg.Destination.add(cache_entry.Owner);
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.DirectedProbe := true;
}
}
}
action(fb_forwardRequestBcast, "fb", desc="Forward requests to all nodes") {
if (machineCount(MachineType:L1Cache) > 1) {
peek(requestQueue_in, RequestMsg) {
if (full_bit_dir_enabled) {
fwd_set := cache_entry.Sharers;
fwd_set.remove(machineIDToNodeID(in_msg.Requestor));
if (fwd_set.count() > 0) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.setNetDest(MachineType:L1Cache, fwd_set);
out_msg.MessageSize := MessageSizeType:Multicast_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := curCycle();
out_msg.SilentAcks := machineCount(MachineType:L1Cache) - fwd_set.count();
out_msg.SilentAcks := out_msg.SilentAcks - 1;
}
}
} else {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.broadcast(MachineType:L1Cache); // Send to all L1 caches
out_msg.Destination.remove(in_msg.Requestor); // Don't include the original requestor
out_msg.MessageSize := MessageSizeType:Broadcast_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := curCycle();
}
}
}
} else {
peek(requestQueue_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, 1) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.Dirty := false; // By definition, the block is now clean
out_msg.Acks := 0;
out_msg.SilentAcks := 0;
DPRINTF(RubySlicc, "%d\n", out_msg.Acks);
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
}
action(fr_forwardMergeReadRequestsToOwner, "frr", desc="Forward coalesced read request to owner") {
assert(machineCount(MachineType:L1Cache) > 1);
//
// Fixme! The unblock network should not stall on the forward network. Add a trigger queue to
// decouple the two.
//
peek(unblockNetwork_in, ResponseMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:MERGED_GETS;
out_msg.MergedRequestors := tbe.GetSRequestors;
if (in_msg.Type == CoherenceResponseType:UNBLOCKS) {
out_msg.Destination.add(in_msg.CurOwner);
} else {
out_msg.Destination.add(in_msg.Sender);
}
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.InitialRequestTime := zero_time();
out_msg.ForwardRequestTime := curCycle();
}
}
}
action(fc_forwardRequestConditionalOwner, "fc", desc="Forward request to one or more nodes") {
assert(machineCount(MachineType:L1Cache) > 1);
if (probe_filter_enabled || full_bit_dir_enabled) {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(cache_entry.Owner);
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.DirectedProbe := true;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := curCycle();
}
}
} else {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.broadcast(MachineType:L1Cache); // Send to all L1 caches
out_msg.Destination.remove(in_msg.Requestor); // Don't include the original requestor
out_msg.MessageSize := MessageSizeType:Broadcast_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := curCycle();
}
}
}
}
action(nofc_forwardRequestConditionalOwner, "nofc", desc="Forward request to one or more nodes if the requestor is not the owner") {
if (machineCount(MachineType:L1Cache) > 1) {
if (probe_filter_enabled || full_bit_dir_enabled) {
peek(requestQueue_in, RequestMsg) {
if (in_msg.Requestor != cache_entry.Owner) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(cache_entry.Owner);
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.DirectedProbe := true;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := curCycle();
}
}
}
} else {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.broadcast(MachineType:L1Cache); // Send to all L1 caches
out_msg.Destination.remove(in_msg.Requestor); // Don't include the original requestor
out_msg.MessageSize := MessageSizeType:Broadcast_Control;
out_msg.InitialRequestTime := in_msg.InitialRequestTime;
out_msg.ForwardRequestTime := curCycle();
}
}
}
}
}
action(f_forwardWriteFromDma, "fw", desc="Forward requests") {
assert(is_valid(tbe));
if (tbe.NumPendingMsgs > 0) {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETX;
//
// Send to all L1 caches, since the requestor is the memory controller
// itself
//
out_msg.Requestor := machineID;
out_msg.Destination.broadcast(MachineType:L1Cache);
out_msg.MessageSize := MessageSizeType:Broadcast_Control;
}
}
}
}
action(f_forwardReadFromDma, "fr", desc="Forward requests") {
assert(is_valid(tbe));
if (tbe.NumPendingMsgs > 0) {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, from_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETS;
//
// Send to all L1 caches, since the requestor is the memory controller
// itself
//
out_msg.Requestor := machineID;
out_msg.Destination.broadcast(MachineType:L1Cache);
out_msg.MessageSize := MessageSizeType:Broadcast_Control;
}
}
}
}
action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
requestQueue_in.dequeue(clockEdge());
}
action(j_popIncomingUnblockQueue, "j", desc="Pop incoming unblock queue") {
peek(unblockNetwork_in, ResponseMsg) {
APPEND_TRANSITION_COMMENT(in_msg.Sender);
}
unblockNetwork_in.dequeue(clockEdge());
}
action(k_wakeUpDependents, "k", desc="wake-up dependents") {
wakeUpBuffers(address);
}
action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue(clockEdge());
}
action(g_popTriggerQueue, "g", desc="Pop trigger queue") {
triggerQueue_in.dequeue(clockEdge());
}
action(p_popDmaRequestQueue, "pd", desc="pop dma request queue") {
dmaRequestQueue_in.dequeue(clockEdge());
}
action(zd_stallAndWaitDMARequest, "zd", desc="Stall and wait the dma request queue") {
peek(dmaRequestQueue_in, DMARequestMsg) {
APPEND_TRANSITION_COMMENT(in_msg.Requestor);
}
stall_and_wait(dmaRequestQueue_in, address);
}
action(r_recordMemoryData, "rd", desc="record data from memory to TBE") {
peek(memQueue_in, MemoryMsg) {
assert(is_valid(tbe));
if (tbe.CacheDirty == false) {
tbe.DataBlk := in_msg.DataBlk;
}
}
}
action(r_recordCacheData, "rc", desc="record data from cache response to TBE") {
peek(responseToDir_in, ResponseMsg) {
assert(is_valid(tbe));
tbe.CacheDirty := true;
tbe.DataBlk := in_msg.DataBlk;
}
}
action(a_assertCacheData, "ac", desc="Assert that a cache provided the data") {
assert(is_valid(tbe));
assert(tbe.CacheDirty);
}
action(ano_assertNotOwner, "ano", desc="Assert that request is not current owner") {
if (probe_filter_enabled || full_bit_dir_enabled) {
peek(requestQueue_in, RequestMsg) {
assert(is_valid(cache_entry));
assert(cache_entry.Owner != in_msg.Requestor);
}
}
}
action(ans_assertNotSharer, "ans", desc="Assert that request is not a current sharer") {
if (full_bit_dir_enabled) {
peek(requestQueue_in, RequestMsg) {
assert(cache_entry.Sharers.isElement(machineIDToNodeID(in_msg.Requestor)) == false);
}
}
}
action(rs_removeSharer, "s", desc="remove current sharer") {
if (full_bit_dir_enabled) {
peek(unblockNetwork_in, ResponseMsg) {
assert(cache_entry.Sharers.isElement(machineIDToNodeID(in_msg.Sender)));
cache_entry.Sharers.remove(machineIDToNodeID(in_msg.Sender));
}
}
}
action(cs_clearSharers, "cs", desc="clear current sharers") {
if (full_bit_dir_enabled) {
peek(requestQueue_in, RequestMsg) {
cache_entry.Sharers.clear();
cache_entry.Sharers.add(machineIDToNodeID(in_msg.Requestor));
}
}
}
action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") {
peek(unblockNetwork_in, ResponseMsg) {
enqueue(memQueue_out, MemoryMsg, to_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
out_msg.Sender := in_msg.Sender;
out_msg.MessageSize := MessageSizeType:Writeback_Data;
out_msg.DataBlk := in_msg.DataBlk;
out_msg.Len := 0;
}
}
}
action(ld_queueMemoryDmaWrite, "ld", desc="Write DMA data to memory") {
assert(is_valid(tbe));
enqueue(memQueue_out, MemoryMsg, to_memory_controller_latency) {
out_msg.addr := tbe.PhysicalAddress;
out_msg.Type := MemoryRequestType:MEMORY_WB;
out_msg.Sender := tbe.DmaRequestor;
out_msg.MessageSize := MessageSizeType:Writeback_Data;
out_msg.DataBlk := tbe.DmaDataBlk;
out_msg.Len := tbe.Len;
}
}
action(ly_queueMemoryWriteFromTBE, "ly", desc="Write data to memory from TBE") {
enqueue(memQueue_out, MemoryMsg, to_memory_controller_latency) {
out_msg.addr := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
out_msg.Sender := tbe.DmaRequestor;
out_msg.MessageSize := MessageSizeType:Writeback_Data;
out_msg.DataBlk := tbe.DataBlk;
out_msg.Len := 0;
}
}
action(ll_checkIncomingWriteback, "\l", desc="Check PUTX/PUTO response message") {
peek(unblockNetwork_in, ResponseMsg) {
assert(in_msg.Dirty == false);
assert(in_msg.MessageSize == MessageSizeType:Writeback_Control);
DPRINTF(RubySlicc, "%s\n", in_msg.DataBlk);
}
}
action(z_stallAndWaitRequest, "z", desc="Recycle the request queue") {
peek(requestQueue_in, RequestMsg) {
APPEND_TRANSITION_COMMENT(in_msg.Requestor);
}
stall_and_wait(requestQueue_in, address);
}
// TRANSITIONS
// Transitions out of E state
transition(E, GETX, NO_B_W) {
pfa_probeFilterAllocate;
v_allocateTBE;
rx_recordExclusiveInTBE;
saa_setAcksToAllIfPF;
qf_queueMemoryFetchRequest;
fn_forwardRequestIfNecessary;
i_popIncomingRequestQueue;
}
transition(E, GETF, NO_F_W) {
pfa_probeFilterAllocate;
v_allocateTBE;
rx_recordExclusiveInTBE;
saa_setAcksToAllIfPF;
qf_queueMemoryFetchRequest;
fn_forwardRequestIfNecessary;
i_popIncomingRequestQueue;
}
transition(E, GETS, NO_B_W) {
pfa_probeFilterAllocate;
v_allocateTBE;
rx_recordExclusiveInTBE;
saa_setAcksToAllIfPF;
qf_queueMemoryFetchRequest;
fn_forwardRequestIfNecessary;
i_popIncomingRequestQueue;
}
transition(E, DMA_READ, NO_DR_B_W) {
vd_allocateDmaRequestInTBE;
qd_queueMemoryRequestFromDmaRead;
spa_setPendingAcksToZeroIfPF;
f_forwardReadFromDma;
p_popDmaRequestQueue;
}
transition(E, DMA_WRITE, NO_DW_B_W) {
vd_allocateDmaRequestInTBE;
spa_setPendingAcksToZeroIfPF;
sc_signalCompletionIfPF;
f_forwardWriteFromDma;
p_popDmaRequestQueue;
}
// Transitions out of O state
transition(O, GETX, NO_B_W) {
r_setMRU;
v_allocateTBE;
r_recordDataInTBE;
sa_setAcksToOne;
qf_queueMemoryFetchRequest;
fb_forwardRequestBcast;
cs_clearSharers;
i_popIncomingRequestQueue;
}
transition(O, GETF, NO_F_W) {
r_setMRU;
v_allocateTBE;
r_recordDataInTBE;
sa_setAcksToOne;
qf_queueMemoryFetchRequest;
fb_forwardRequestBcast;
cs_clearSharers;
i_popIncomingRequestQueue;
}
// This transition is dumb, if a shared copy exists on-chip, then that should
// provide data, not slow off-chip dram. The problem is that the current
// caches don't provide data in S state
transition(O, GETS, O_B_W) {
r_setMRU;
v_allocateTBE;
r_recordDataInTBE;
saa_setAcksToAllIfPF;
qf_queueMemoryFetchRequest;
fn_forwardRequestIfNecessary;
i_popIncomingRequestQueue;
}
transition(O, DMA_READ, O_DR_B_W) {
vd_allocateDmaRequestInTBE;
spa_setPendingAcksToZeroIfPF;
qd_queueMemoryRequestFromDmaRead;
f_forwardReadFromDma;
p_popDmaRequestQueue;
}
transition(O, Pf_Replacement, O_R) {
v_allocateTBE;
pa_setPendingMsgsToAll;
ia_invalidateAllRequest;
pfd_probeFilterDeallocate;
}
transition(S, Pf_Replacement, S_R) {
v_allocateTBE;
pa_setPendingMsgsToAll;
ia_invalidateAllRequest;
pfd_probeFilterDeallocate;
}
transition(NO, Pf_Replacement, NO_R) {
v_allocateTBE;
po_setPendingMsgsToOne;
io_invalidateOwnerRequest;
pfd_probeFilterDeallocate;
}
transition(NX, Pf_Replacement, NO_R) {
v_allocateTBE;
pa_setPendingMsgsToAll;
ia_invalidateAllRequest;
pfd_probeFilterDeallocate;
}
transition({O, S, NO, NX}, DMA_WRITE, NO_DW_B_W) {
vd_allocateDmaRequestInTBE;
f_forwardWriteFromDma;
p_popDmaRequestQueue;
}
// Transitions out of NO state
transition(NX, GETX, NO_B) {
r_setMRU;
fb_forwardRequestBcast;
cs_clearSharers;
i_popIncomingRequestQueue;
}
transition(NX, GETF, NO_F) {
r_setMRU;
fb_forwardRequestBcast;
cs_clearSharers;
i_popIncomingRequestQueue;
}
// Transitions out of NO state
transition(NO, GETX, NO_B) {
r_setMRU;
ano_assertNotOwner;
fc_forwardRequestConditionalOwner;
cs_clearSharers;
i_popIncomingRequestQueue;
}
transition(NO, GETF, NO_F) {
r_setMRU;
//ano_assertNotOwner;
nofc_forwardRequestConditionalOwner; //forward request if the requester is not the owner
cs_clearSharers;
oc_sendBlockAck; // send ack if the owner
i_popIncomingRequestQueue;
}
transition(S, GETX, NO_B) {
r_setMRU;
fb_forwardRequestBcast;
cs_clearSharers;
i_popIncomingRequestQueue;
}
transition(S, GETF, NO_F) {
r_setMRU;
fb_forwardRequestBcast;
cs_clearSharers;
i_popIncomingRequestQueue;
}
transition(S, GETS, NO_B) {
r_setMRU;
ano_assertNotOwner;
fb_forwardRequestBcast;
i_popIncomingRequestQueue;
}
transition(NO, GETS, NO_B) {
r_setMRU;
ano_assertNotOwner;
ans_assertNotSharer;
fc_forwardRequestConditionalOwner;
i_popIncomingRequestQueue;
}
transition(NX, GETS, NO_B) {
r_setMRU;
ano_assertNotOwner;
fc_forwardRequestConditionalOwner;
i_popIncomingRequestQueue;
}
transition({NO, NX, S}, PUT, WB) {
//
// note that the PUT requestor may not be the current owner if an invalidate
// raced with PUT
//
a_sendWriteBackAck;
i_popIncomingRequestQueue;
}
transition({NO, NX, S}, DMA_READ, NO_DR_B_D) {
vd_allocateDmaRequestInTBE;
f_forwardReadFromDma;
p_popDmaRequestQueue;
}
// Nack PUT requests when races cause us to believe we own the data
transition({O, E}, PUT) {
b_sendWriteBackNack;
i_popIncomingRequestQueue;
}
// Blocked transient states
transition({NO_B_X, O_B, NO_DR_B_W, NO_DW_B_W, NO_B_W, NO_DR_B_D,
NO_DR_B, O_DR_B, O_B_W, O_DR_B_W, NO_DW_W, NO_B_S_W,
NO_W, O_W, WB, WB_E_W, WB_O_W, O_R, S_R, NO_R, NO_F_W},
{GETS, GETX, GETF, PUT, Pf_Replacement}) {
z_stallAndWaitRequest;
}
transition(NO_F, {GETS, GETX, GETF, PUT, Pf_Replacement}){
z_stallAndWaitRequest;
}
transition(NO_B, {GETX, GETF}, NO_B_X) {
z_stallAndWaitRequest;
}
transition(NO_B, {PUT, Pf_Replacement}) {
z_stallAndWaitRequest;
}
transition(NO_B_S, {GETX, GETF, PUT, Pf_Replacement}) {
z_stallAndWaitRequest;
}
transition({NO_B_X, NO_B, NO_B_S, O_B, NO_DR_B_W, NO_DW_B_W, NO_B_W, NO_DR_B_D,
NO_DR_B, O_DR_B, O_B_W, O_DR_B_W, NO_DW_W, NO_B_S_W,
NO_W, O_W, WB, WB_E_W, WB_O_W, O_R, S_R, NO_R, NO_F_W},
{DMA_READ, DMA_WRITE}) {
zd_stallAndWaitDMARequest;
}
// merge GETS into one response
transition(NO_B, GETS, NO_B_S) {
v_allocateTBE;
rs_recordGetSRequestor;
i_popIncomingRequestQueue;
}
transition(NO_B_S, GETS) {
rs_recordGetSRequestor;
i_popIncomingRequestQueue;
}
// unblock responses
transition({NO_B, NO_B_X}, UnblockS, NX) {
us_updateSharerIfFBD;
k_wakeUpDependents;
j_popIncomingUnblockQueue;
}
transition({NO_B, NO_B_X}, UnblockM, NO) {
uo_updateOwnerIfPf;
us_updateSharerIfFBD;
k_wakeUpDependents;
j_popIncomingUnblockQueue;
}
transition(NO_B_S, UnblockS, NO_B_S_W) {
us_updateSharerIfFBD;
fr_forwardMergeReadRequestsToOwner;
sp_setPendingMsgsToMergedSharers;
j_popIncomingUnblockQueue;
}
transition(NO_B_S, UnblockM, NO_B_S_W) {
uo_updateOwnerIfPf;
fr_forwardMergeReadRequestsToOwner;
sp_setPendingMsgsToMergedSharers;
j_popIncomingUnblockQueue;
}
transition(NO_B_S_W, UnblockS) {
us_updateSharerIfFBD;
mu_decrementNumberOfUnblocks;
os_checkForMergedGetSCompletion;
j_popIncomingUnblockQueue;
}
transition(NO_B_S_W, All_Unblocks, NX) {
w_deallocateTBE;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(O_B, UnblockS, O) {
us_updateSharerIfFBD;
k_wakeUpDependents;
j_popIncomingUnblockQueue;
}
transition(O_B, UnblockM, NO) {
us_updateSharerIfFBD;
uo_updateOwnerIfPf;
k_wakeUpDependents;
j_popIncomingUnblockQueue;
}
transition(NO_B_W, Memory_Data, NO_B) {
d_sendData;
w_deallocateTBE;
l_popMemQueue;
}
transition(NO_F_W, Memory_Data, NO_F) {
d_sendData;
w_deallocateTBE;
l_popMemQueue;
}
transition(NO_DR_B_W, Memory_Data, NO_DR_B) {
r_recordMemoryData;
o_checkForCompletion;
l_popMemQueue;
}
transition(O_DR_B_W, Memory_Data, O_DR_B) {
r_recordMemoryData;
dr_sendDmaData;
o_checkForCompletion;
l_popMemQueue;
}
transition({NO_DR_B, O_DR_B, NO_DR_B_D, NO_DW_B_W}, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition({O_R, S_R, NO_R}, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(S_R, Data) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(NO_R, {Data, Exclusive_Data}) {
r_recordCacheData;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition({O_R, S_R}, All_acks_and_data_no_sharers, E) {
w_deallocateTBE;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(NO_R, All_acks_and_data_no_sharers, WB_E_W) {
ly_queueMemoryWriteFromTBE;
w_deallocateTBE;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition({NO_DR_B_W, O_DR_B_W}, Ack) {
m_decrementNumberOfMessages;
n_popResponseQueue;
}
transition(NO_DR_B_W, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
n_popResponseQueue;
}
transition(O_DR_B, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition(O_DR_B_W, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
n_popResponseQueue;
}
transition({NO_DR_B, NO_DR_B_D}, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition(NO_DR_B_W, Shared_Data) {
r_recordCacheData;
m_decrementNumberOfMessages;
so_setOwnerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition({NO_DR_B, NO_DR_B_D}, Shared_Data) {
r_recordCacheData;
m_decrementNumberOfMessages;
so_setOwnerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition(NO_DR_B_W, {Exclusive_Data, Data}) {
r_recordCacheData;
m_decrementNumberOfMessages;
n_popResponseQueue;
}
transition({NO_DR_B, NO_DR_B_D, NO_DW_B_W}, {Exclusive_Data, Data}) {
r_recordCacheData;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(NO_DR_B, All_acks_and_owner_data, WB_O_W) {
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
ly_queueMemoryWriteFromTBE;
w_deallocateTBE;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(NO_DR_B, All_acks_and_shared_data, S) {
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
w_deallocateTBE;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(NO_DR_B_D, All_acks_and_owner_data, WB_O_W) {
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
ly_queueMemoryWriteFromTBE;
w_deallocateTBE;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(NO_DR_B_D, All_acks_and_shared_data, S) {
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
w_deallocateTBE;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(O_DR_B, All_acks_and_owner_data, WB_O_W) {
ly_queueMemoryWriteFromTBE;
w_deallocateTBE;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(O_DR_B, All_acks_and_data_no_sharers, WB_E_W) {
ly_queueMemoryWriteFromTBE;
w_deallocateTBE;
pfd_probeFilterDeallocate;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(NO_DR_B, All_acks_and_data_no_sharers, WB_E_W) {
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
ly_queueMemoryWriteFromTBE;
w_deallocateTBE;
ppfd_possibleProbeFilterDeallocate;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(NO_DR_B_D, All_acks_and_data_no_sharers, WB_E_W) {
a_assertCacheData;
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
ly_queueMemoryWriteFromTBE;
w_deallocateTBE;
ppfd_possibleProbeFilterDeallocate;
k_wakeUpDependents;
g_popTriggerQueue;
}
transition(NO_DW_B_W, All_acks_and_data_no_sharers, NO_DW_W) {
ld_queueMemoryDmaWrite;
g_popTriggerQueue;
}
transition(NO_DW_W, Memory_Ack, E) {
da_sendDmaAck;
w_deallocateTBE;
ppfd_possibleProbeFilterDeallocate;
k_wakeUpDependents;
l_popMemQueue;
}
transition(O_B_W, Memory_Data, O_B) {
d_sendData;
w_deallocateTBE;
l_popMemQueue;
}
transition(NO_B_W, UnblockM, NO_W) {
uo_updateOwnerIfPf;
j_popIncomingUnblockQueue;
}
transition(NO_B_W, UnblockS, NO_W) {
us_updateSharerIfFBD;
j_popIncomingUnblockQueue;
}
transition(O_B_W, UnblockS, O_W) {
us_updateSharerIfFBD;
j_popIncomingUnblockQueue;
}
transition(NO_W, Memory_Data, NO) {
w_deallocateTBE;
k_wakeUpDependents;
l_popMemQueue;
}
transition(O_W, Memory_Data, O) {
w_deallocateTBE;
k_wakeUpDependents;
l_popMemQueue;
}
// WB State Transistions
transition(WB, Writeback_Dirty, WB_O_W) {
rs_removeSharer;
l_queueMemoryWBRequest;
j_popIncomingUnblockQueue;
}
transition(WB, Writeback_Exclusive_Dirty, WB_E_W) {
rs_removeSharer;
l_queueMemoryWBRequest;
pfd_probeFilterDeallocate;
j_popIncomingUnblockQueue;
}
transition(WB_E_W, Memory_Ack, E) {
k_wakeUpDependents;
l_popMemQueue;
}
transition(WB_O_W, Memory_Ack, O) {
k_wakeUpDependents;
l_popMemQueue;
}
transition(WB, Writeback_Clean, O) {
ll_checkIncomingWriteback;
rs_removeSharer;
k_wakeUpDependents;
j_popIncomingUnblockQueue;
}
transition(WB, Writeback_Exclusive_Clean, E) {
ll_checkIncomingWriteback;
rs_removeSharer;
pfd_probeFilterDeallocate;
k_wakeUpDependents;
j_popIncomingUnblockQueue;
}
transition(WB, Unblock, NX) {
auno_assertUnblockerNotOwner;
k_wakeUpDependents;
j_popIncomingUnblockQueue;
}
transition(NO_F, PUTF, WB) {
a_sendWriteBackAck;
i_popIncomingRequestQueue;
}
//possible race between GETF and UnblockM -- not sure needed any more?
transition(NO_F, UnblockM) {
us_updateSharerIfFBD;
uo_updateOwnerIfPf;
j_popIncomingUnblockQueue;
}
}