| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file tests some commonly used argument matchers. |
| |
| // Silence warning C4244: 'initializing': conversion from 'int' to 'short', |
| // possible loss of data and C4100, unreferenced local parameter |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4244) |
| # pragma warning(disable:4100) |
| #endif |
| |
| #include "gmock/gmock-matchers.h" |
| |
| #include <string.h> |
| #include <time.h> |
| |
| #include <array> |
| #include <cstdint> |
| #include <deque> |
| #include <forward_list> |
| #include <functional> |
| #include <iostream> |
| #include <iterator> |
| #include <limits> |
| #include <list> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <sstream> |
| #include <string> |
| #include <type_traits> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "gmock/gmock-more-matchers.h" |
| #include "gmock/gmock.h" |
| #include "gtest/gtest-spi.h" |
| #include "gtest/gtest.h" |
| |
| namespace testing { |
| namespace gmock_matchers_test { |
| namespace { |
| |
| using std::greater; |
| using std::less; |
| using std::list; |
| using std::make_pair; |
| using std::map; |
| using std::multimap; |
| using std::multiset; |
| using std::ostream; |
| using std::pair; |
| using std::set; |
| using std::stringstream; |
| using std::vector; |
| using testing::internal::DummyMatchResultListener; |
| using testing::internal::ElementMatcherPair; |
| using testing::internal::ElementMatcherPairs; |
| using testing::internal::ElementsAreArrayMatcher; |
| using testing::internal::ExplainMatchFailureTupleTo; |
| using testing::internal::FloatingEqMatcher; |
| using testing::internal::FormatMatcherDescription; |
| using testing::internal::IsReadableTypeName; |
| using testing::internal::MatchMatrix; |
| using testing::internal::PredicateFormatterFromMatcher; |
| using testing::internal::RE; |
| using testing::internal::StreamMatchResultListener; |
| using testing::internal::Strings; |
| |
| // Helper for testing container-valued matchers in mock method context. It is |
| // important to test matchers in this context, since it requires additional type |
| // deduction beyond what EXPECT_THAT does, thus making it more restrictive. |
| struct ContainerHelper { |
| MOCK_METHOD1(Call, void(std::vector<std::unique_ptr<int>>)); |
| }; |
| |
| std::vector<std::unique_ptr<int>> MakeUniquePtrs(const std::vector<int>& ints) { |
| std::vector<std::unique_ptr<int>> pointers; |
| for (int i : ints) pointers.emplace_back(new int(i)); |
| return pointers; |
| } |
| |
| // For testing ExplainMatchResultTo(). |
| template <typename T = int> |
| class GreaterThanMatcher : public MatcherInterface<T> { |
| public: |
| explicit GreaterThanMatcher(T rhs) : rhs_(rhs) {} |
| |
| void DescribeTo(ostream* os) const override { *os << "is > " << rhs_; } |
| |
| bool MatchAndExplain(T lhs, MatchResultListener* listener) const override { |
| if (lhs > rhs_) { |
| *listener << "which is " << (lhs - rhs_) << " more than " << rhs_; |
| } else if (lhs == rhs_) { |
| *listener << "which is the same as " << rhs_; |
| } else { |
| *listener << "which is " << (rhs_ - lhs) << " less than " << rhs_; |
| } |
| |
| return lhs > rhs_; |
| } |
| |
| private: |
| const T rhs_; |
| }; |
| |
| template <typename T> |
| Matcher<T> GreaterThan(T n) { |
| return MakeMatcher(new GreaterThanMatcher<T>(n)); |
| } |
| |
| std::string OfType(const std::string& type_name) { |
| #if GTEST_HAS_RTTI |
| return IsReadableTypeName(type_name) ? " (of type " + type_name + ")" : ""; |
| #else |
| return ""; |
| #endif |
| } |
| |
| // Returns the description of the given matcher. |
| template <typename T> |
| std::string Describe(const Matcher<T>& m) { |
| return DescribeMatcher<T>(m); |
| } |
| |
| // Returns the description of the negation of the given matcher. |
| template <typename T> |
| std::string DescribeNegation(const Matcher<T>& m) { |
| return DescribeMatcher<T>(m, true); |
| } |
| |
| // Returns the reason why x matches, or doesn't match, m. |
| template <typename MatcherType, typename Value> |
| std::string Explain(const MatcherType& m, const Value& x) { |
| StringMatchResultListener listener; |
| ExplainMatchResult(m, x, &listener); |
| return listener.str(); |
| } |
| |
| TEST(MonotonicMatcherTest, IsPrintable) { |
| stringstream ss; |
| ss << GreaterThan(5); |
| EXPECT_EQ("is > 5", ss.str()); |
| } |
| |
| TEST(MatchResultListenerTest, StreamingWorks) { |
| StringMatchResultListener listener; |
| listener << "hi" << 5; |
| EXPECT_EQ("hi5", listener.str()); |
| |
| listener.Clear(); |
| EXPECT_EQ("", listener.str()); |
| |
| listener << 42; |
| EXPECT_EQ("42", listener.str()); |
| |
| // Streaming shouldn't crash when the underlying ostream is NULL. |
| DummyMatchResultListener dummy; |
| dummy << "hi" << 5; |
| } |
| |
| TEST(MatchResultListenerTest, CanAccessUnderlyingStream) { |
| EXPECT_TRUE(DummyMatchResultListener().stream() == nullptr); |
| EXPECT_TRUE(StreamMatchResultListener(nullptr).stream() == nullptr); |
| |
| EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream()); |
| } |
| |
| TEST(MatchResultListenerTest, IsInterestedWorks) { |
| EXPECT_TRUE(StringMatchResultListener().IsInterested()); |
| EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested()); |
| |
| EXPECT_FALSE(DummyMatchResultListener().IsInterested()); |
| EXPECT_FALSE(StreamMatchResultListener(nullptr).IsInterested()); |
| } |
| |
| // Makes sure that the MatcherInterface<T> interface doesn't |
| // change. |
| class EvenMatcherImpl : public MatcherInterface<int> { |
| public: |
| bool MatchAndExplain(int x, |
| MatchResultListener* /* listener */) const override { |
| return x % 2 == 0; |
| } |
| |
| void DescribeTo(ostream* os) const override { *os << "is an even number"; } |
| |
| // We deliberately don't define DescribeNegationTo() and |
| // ExplainMatchResultTo() here, to make sure the definition of these |
| // two methods is optional. |
| }; |
| |
| // Makes sure that the MatcherInterface API doesn't change. |
| TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) { |
| EvenMatcherImpl m; |
| } |
| |
| // Tests implementing a monomorphic matcher using MatchAndExplain(). |
| |
| class NewEvenMatcherImpl : public MatcherInterface<int> { |
| public: |
| bool MatchAndExplain(int x, MatchResultListener* listener) const override { |
| const bool match = x % 2 == 0; |
| // Verifies that we can stream to a listener directly. |
| *listener << "value % " << 2; |
| if (listener->stream() != nullptr) { |
| // Verifies that we can stream to a listener's underlying stream |
| // too. |
| *listener->stream() << " == " << (x % 2); |
| } |
| return match; |
| } |
| |
| void DescribeTo(ostream* os) const override { *os << "is an even number"; } |
| }; |
| |
| TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) { |
| Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl); |
| EXPECT_TRUE(m.Matches(2)); |
| EXPECT_FALSE(m.Matches(3)); |
| EXPECT_EQ("value % 2 == 0", Explain(m, 2)); |
| EXPECT_EQ("value % 2 == 1", Explain(m, 3)); |
| } |
| |
| // Tests default-constructing a matcher. |
| TEST(MatcherTest, CanBeDefaultConstructed) { |
| Matcher<double> m; |
| } |
| |
| // Tests that Matcher<T> can be constructed from a MatcherInterface<T>*. |
| TEST(MatcherTest, CanBeConstructedFromMatcherInterface) { |
| const MatcherInterface<int>* impl = new EvenMatcherImpl; |
| Matcher<int> m(impl); |
| EXPECT_TRUE(m.Matches(4)); |
| EXPECT_FALSE(m.Matches(5)); |
| } |
| |
| // Tests that value can be used in place of Eq(value). |
| TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) { |
| Matcher<int> m1 = 5; |
| EXPECT_TRUE(m1.Matches(5)); |
| EXPECT_FALSE(m1.Matches(6)); |
| } |
| |
| // Tests that NULL can be used in place of Eq(NULL). |
| TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) { |
| Matcher<int*> m1 = nullptr; |
| EXPECT_TRUE(m1.Matches(nullptr)); |
| int n = 0; |
| EXPECT_FALSE(m1.Matches(&n)); |
| } |
| |
| // Tests that matchers can be constructed from a variable that is not properly |
| // defined. This should be illegal, but many users rely on this accidentally. |
| struct Undefined { |
| virtual ~Undefined() = 0; |
| static const int kInt = 1; |
| }; |
| |
| TEST(MatcherTest, CanBeConstructedFromUndefinedVariable) { |
| Matcher<int> m1 = Undefined::kInt; |
| EXPECT_TRUE(m1.Matches(1)); |
| EXPECT_FALSE(m1.Matches(2)); |
| } |
| |
| // Test that a matcher parameterized with an abstract class compiles. |
| TEST(MatcherTest, CanAcceptAbstractClass) { Matcher<const Undefined&> m = _; } |
| |
| // Tests that matchers are copyable. |
| TEST(MatcherTest, IsCopyable) { |
| // Tests the copy constructor. |
| Matcher<bool> m1 = Eq(false); |
| EXPECT_TRUE(m1.Matches(false)); |
| EXPECT_FALSE(m1.Matches(true)); |
| |
| // Tests the assignment operator. |
| m1 = Eq(true); |
| EXPECT_TRUE(m1.Matches(true)); |
| EXPECT_FALSE(m1.Matches(false)); |
| } |
| |
| // Tests that Matcher<T>::DescribeTo() calls |
| // MatcherInterface<T>::DescribeTo(). |
| TEST(MatcherTest, CanDescribeItself) { |
| EXPECT_EQ("is an even number", |
| Describe(Matcher<int>(new EvenMatcherImpl))); |
| } |
| |
| // Tests Matcher<T>::MatchAndExplain(). |
| TEST(MatcherTest, MatchAndExplain) { |
| Matcher<int> m = GreaterThan(0); |
| StringMatchResultListener listener1; |
| EXPECT_TRUE(m.MatchAndExplain(42, &listener1)); |
| EXPECT_EQ("which is 42 more than 0", listener1.str()); |
| |
| StringMatchResultListener listener2; |
| EXPECT_FALSE(m.MatchAndExplain(-9, &listener2)); |
| EXPECT_EQ("which is 9 less than 0", listener2.str()); |
| } |
| |
| // Tests that a C-string literal can be implicitly converted to a |
| // Matcher<std::string> or Matcher<const std::string&>. |
| TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { |
| Matcher<std::string> m1 = "hi"; |
| EXPECT_TRUE(m1.Matches("hi")); |
| EXPECT_FALSE(m1.Matches("hello")); |
| |
| Matcher<const std::string&> m2 = "hi"; |
| EXPECT_TRUE(m2.Matches("hi")); |
| EXPECT_FALSE(m2.Matches("hello")); |
| } |
| |
| // Tests that a string object can be implicitly converted to a |
| // Matcher<std::string> or Matcher<const std::string&>. |
| TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) { |
| Matcher<std::string> m1 = std::string("hi"); |
| EXPECT_TRUE(m1.Matches("hi")); |
| EXPECT_FALSE(m1.Matches("hello")); |
| |
| Matcher<const std::string&> m2 = std::string("hi"); |
| EXPECT_TRUE(m2.Matches("hi")); |
| EXPECT_FALSE(m2.Matches("hello")); |
| } |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| // Tests that a C-string literal can be implicitly converted to a |
| // Matcher<StringView> or Matcher<const StringView&>. |
| TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { |
| Matcher<internal::StringView> m1 = "cats"; |
| EXPECT_TRUE(m1.Matches("cats")); |
| EXPECT_FALSE(m1.Matches("dogs")); |
| |
| Matcher<const internal::StringView&> m2 = "cats"; |
| EXPECT_TRUE(m2.Matches("cats")); |
| EXPECT_FALSE(m2.Matches("dogs")); |
| } |
| |
| // Tests that a std::string object can be implicitly converted to a |
| // Matcher<StringView> or Matcher<const StringView&>. |
| TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromString) { |
| Matcher<internal::StringView> m1 = std::string("cats"); |
| EXPECT_TRUE(m1.Matches("cats")); |
| EXPECT_FALSE(m1.Matches("dogs")); |
| |
| Matcher<const internal::StringView&> m2 = std::string("cats"); |
| EXPECT_TRUE(m2.Matches("cats")); |
| EXPECT_FALSE(m2.Matches("dogs")); |
| } |
| |
| // Tests that a StringView object can be implicitly converted to a |
| // Matcher<StringView> or Matcher<const StringView&>. |
| TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromStringView) { |
| Matcher<internal::StringView> m1 = internal::StringView("cats"); |
| EXPECT_TRUE(m1.Matches("cats")); |
| EXPECT_FALSE(m1.Matches("dogs")); |
| |
| Matcher<const internal::StringView&> m2 = internal::StringView("cats"); |
| EXPECT_TRUE(m2.Matches("cats")); |
| EXPECT_FALSE(m2.Matches("dogs")); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Tests that a std::reference_wrapper<std::string> object can be implicitly |
| // converted to a Matcher<std::string> or Matcher<const std::string&> via Eq(). |
| TEST(StringMatcherTest, |
| CanBeImplicitlyConstructedFromEqReferenceWrapperString) { |
| std::string value = "cats"; |
| Matcher<std::string> m1 = Eq(std::ref(value)); |
| EXPECT_TRUE(m1.Matches("cats")); |
| EXPECT_FALSE(m1.Matches("dogs")); |
| |
| Matcher<const std::string&> m2 = Eq(std::ref(value)); |
| EXPECT_TRUE(m2.Matches("cats")); |
| EXPECT_FALSE(m2.Matches("dogs")); |
| } |
| |
| // Tests that MakeMatcher() constructs a Matcher<T> from a |
| // MatcherInterface* without requiring the user to explicitly |
| // write the type. |
| TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) { |
| const MatcherInterface<int>* dummy_impl = new EvenMatcherImpl; |
| Matcher<int> m = MakeMatcher(dummy_impl); |
| } |
| |
| // Tests that MakePolymorphicMatcher() can construct a polymorphic |
| // matcher from its implementation using the old API. |
| const int g_bar = 1; |
| class ReferencesBarOrIsZeroImpl { |
| public: |
| template <typename T> |
| bool MatchAndExplain(const T& x, |
| MatchResultListener* /* listener */) const { |
| const void* p = &x; |
| return p == &g_bar || x == 0; |
| } |
| |
| void DescribeTo(ostream* os) const { *os << "g_bar or zero"; } |
| |
| void DescribeNegationTo(ostream* os) const { |
| *os << "doesn't reference g_bar and is not zero"; |
| } |
| }; |
| |
| // This function verifies that MakePolymorphicMatcher() returns a |
| // PolymorphicMatcher<T> where T is the argument's type. |
| PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() { |
| return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl()); |
| } |
| |
| TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) { |
| // Using a polymorphic matcher to match a reference type. |
| Matcher<const int&> m1 = ReferencesBarOrIsZero(); |
| EXPECT_TRUE(m1.Matches(0)); |
| // Verifies that the identity of a by-reference argument is preserved. |
| EXPECT_TRUE(m1.Matches(g_bar)); |
| EXPECT_FALSE(m1.Matches(1)); |
| EXPECT_EQ("g_bar or zero", Describe(m1)); |
| |
| // Using a polymorphic matcher to match a value type. |
| Matcher<double> m2 = ReferencesBarOrIsZero(); |
| EXPECT_TRUE(m2.Matches(0.0)); |
| EXPECT_FALSE(m2.Matches(0.1)); |
| EXPECT_EQ("g_bar or zero", Describe(m2)); |
| } |
| |
| // Tests implementing a polymorphic matcher using MatchAndExplain(). |
| |
| class PolymorphicIsEvenImpl { |
| public: |
| void DescribeTo(ostream* os) const { *os << "is even"; } |
| |
| void DescribeNegationTo(ostream* os) const { |
| *os << "is odd"; |
| } |
| |
| template <typename T> |
| bool MatchAndExplain(const T& x, MatchResultListener* listener) const { |
| // Verifies that we can stream to the listener directly. |
| *listener << "% " << 2; |
| if (listener->stream() != nullptr) { |
| // Verifies that we can stream to the listener's underlying stream |
| // too. |
| *listener->stream() << " == " << (x % 2); |
| } |
| return (x % 2) == 0; |
| } |
| }; |
| |
| PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() { |
| return MakePolymorphicMatcher(PolymorphicIsEvenImpl()); |
| } |
| |
| TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) { |
| // Using PolymorphicIsEven() as a Matcher<int>. |
| const Matcher<int> m1 = PolymorphicIsEven(); |
| EXPECT_TRUE(m1.Matches(42)); |
| EXPECT_FALSE(m1.Matches(43)); |
| EXPECT_EQ("is even", Describe(m1)); |
| |
| const Matcher<int> not_m1 = Not(m1); |
| EXPECT_EQ("is odd", Describe(not_m1)); |
| |
| EXPECT_EQ("% 2 == 0", Explain(m1, 42)); |
| |
| // Using PolymorphicIsEven() as a Matcher<char>. |
| const Matcher<char> m2 = PolymorphicIsEven(); |
| EXPECT_TRUE(m2.Matches('\x42')); |
| EXPECT_FALSE(m2.Matches('\x43')); |
| EXPECT_EQ("is even", Describe(m2)); |
| |
| const Matcher<char> not_m2 = Not(m2); |
| EXPECT_EQ("is odd", Describe(not_m2)); |
| |
| EXPECT_EQ("% 2 == 0", Explain(m2, '\x42')); |
| } |
| |
| // Tests that MatcherCast<T>(m) works when m is a polymorphic matcher. |
| TEST(MatcherCastTest, FromPolymorphicMatcher) { |
| Matcher<int> m = MatcherCast<int>(Eq(5)); |
| EXPECT_TRUE(m.Matches(5)); |
| EXPECT_FALSE(m.Matches(6)); |
| } |
| |
| // For testing casting matchers between compatible types. |
| class IntValue { |
| public: |
| // An int can be statically (although not implicitly) cast to a |
| // IntValue. |
| explicit IntValue(int a_value) : value_(a_value) {} |
| |
| int value() const { return value_; } |
| private: |
| int value_; |
| }; |
| |
| // For testing casting matchers between compatible types. |
| bool IsPositiveIntValue(const IntValue& foo) { |
| return foo.value() > 0; |
| } |
| |
| // Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T |
| // can be statically converted to U. |
| TEST(MatcherCastTest, FromCompatibleType) { |
| Matcher<double> m1 = Eq(2.0); |
| Matcher<int> m2 = MatcherCast<int>(m1); |
| EXPECT_TRUE(m2.Matches(2)); |
| EXPECT_FALSE(m2.Matches(3)); |
| |
| Matcher<IntValue> m3 = Truly(IsPositiveIntValue); |
| Matcher<int> m4 = MatcherCast<int>(m3); |
| // In the following, the arguments 1 and 0 are statically converted |
| // to IntValue objects, and then tested by the IsPositiveIntValue() |
| // predicate. |
| EXPECT_TRUE(m4.Matches(1)); |
| EXPECT_FALSE(m4.Matches(0)); |
| } |
| |
| // Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>. |
| TEST(MatcherCastTest, FromConstReferenceToNonReference) { |
| Matcher<const int&> m1 = Eq(0); |
| Matcher<int> m2 = MatcherCast<int>(m1); |
| EXPECT_TRUE(m2.Matches(0)); |
| EXPECT_FALSE(m2.Matches(1)); |
| } |
| |
| // Tests that MatcherCast<T>(m) works when m is a Matcher<T&>. |
| TEST(MatcherCastTest, FromReferenceToNonReference) { |
| Matcher<int&> m1 = Eq(0); |
| Matcher<int> m2 = MatcherCast<int>(m1); |
| EXPECT_TRUE(m2.Matches(0)); |
| EXPECT_FALSE(m2.Matches(1)); |
| } |
| |
| // Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>. |
| TEST(MatcherCastTest, FromNonReferenceToConstReference) { |
| Matcher<int> m1 = Eq(0); |
| Matcher<const int&> m2 = MatcherCast<const int&>(m1); |
| EXPECT_TRUE(m2.Matches(0)); |
| EXPECT_FALSE(m2.Matches(1)); |
| } |
| |
| // Tests that MatcherCast<T&>(m) works when m is a Matcher<T>. |
| TEST(MatcherCastTest, FromNonReferenceToReference) { |
| Matcher<int> m1 = Eq(0); |
| Matcher<int&> m2 = MatcherCast<int&>(m1); |
| int n = 0; |
| EXPECT_TRUE(m2.Matches(n)); |
| n = 1; |
| EXPECT_FALSE(m2.Matches(n)); |
| } |
| |
| // Tests that MatcherCast<T>(m) works when m is a Matcher<T>. |
| TEST(MatcherCastTest, FromSameType) { |
| Matcher<int> m1 = Eq(0); |
| Matcher<int> m2 = MatcherCast<int>(m1); |
| EXPECT_TRUE(m2.Matches(0)); |
| EXPECT_FALSE(m2.Matches(1)); |
| } |
| |
| // Tests that MatcherCast<T>(m) works when m is a value of the same type as the |
| // value type of the Matcher. |
| TEST(MatcherCastTest, FromAValue) { |
| Matcher<int> m = MatcherCast<int>(42); |
| EXPECT_TRUE(m.Matches(42)); |
| EXPECT_FALSE(m.Matches(239)); |
| } |
| |
| // Tests that MatcherCast<T>(m) works when m is a value of the type implicitly |
| // convertible to the value type of the Matcher. |
| TEST(MatcherCastTest, FromAnImplicitlyConvertibleValue) { |
| const int kExpected = 'c'; |
| Matcher<int> m = MatcherCast<int>('c'); |
| EXPECT_TRUE(m.Matches(kExpected)); |
| EXPECT_FALSE(m.Matches(kExpected + 1)); |
| } |
| |
| struct NonImplicitlyConstructibleTypeWithOperatorEq { |
| friend bool operator==( |
| const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */, |
| int rhs) { |
| return 42 == rhs; |
| } |
| friend bool operator==( |
| int lhs, |
| const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */) { |
| return lhs == 42; |
| } |
| }; |
| |
| // Tests that MatcherCast<T>(m) works when m is a neither a matcher nor |
| // implicitly convertible to the value type of the Matcher, but the value type |
| // of the matcher has operator==() overload accepting m. |
| TEST(MatcherCastTest, NonImplicitlyConstructibleTypeWithOperatorEq) { |
| Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m1 = |
| MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(42); |
| EXPECT_TRUE(m1.Matches(NonImplicitlyConstructibleTypeWithOperatorEq())); |
| |
| Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m2 = |
| MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(239); |
| EXPECT_FALSE(m2.Matches(NonImplicitlyConstructibleTypeWithOperatorEq())); |
| |
| // When updating the following lines please also change the comment to |
| // namespace convertible_from_any. |
| Matcher<int> m3 = |
| MatcherCast<int>(NonImplicitlyConstructibleTypeWithOperatorEq()); |
| EXPECT_TRUE(m3.Matches(42)); |
| EXPECT_FALSE(m3.Matches(239)); |
| } |
| |
| // ConvertibleFromAny does not work with MSVC. resulting in |
| // error C2440: 'initializing': cannot convert from 'Eq' to 'M' |
| // No constructor could take the source type, or constructor overload |
| // resolution was ambiguous |
| |
| #if !defined _MSC_VER |
| |
| // The below ConvertibleFromAny struct is implicitly constructible from anything |
| // and when in the same namespace can interact with other tests. In particular, |
| // if it is in the same namespace as other tests and one removes |
| // NonImplicitlyConstructibleTypeWithOperatorEq::operator==(int lhs, ...); |
| // then the corresponding test still compiles (and it should not!) by implicitly |
| // converting NonImplicitlyConstructibleTypeWithOperatorEq to ConvertibleFromAny |
| // in m3.Matcher(). |
| namespace convertible_from_any { |
| // Implicitly convertible from any type. |
| struct ConvertibleFromAny { |
| ConvertibleFromAny(int a_value) : value(a_value) {} |
| template <typename T> |
| ConvertibleFromAny(const T& /*a_value*/) : value(-1) { |
| ADD_FAILURE() << "Conversion constructor called"; |
| } |
| int value; |
| }; |
| |
| bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) { |
| return a.value == b.value; |
| } |
| |
| ostream& operator<<(ostream& os, const ConvertibleFromAny& a) { |
| return os << a.value; |
| } |
| |
| TEST(MatcherCastTest, ConversionConstructorIsUsed) { |
| Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1); |
| EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); |
| EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); |
| } |
| |
| TEST(MatcherCastTest, FromConvertibleFromAny) { |
| Matcher<ConvertibleFromAny> m = |
| MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1))); |
| EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); |
| EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); |
| } |
| } // namespace convertible_from_any |
| |
| #endif // !defined _MSC_VER |
| |
| struct IntReferenceWrapper { |
| IntReferenceWrapper(const int& a_value) : value(&a_value) {} |
| const int* value; |
| }; |
| |
| bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) { |
| return a.value == b.value; |
| } |
| |
| TEST(MatcherCastTest, ValueIsNotCopied) { |
| int n = 42; |
| Matcher<IntReferenceWrapper> m = MatcherCast<IntReferenceWrapper>(n); |
| // Verify that the matcher holds a reference to n, not to its temporary copy. |
| EXPECT_TRUE(m.Matches(n)); |
| } |
| |
| class Base { |
| public: |
| virtual ~Base() {} |
| Base() {} |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(Base); |
| }; |
| |
| class Derived : public Base { |
| public: |
| Derived() : Base() {} |
| int i; |
| }; |
| |
| class OtherDerived : public Base {}; |
| |
| // Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher. |
| TEST(SafeMatcherCastTest, FromPolymorphicMatcher) { |
| Matcher<char> m2 = SafeMatcherCast<char>(Eq(32)); |
| EXPECT_TRUE(m2.Matches(' ')); |
| EXPECT_FALSE(m2.Matches('\n')); |
| } |
| |
| // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where |
| // T and U are arithmetic types and T can be losslessly converted to |
| // U. |
| TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) { |
| Matcher<double> m1 = DoubleEq(1.0); |
| Matcher<float> m2 = SafeMatcherCast<float>(m1); |
| EXPECT_TRUE(m2.Matches(1.0f)); |
| EXPECT_FALSE(m2.Matches(2.0f)); |
| |
| Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a')); |
| EXPECT_TRUE(m3.Matches('a')); |
| EXPECT_FALSE(m3.Matches('b')); |
| } |
| |
| // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U |
| // are pointers or references to a derived and a base class, correspondingly. |
| TEST(SafeMatcherCastTest, FromBaseClass) { |
| Derived d, d2; |
| Matcher<Base*> m1 = Eq(&d); |
| Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1); |
| EXPECT_TRUE(m2.Matches(&d)); |
| EXPECT_FALSE(m2.Matches(&d2)); |
| |
| Matcher<Base&> m3 = Ref(d); |
| Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3); |
| EXPECT_TRUE(m4.Matches(d)); |
| EXPECT_FALSE(m4.Matches(d2)); |
| } |
| |
| // Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>. |
| TEST(SafeMatcherCastTest, FromConstReferenceToReference) { |
| int n = 0; |
| Matcher<const int&> m1 = Ref(n); |
| Matcher<int&> m2 = SafeMatcherCast<int&>(m1); |
| int n1 = 0; |
| EXPECT_TRUE(m2.Matches(n)); |
| EXPECT_FALSE(m2.Matches(n1)); |
| } |
| |
| // Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>. |
| TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) { |
| Matcher<std::unique_ptr<int>> m1 = IsNull(); |
| Matcher<const std::unique_ptr<int>&> m2 = |
| SafeMatcherCast<const std::unique_ptr<int>&>(m1); |
| EXPECT_TRUE(m2.Matches(std::unique_ptr<int>())); |
| EXPECT_FALSE(m2.Matches(std::unique_ptr<int>(new int))); |
| } |
| |
| // Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>. |
| TEST(SafeMatcherCastTest, FromNonReferenceToReference) { |
| Matcher<int> m1 = Eq(0); |
| Matcher<int&> m2 = SafeMatcherCast<int&>(m1); |
| int n = 0; |
| EXPECT_TRUE(m2.Matches(n)); |
| n = 1; |
| EXPECT_FALSE(m2.Matches(n)); |
| } |
| |
| // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>. |
| TEST(SafeMatcherCastTest, FromSameType) { |
| Matcher<int> m1 = Eq(0); |
| Matcher<int> m2 = SafeMatcherCast<int>(m1); |
| EXPECT_TRUE(m2.Matches(0)); |
| EXPECT_FALSE(m2.Matches(1)); |
| } |
| |
| #if !defined _MSC_VER |
| |
| namespace convertible_from_any { |
| TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) { |
| Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1); |
| EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); |
| EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); |
| } |
| |
| TEST(SafeMatcherCastTest, FromConvertibleFromAny) { |
| Matcher<ConvertibleFromAny> m = |
| SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1))); |
| EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); |
| EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); |
| } |
| } // namespace convertible_from_any |
| |
| #endif // !defined _MSC_VER |
| |
| TEST(SafeMatcherCastTest, ValueIsNotCopied) { |
| int n = 42; |
| Matcher<IntReferenceWrapper> m = SafeMatcherCast<IntReferenceWrapper>(n); |
| // Verify that the matcher holds a reference to n, not to its temporary copy. |
| EXPECT_TRUE(m.Matches(n)); |
| } |
| |
| TEST(ExpectThat, TakesLiterals) { |
| EXPECT_THAT(1, 1); |
| EXPECT_THAT(1.0, 1.0); |
| EXPECT_THAT(std::string(), ""); |
| } |
| |
| TEST(ExpectThat, TakesFunctions) { |
| struct Helper { |
| static void Func() {} |
| }; |
| void (*func)() = Helper::Func; |
| EXPECT_THAT(func, Helper::Func); |
| EXPECT_THAT(func, &Helper::Func); |
| } |
| |
| // Tests that A<T>() matches any value of type T. |
| TEST(ATest, MatchesAnyValue) { |
| // Tests a matcher for a value type. |
| Matcher<double> m1 = A<double>(); |
| EXPECT_TRUE(m1.Matches(91.43)); |
| EXPECT_TRUE(m1.Matches(-15.32)); |
| |
| // Tests a matcher for a reference type. |
| int a = 2; |
| int b = -6; |
| Matcher<int&> m2 = A<int&>(); |
| EXPECT_TRUE(m2.Matches(a)); |
| EXPECT_TRUE(m2.Matches(b)); |
| } |
| |
| TEST(ATest, WorksForDerivedClass) { |
| Base base; |
| Derived derived; |
| EXPECT_THAT(&base, A<Base*>()); |
| // This shouldn't compile: EXPECT_THAT(&base, A<Derived*>()); |
| EXPECT_THAT(&derived, A<Base*>()); |
| EXPECT_THAT(&derived, A<Derived*>()); |
| } |
| |
| // Tests that A<T>() describes itself properly. |
| TEST(ATest, CanDescribeSelf) { |
| EXPECT_EQ("is anything", Describe(A<bool>())); |
| } |
| |
| // Tests that An<T>() matches any value of type T. |
| TEST(AnTest, MatchesAnyValue) { |
| // Tests a matcher for a value type. |
| Matcher<int> m1 = An<int>(); |
| EXPECT_TRUE(m1.Matches(9143)); |
| EXPECT_TRUE(m1.Matches(-1532)); |
| |
| // Tests a matcher for a reference type. |
| int a = 2; |
| int b = -6; |
| Matcher<int&> m2 = An<int&>(); |
| EXPECT_TRUE(m2.Matches(a)); |
| EXPECT_TRUE(m2.Matches(b)); |
| } |
| |
| // Tests that An<T>() describes itself properly. |
| TEST(AnTest, CanDescribeSelf) { |
| EXPECT_EQ("is anything", Describe(An<int>())); |
| } |
| |
| // Tests that _ can be used as a matcher for any type and matches any |
| // value of that type. |
| TEST(UnderscoreTest, MatchesAnyValue) { |
| // Uses _ as a matcher for a value type. |
| Matcher<int> m1 = _; |
| EXPECT_TRUE(m1.Matches(123)); |
| EXPECT_TRUE(m1.Matches(-242)); |
| |
| // Uses _ as a matcher for a reference type. |
| bool a = false; |
| const bool b = true; |
| Matcher<const bool&> m2 = _; |
| EXPECT_TRUE(m2.Matches(a)); |
| EXPECT_TRUE(m2.Matches(b)); |
| } |
| |
| // Tests that _ describes itself properly. |
| TEST(UnderscoreTest, CanDescribeSelf) { |
| Matcher<int> m = _; |
| EXPECT_EQ("is anything", Describe(m)); |
| } |
| |
| // Tests that Eq(x) matches any value equal to x. |
| TEST(EqTest, MatchesEqualValue) { |
| // 2 C-strings with same content but different addresses. |
| const char a1[] = "hi"; |
| const char a2[] = "hi"; |
| |
| Matcher<const char*> m1 = Eq(a1); |
| EXPECT_TRUE(m1.Matches(a1)); |
| EXPECT_FALSE(m1.Matches(a2)); |
| } |
| |
| // Tests that Eq(v) describes itself properly. |
| |
| class Unprintable { |
| public: |
| Unprintable() : c_('a') {} |
| |
| bool operator==(const Unprintable& /* rhs */) const { return true; } |
| // -Wunused-private-field: dummy accessor for `c_`. |
| char dummy_c() { return c_; } |
| private: |
| char c_; |
| }; |
| |
| TEST(EqTest, CanDescribeSelf) { |
| Matcher<Unprintable> m = Eq(Unprintable()); |
| EXPECT_EQ("is equal to 1-byte object <61>", Describe(m)); |
| } |
| |
| // Tests that Eq(v) can be used to match any type that supports |
| // comparing with type T, where T is v's type. |
| TEST(EqTest, IsPolymorphic) { |
| Matcher<int> m1 = Eq(1); |
| EXPECT_TRUE(m1.Matches(1)); |
| EXPECT_FALSE(m1.Matches(2)); |
| |
| Matcher<char> m2 = Eq(1); |
| EXPECT_TRUE(m2.Matches('\1')); |
| EXPECT_FALSE(m2.Matches('a')); |
| } |
| |
| // Tests that TypedEq<T>(v) matches values of type T that's equal to v. |
| TEST(TypedEqTest, ChecksEqualityForGivenType) { |
| Matcher<char> m1 = TypedEq<char>('a'); |
| EXPECT_TRUE(m1.Matches('a')); |
| EXPECT_FALSE(m1.Matches('b')); |
| |
| Matcher<int> m2 = TypedEq<int>(6); |
| EXPECT_TRUE(m2.Matches(6)); |
| EXPECT_FALSE(m2.Matches(7)); |
| } |
| |
| // Tests that TypedEq(v) describes itself properly. |
| TEST(TypedEqTest, CanDescribeSelf) { |
| EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2))); |
| } |
| |
| // Tests that TypedEq<T>(v) has type Matcher<T>. |
| |
| // Type<T>::IsTypeOf(v) compiles if and only if the type of value v is T, where |
| // T is a "bare" type (i.e. not in the form of const U or U&). If v's type is |
| // not T, the compiler will generate a message about "undefined reference". |
| template <typename T> |
| struct Type { |
| static bool IsTypeOf(const T& /* v */) { return true; } |
| |
| template <typename T2> |
| static void IsTypeOf(T2 v); |
| }; |
| |
| TEST(TypedEqTest, HasSpecifiedType) { |
| // Verfies that the type of TypedEq<T>(v) is Matcher<T>. |
| Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5)); |
| Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5)); |
| } |
| |
| // Tests that Ge(v) matches anything >= v. |
| TEST(GeTest, ImplementsGreaterThanOrEqual) { |
| Matcher<int> m1 = Ge(0); |
| EXPECT_TRUE(m1.Matches(1)); |
| EXPECT_TRUE(m1.Matches(0)); |
| EXPECT_FALSE(m1.Matches(-1)); |
| } |
| |
| // Tests that Ge(v) describes itself properly. |
| TEST(GeTest, CanDescribeSelf) { |
| Matcher<int> m = Ge(5); |
| EXPECT_EQ("is >= 5", Describe(m)); |
| } |
| |
| // Tests that Gt(v) matches anything > v. |
| TEST(GtTest, ImplementsGreaterThan) { |
| Matcher<double> m1 = Gt(0); |
| EXPECT_TRUE(m1.Matches(1.0)); |
| EXPECT_FALSE(m1.Matches(0.0)); |
| EXPECT_FALSE(m1.Matches(-1.0)); |
| } |
| |
| // Tests that Gt(v) describes itself properly. |
| TEST(GtTest, CanDescribeSelf) { |
| Matcher<int> m = Gt(5); |
| EXPECT_EQ("is > 5", Describe(m)); |
| } |
| |
| // Tests that Le(v) matches anything <= v. |
| TEST(LeTest, ImplementsLessThanOrEqual) { |
| Matcher<char> m1 = Le('b'); |
| EXPECT_TRUE(m1.Matches('a')); |
| EXPECT_TRUE(m1.Matches('b')); |
| EXPECT_FALSE(m1.Matches('c')); |
| } |
| |
| // Tests that Le(v) describes itself properly. |
| TEST(LeTest, CanDescribeSelf) { |
| Matcher<int> m = Le(5); |
| EXPECT_EQ("is <= 5", Describe(m)); |
| } |
| |
| // Tests that Lt(v) matches anything < v. |
| TEST(LtTest, ImplementsLessThan) { |
| Matcher<const std::string&> m1 = Lt("Hello"); |
| EXPECT_TRUE(m1.Matches("Abc")); |
| EXPECT_FALSE(m1.Matches("Hello")); |
| EXPECT_FALSE(m1.Matches("Hello, world!")); |
| } |
| |
| // Tests that Lt(v) describes itself properly. |
| TEST(LtTest, CanDescribeSelf) { |
| Matcher<int> m = Lt(5); |
| EXPECT_EQ("is < 5", Describe(m)); |
| } |
| |
| // Tests that Ne(v) matches anything != v. |
| TEST(NeTest, ImplementsNotEqual) { |
| Matcher<int> m1 = Ne(0); |
| EXPECT_TRUE(m1.Matches(1)); |
| EXPECT_TRUE(m1.Matches(-1)); |
| EXPECT_FALSE(m1.Matches(0)); |
| } |
| |
| // Tests that Ne(v) describes itself properly. |
| TEST(NeTest, CanDescribeSelf) { |
| Matcher<int> m = Ne(5); |
| EXPECT_EQ("isn't equal to 5", Describe(m)); |
| } |
| |
| class MoveOnly { |
| public: |
| explicit MoveOnly(int i) : i_(i) {} |
| MoveOnly(const MoveOnly&) = delete; |
| MoveOnly(MoveOnly&&) = default; |
| MoveOnly& operator=(const MoveOnly&) = delete; |
| MoveOnly& operator=(MoveOnly&&) = default; |
| |
| bool operator==(const MoveOnly& other) const { return i_ == other.i_; } |
| bool operator!=(const MoveOnly& other) const { return i_ != other.i_; } |
| bool operator<(const MoveOnly& other) const { return i_ < other.i_; } |
| bool operator<=(const MoveOnly& other) const { return i_ <= other.i_; } |
| bool operator>(const MoveOnly& other) const { return i_ > other.i_; } |
| bool operator>=(const MoveOnly& other) const { return i_ >= other.i_; } |
| |
| private: |
| int i_; |
| }; |
| |
| struct MoveHelper { |
| MOCK_METHOD1(Call, void(MoveOnly)); |
| }; |
| |
| // Disable this test in VS 2015 (version 14), where it fails when SEH is enabled |
| #if defined(_MSC_VER) && (_MSC_VER < 1910) |
| TEST(ComparisonBaseTest, DISABLED_WorksWithMoveOnly) { |
| #else |
| TEST(ComparisonBaseTest, WorksWithMoveOnly) { |
| #endif |
| MoveOnly m{0}; |
| MoveHelper helper; |
| |
| EXPECT_CALL(helper, Call(Eq(ByRef(m)))); |
| helper.Call(MoveOnly(0)); |
| EXPECT_CALL(helper, Call(Ne(ByRef(m)))); |
| helper.Call(MoveOnly(1)); |
| EXPECT_CALL(helper, Call(Le(ByRef(m)))); |
| helper.Call(MoveOnly(0)); |
| EXPECT_CALL(helper, Call(Lt(ByRef(m)))); |
| helper.Call(MoveOnly(-1)); |
| EXPECT_CALL(helper, Call(Ge(ByRef(m)))); |
| helper.Call(MoveOnly(0)); |
| EXPECT_CALL(helper, Call(Gt(ByRef(m)))); |
| helper.Call(MoveOnly(1)); |
| } |
| |
| // Tests that IsNull() matches any NULL pointer of any type. |
| TEST(IsNullTest, MatchesNullPointer) { |
| Matcher<int*> m1 = IsNull(); |
| int* p1 = nullptr; |
| int n = 0; |
| EXPECT_TRUE(m1.Matches(p1)); |
| EXPECT_FALSE(m1.Matches(&n)); |
| |
| Matcher<const char*> m2 = IsNull(); |
| const char* p2 = nullptr; |
| EXPECT_TRUE(m2.Matches(p2)); |
| EXPECT_FALSE(m2.Matches("hi")); |
| |
| Matcher<void*> m3 = IsNull(); |
| void* p3 = nullptr; |
| EXPECT_TRUE(m3.Matches(p3)); |
| EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef))); |
| } |
| |
| TEST(IsNullTest, StdFunction) { |
| const Matcher<std::function<void()>> m = IsNull(); |
| |
| EXPECT_TRUE(m.Matches(std::function<void()>())); |
| EXPECT_FALSE(m.Matches([]{})); |
| } |
| |
| // Tests that IsNull() describes itself properly. |
| TEST(IsNullTest, CanDescribeSelf) { |
| Matcher<int*> m = IsNull(); |
| EXPECT_EQ("is NULL", Describe(m)); |
| EXPECT_EQ("isn't NULL", DescribeNegation(m)); |
| } |
| |
| // Tests that NotNull() matches any non-NULL pointer of any type. |
| TEST(NotNullTest, MatchesNonNullPointer) { |
| Matcher<int*> m1 = NotNull(); |
| int* p1 = nullptr; |
| int n = 0; |
| EXPECT_FALSE(m1.Matches(p1)); |
| EXPECT_TRUE(m1.Matches(&n)); |
| |
| Matcher<const char*> m2 = NotNull(); |
| const char* p2 = nullptr; |
| EXPECT_FALSE(m2.Matches(p2)); |
| EXPECT_TRUE(m2.Matches("hi")); |
| } |
| |
| TEST(NotNullTest, LinkedPtr) { |
| const Matcher<std::shared_ptr<int>> m = NotNull(); |
| const std::shared_ptr<int> null_p; |
| const std::shared_ptr<int> non_null_p(new int); |
| |
| EXPECT_FALSE(m.Matches(null_p)); |
| EXPECT_TRUE(m.Matches(non_null_p)); |
| } |
| |
| TEST(NotNullTest, ReferenceToConstLinkedPtr) { |
| const Matcher<const std::shared_ptr<double>&> m = NotNull(); |
| const std::shared_ptr<double> null_p; |
| const std::shared_ptr<double> non_null_p(new double); |
| |
| EXPECT_FALSE(m.Matches(null_p)); |
| EXPECT_TRUE(m.Matches(non_null_p)); |
| } |
| |
| TEST(NotNullTest, StdFunction) { |
| const Matcher<std::function<void()>> m = NotNull(); |
| |
| EXPECT_TRUE(m.Matches([]{})); |
| EXPECT_FALSE(m.Matches(std::function<void()>())); |
| } |
| |
| // Tests that NotNull() describes itself properly. |
| TEST(NotNullTest, CanDescribeSelf) { |
| Matcher<int*> m = NotNull(); |
| EXPECT_EQ("isn't NULL", Describe(m)); |
| } |
| |
| // Tests that Ref(variable) matches an argument that references |
| // 'variable'. |
| TEST(RefTest, MatchesSameVariable) { |
| int a = 0; |
| int b = 0; |
| Matcher<int&> m = Ref(a); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_FALSE(m.Matches(b)); |
| } |
| |
| // Tests that Ref(variable) describes itself properly. |
| TEST(RefTest, CanDescribeSelf) { |
| int n = 5; |
| Matcher<int&> m = Ref(n); |
| stringstream ss; |
| ss << "references the variable @" << &n << " 5"; |
| EXPECT_EQ(ss.str(), Describe(m)); |
| } |
| |
| // Test that Ref(non_const_varialbe) can be used as a matcher for a |
| // const reference. |
| TEST(RefTest, CanBeUsedAsMatcherForConstReference) { |
| int a = 0; |
| int b = 0; |
| Matcher<const int&> m = Ref(a); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_FALSE(m.Matches(b)); |
| } |
| |
| // Tests that Ref(variable) is covariant, i.e. Ref(derived) can be |
| // used wherever Ref(base) can be used (Ref(derived) is a sub-type |
| // of Ref(base), but not vice versa. |
| |
| TEST(RefTest, IsCovariant) { |
| Base base, base2; |
| Derived derived; |
| Matcher<const Base&> m1 = Ref(base); |
| EXPECT_TRUE(m1.Matches(base)); |
| EXPECT_FALSE(m1.Matches(base2)); |
| EXPECT_FALSE(m1.Matches(derived)); |
| |
| m1 = Ref(derived); |
| EXPECT_TRUE(m1.Matches(derived)); |
| EXPECT_FALSE(m1.Matches(base)); |
| EXPECT_FALSE(m1.Matches(base2)); |
| } |
| |
| TEST(RefTest, ExplainsResult) { |
| int n = 0; |
| EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n), |
| StartsWith("which is located @")); |
| |
| int m = 0; |
| EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m), |
| StartsWith("which is located @")); |
| } |
| |
| // Tests string comparison matchers. |
| |
| template <typename T = std::string> |
| std::string FromStringLike(internal::StringLike<T> str) { |
| return std::string(str); |
| } |
| |
| TEST(StringLike, TestConversions) { |
| EXPECT_EQ("foo", FromStringLike("foo")); |
| EXPECT_EQ("foo", FromStringLike(std::string("foo"))); |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| EXPECT_EQ("foo", FromStringLike(internal::StringView("foo"))); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Non deducible types. |
| EXPECT_EQ("", FromStringLike({})); |
| EXPECT_EQ("foo", FromStringLike({'f', 'o', 'o'})); |
| const char buf[] = "foo"; |
| EXPECT_EQ("foo", FromStringLike({buf, buf + 3})); |
| } |
| |
| TEST(StrEqTest, MatchesEqualString) { |
| Matcher<const char*> m = StrEq(std::string("Hello")); |
| EXPECT_TRUE(m.Matches("Hello")); |
| EXPECT_FALSE(m.Matches("hello")); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| |
| Matcher<const std::string&> m2 = StrEq("Hello"); |
| EXPECT_TRUE(m2.Matches("Hello")); |
| EXPECT_FALSE(m2.Matches("Hi")); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| Matcher<const internal::StringView&> m3 = |
| StrEq(internal::StringView("Hello")); |
| EXPECT_TRUE(m3.Matches(internal::StringView("Hello"))); |
| EXPECT_FALSE(m3.Matches(internal::StringView("hello"))); |
| EXPECT_FALSE(m3.Matches(internal::StringView())); |
| |
| Matcher<const internal::StringView&> m_empty = StrEq(""); |
| EXPECT_TRUE(m_empty.Matches(internal::StringView(""))); |
| EXPECT_TRUE(m_empty.Matches(internal::StringView())); |
| EXPECT_FALSE(m_empty.Matches(internal::StringView("hello"))); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| TEST(StrEqTest, CanDescribeSelf) { |
| Matcher<std::string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3"); |
| EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"", |
| Describe(m)); |
| |
| std::string str("01204500800"); |
| str[3] = '\0'; |
| Matcher<std::string> m2 = StrEq(str); |
| EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2)); |
| str[0] = str[6] = str[7] = str[9] = str[10] = '\0'; |
| Matcher<std::string> m3 = StrEq(str); |
| EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3)); |
| } |
| |
| TEST(StrNeTest, MatchesUnequalString) { |
| Matcher<const char*> m = StrNe("Hello"); |
| EXPECT_TRUE(m.Matches("")); |
| EXPECT_TRUE(m.Matches(nullptr)); |
| EXPECT_FALSE(m.Matches("Hello")); |
| |
| Matcher<std::string> m2 = StrNe(std::string("Hello")); |
| EXPECT_TRUE(m2.Matches("hello")); |
| EXPECT_FALSE(m2.Matches("Hello")); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| Matcher<const internal::StringView> m3 = StrNe(internal::StringView("Hello")); |
| EXPECT_TRUE(m3.Matches(internal::StringView(""))); |
| EXPECT_TRUE(m3.Matches(internal::StringView())); |
| EXPECT_FALSE(m3.Matches(internal::StringView("Hello"))); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| TEST(StrNeTest, CanDescribeSelf) { |
| Matcher<const char*> m = StrNe("Hi"); |
| EXPECT_EQ("isn't equal to \"Hi\"", Describe(m)); |
| } |
| |
| TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) { |
| Matcher<const char*> m = StrCaseEq(std::string("Hello")); |
| EXPECT_TRUE(m.Matches("Hello")); |
| EXPECT_TRUE(m.Matches("hello")); |
| EXPECT_FALSE(m.Matches("Hi")); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| |
| Matcher<const std::string&> m2 = StrCaseEq("Hello"); |
| EXPECT_TRUE(m2.Matches("hello")); |
| EXPECT_FALSE(m2.Matches("Hi")); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| Matcher<const internal::StringView&> m3 = |
| StrCaseEq(internal::StringView("Hello")); |
| EXPECT_TRUE(m3.Matches(internal::StringView("Hello"))); |
| EXPECT_TRUE(m3.Matches(internal::StringView("hello"))); |
| EXPECT_FALSE(m3.Matches(internal::StringView("Hi"))); |
| EXPECT_FALSE(m3.Matches(internal::StringView())); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { |
| std::string str1("oabocdooeoo"); |
| std::string str2("OABOCDOOEOO"); |
| Matcher<const std::string&> m0 = StrCaseEq(str1); |
| EXPECT_FALSE(m0.Matches(str2 + std::string(1, '\0'))); |
| |
| str1[3] = str2[3] = '\0'; |
| Matcher<const std::string&> m1 = StrCaseEq(str1); |
| EXPECT_TRUE(m1.Matches(str2)); |
| |
| str1[0] = str1[6] = str1[7] = str1[10] = '\0'; |
| str2[0] = str2[6] = str2[7] = str2[10] = '\0'; |
| Matcher<const std::string&> m2 = StrCaseEq(str1); |
| str1[9] = str2[9] = '\0'; |
| EXPECT_FALSE(m2.Matches(str2)); |
| |
| Matcher<const std::string&> m3 = StrCaseEq(str1); |
| EXPECT_TRUE(m3.Matches(str2)); |
| |
| EXPECT_FALSE(m3.Matches(str2 + "x")); |
| str2.append(1, '\0'); |
| EXPECT_FALSE(m3.Matches(str2)); |
| EXPECT_FALSE(m3.Matches(std::string(str2, 0, 9))); |
| } |
| |
| TEST(StrCaseEqTest, CanDescribeSelf) { |
| Matcher<std::string> m = StrCaseEq("Hi"); |
| EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m)); |
| } |
| |
| TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) { |
| Matcher<const char*> m = StrCaseNe("Hello"); |
| EXPECT_TRUE(m.Matches("Hi")); |
| EXPECT_TRUE(m.Matches(nullptr)); |
| EXPECT_FALSE(m.Matches("Hello")); |
| EXPECT_FALSE(m.Matches("hello")); |
| |
| Matcher<std::string> m2 = StrCaseNe(std::string("Hello")); |
| EXPECT_TRUE(m2.Matches("")); |
| EXPECT_FALSE(m2.Matches("Hello")); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| Matcher<const internal::StringView> m3 = |
| StrCaseNe(internal::StringView("Hello")); |
| EXPECT_TRUE(m3.Matches(internal::StringView("Hi"))); |
| EXPECT_TRUE(m3.Matches(internal::StringView())); |
| EXPECT_FALSE(m3.Matches(internal::StringView("Hello"))); |
| EXPECT_FALSE(m3.Matches(internal::StringView("hello"))); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| TEST(StrCaseNeTest, CanDescribeSelf) { |
| Matcher<const char*> m = StrCaseNe("Hi"); |
| EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m)); |
| } |
| |
| // Tests that HasSubstr() works for matching string-typed values. |
| TEST(HasSubstrTest, WorksForStringClasses) { |
| const Matcher<std::string> m1 = HasSubstr("foo"); |
| EXPECT_TRUE(m1.Matches(std::string("I love food."))); |
| EXPECT_FALSE(m1.Matches(std::string("tofo"))); |
| |
| const Matcher<const std::string&> m2 = HasSubstr("foo"); |
| EXPECT_TRUE(m2.Matches(std::string("I love food."))); |
| EXPECT_FALSE(m2.Matches(std::string("tofo"))); |
| |
| const Matcher<std::string> m_empty = HasSubstr(""); |
| EXPECT_TRUE(m_empty.Matches(std::string())); |
| EXPECT_TRUE(m_empty.Matches(std::string("not empty"))); |
| } |
| |
| // Tests that HasSubstr() works for matching C-string-typed values. |
| TEST(HasSubstrTest, WorksForCStrings) { |
| const Matcher<char*> m1 = HasSubstr("foo"); |
| EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food."))); |
| EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo"))); |
| EXPECT_FALSE(m1.Matches(nullptr)); |
| |
| const Matcher<const char*> m2 = HasSubstr("foo"); |
| EXPECT_TRUE(m2.Matches("I love food.")); |
| EXPECT_FALSE(m2.Matches("tofo")); |
| EXPECT_FALSE(m2.Matches(nullptr)); |
| |
| const Matcher<const char*> m_empty = HasSubstr(""); |
| EXPECT_TRUE(m_empty.Matches("not empty")); |
| EXPECT_TRUE(m_empty.Matches("")); |
| EXPECT_FALSE(m_empty.Matches(nullptr)); |
| } |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| // Tests that HasSubstr() works for matching StringView-typed values. |
| TEST(HasSubstrTest, WorksForStringViewClasses) { |
| const Matcher<internal::StringView> m1 = |
| HasSubstr(internal::StringView("foo")); |
| EXPECT_TRUE(m1.Matches(internal::StringView("I love food."))); |
| EXPECT_FALSE(m1.Matches(internal::StringView("tofo"))); |
| EXPECT_FALSE(m1.Matches(internal::StringView())); |
| |
| const Matcher<const internal::StringView&> m2 = HasSubstr("foo"); |
| EXPECT_TRUE(m2.Matches(internal::StringView("I love food."))); |
| EXPECT_FALSE(m2.Matches(internal::StringView("tofo"))); |
| EXPECT_FALSE(m2.Matches(internal::StringView())); |
| |
| const Matcher<const internal::StringView&> m3 = HasSubstr(""); |
| EXPECT_TRUE(m3.Matches(internal::StringView("foo"))); |
| EXPECT_TRUE(m3.Matches(internal::StringView(""))); |
| EXPECT_TRUE(m3.Matches(internal::StringView())); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Tests that HasSubstr(s) describes itself properly. |
| TEST(HasSubstrTest, CanDescribeSelf) { |
| Matcher<std::string> m = HasSubstr("foo\n\""); |
| EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m)); |
| } |
| |
| TEST(KeyTest, CanDescribeSelf) { |
| Matcher<const pair<std::string, int>&> m = Key("foo"); |
| EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m)); |
| EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m)); |
| } |
| |
| TEST(KeyTest, ExplainsResult) { |
| Matcher<pair<int, bool> > m = Key(GreaterThan(10)); |
| EXPECT_EQ("whose first field is a value which is 5 less than 10", |
| Explain(m, make_pair(5, true))); |
| EXPECT_EQ("whose first field is a value which is 5 more than 10", |
| Explain(m, make_pair(15, true))); |
| } |
| |
| TEST(KeyTest, MatchesCorrectly) { |
| pair<int, std::string> p(25, "foo"); |
| EXPECT_THAT(p, Key(25)); |
| EXPECT_THAT(p, Not(Key(42))); |
| EXPECT_THAT(p, Key(Ge(20))); |
| EXPECT_THAT(p, Not(Key(Lt(25)))); |
| } |
| |
| TEST(KeyTest, WorksWithMoveOnly) { |
| pair<std::unique_ptr<int>, std::unique_ptr<int>> p; |
| EXPECT_THAT(p, Key(Eq(nullptr))); |
| } |
| |
| template <size_t I> |
| struct Tag {}; |
| |
| struct PairWithGet { |
| int member_1; |
| std::string member_2; |
| using first_type = int; |
| using second_type = std::string; |
| |
| const int& GetImpl(Tag<0>) const { return member_1; } |
| const std::string& GetImpl(Tag<1>) const { return member_2; } |
| }; |
| template <size_t I> |
| auto get(const PairWithGet& value) -> decltype(value.GetImpl(Tag<I>())) { |
| return value.GetImpl(Tag<I>()); |
| } |
| TEST(PairTest, MatchesPairWithGetCorrectly) { |
| PairWithGet p{25, "foo"}; |
| EXPECT_THAT(p, Key(25)); |
| EXPECT_THAT(p, Not(Key(42))); |
| EXPECT_THAT(p, Key(Ge(20))); |
| EXPECT_THAT(p, Not(Key(Lt(25)))); |
| |
| std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; |
| EXPECT_THAT(v, Contains(Key(29))); |
| } |
| |
| TEST(KeyTest, SafelyCastsInnerMatcher) { |
| Matcher<int> is_positive = Gt(0); |
| Matcher<int> is_negative = Lt(0); |
| pair<char, bool> p('a', true); |
| EXPECT_THAT(p, Key(is_positive)); |
| EXPECT_THAT(p, Not(Key(is_negative))); |
| } |
| |
| TEST(KeyTest, InsideContainsUsingMap) { |
| map<int, char> container; |
| container.insert(make_pair(1, 'a')); |
| container.insert(make_pair(2, 'b')); |
| container.insert(make_pair(4, 'c')); |
| EXPECT_THAT(container, Contains(Key(1))); |
| EXPECT_THAT(container, Not(Contains(Key(3)))); |
| } |
| |
| TEST(KeyTest, InsideContainsUsingMultimap) { |
| multimap<int, char> container; |
| container.insert(make_pair(1, 'a')); |
| container.insert(make_pair(2, 'b')); |
| container.insert(make_pair(4, 'c')); |
| |
| EXPECT_THAT(container, Not(Contains(Key(25)))); |
| container.insert(make_pair(25, 'd')); |
| EXPECT_THAT(container, Contains(Key(25))); |
| container.insert(make_pair(25, 'e')); |
| EXPECT_THAT(container, Contains(Key(25))); |
| |
| EXPECT_THAT(container, Contains(Key(1))); |
| EXPECT_THAT(container, Not(Contains(Key(3)))); |
| } |
| |
| TEST(PairTest, Typing) { |
| // Test verifies the following type conversions can be compiled. |
| Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42); |
| Matcher<const pair<const char*, int> > m2 = Pair("foo", 42); |
| Matcher<pair<const char*, int> > m3 = Pair("foo", 42); |
| |
| Matcher<pair<int, const std::string> > m4 = Pair(25, "42"); |
| Matcher<pair<const std::string, int> > m5 = Pair("25", 42); |
| } |
| |
| TEST(PairTest, CanDescribeSelf) { |
| Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42); |
| EXPECT_EQ("has a first field that is equal to \"foo\"" |
| ", and has a second field that is equal to 42", |
| Describe(m1)); |
| EXPECT_EQ("has a first field that isn't equal to \"foo\"" |
| ", or has a second field that isn't equal to 42", |
| DescribeNegation(m1)); |
| // Double and triple negation (1 or 2 times not and description of negation). |
| Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42)); |
| EXPECT_EQ("has a first field that isn't equal to 13" |
| ", and has a second field that is equal to 42", |
| DescribeNegation(m2)); |
| } |
| |
| TEST(PairTest, CanExplainMatchResultTo) { |
| // If neither field matches, Pair() should explain about the first |
| // field. |
| const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0)); |
| EXPECT_EQ("whose first field does not match, which is 1 less than 0", |
| Explain(m, make_pair(-1, -2))); |
| |
| // If the first field matches but the second doesn't, Pair() should |
| // explain about the second field. |
| EXPECT_EQ("whose second field does not match, which is 2 less than 0", |
| Explain(m, make_pair(1, -2))); |
| |
| // If the first field doesn't match but the second does, Pair() |
| // should explain about the first field. |
| EXPECT_EQ("whose first field does not match, which is 1 less than 0", |
| Explain(m, make_pair(-1, 2))); |
| |
| // If both fields match, Pair() should explain about them both. |
| EXPECT_EQ("whose both fields match, where the first field is a value " |
| "which is 1 more than 0, and the second field is a value " |
| "which is 2 more than 0", |
| Explain(m, make_pair(1, 2))); |
| |
| // If only the first match has an explanation, only this explanation should |
| // be printed. |
| const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0); |
| EXPECT_EQ("whose both fields match, where the first field is a value " |
| "which is 1 more than 0", |
| Explain(explain_first, make_pair(1, 0))); |
| |
| // If only the second match has an explanation, only this explanation should |
| // be printed. |
| const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0)); |
| EXPECT_EQ("whose both fields match, where the second field is a value " |
| "which is 1 more than 0", |
| Explain(explain_second, make_pair(0, 1))); |
| } |
| |
| TEST(PairTest, MatchesCorrectly) { |
| pair<int, std::string> p(25, "foo"); |
| |
| // Both fields match. |
| EXPECT_THAT(p, Pair(25, "foo")); |
| EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o"))); |
| |
| // 'first' doesnt' match, but 'second' matches. |
| EXPECT_THAT(p, Not(Pair(42, "foo"))); |
| EXPECT_THAT(p, Not(Pair(Lt(25), "foo"))); |
| |
| // 'first' matches, but 'second' doesn't match. |
| EXPECT_THAT(p, Not(Pair(25, "bar"))); |
| EXPECT_THAT(p, Not(Pair(25, Not("foo")))); |
| |
| // Neither field matches. |
| EXPECT_THAT(p, Not(Pair(13, "bar"))); |
| EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a")))); |
| } |
| |
| TEST(PairTest, WorksWithMoveOnly) { |
| pair<std::unique_ptr<int>, std::unique_ptr<int>> p; |
| p.second.reset(new int(7)); |
| EXPECT_THAT(p, Pair(Eq(nullptr), Ne(nullptr))); |
| } |
| |
| TEST(PairTest, SafelyCastsInnerMatchers) { |
| Matcher<int> is_positive = Gt(0); |
| Matcher<int> is_negative = Lt(0); |
| pair<char, bool> p('a', true); |
| EXPECT_THAT(p, Pair(is_positive, _)); |
| EXPECT_THAT(p, Not(Pair(is_negative, _))); |
| EXPECT_THAT(p, Pair(_, is_positive)); |
| EXPECT_THAT(p, Not(Pair(_, is_negative))); |
| } |
| |
| TEST(PairTest, InsideContainsUsingMap) { |
| map<int, char> container; |
| container.insert(make_pair(1, 'a')); |
| container.insert(make_pair(2, 'b')); |
| container.insert(make_pair(4, 'c')); |
| EXPECT_THAT(container, Contains(Pair(1, 'a'))); |
| EXPECT_THAT(container, Contains(Pair(1, _))); |
| EXPECT_THAT(container, Contains(Pair(_, 'a'))); |
| EXPECT_THAT(container, Not(Contains(Pair(3, _)))); |
| } |
| |
| TEST(FieldsAreTest, MatchesCorrectly) { |
| std::tuple<int, std::string, double> p(25, "foo", .5); |
| |
| // All fields match. |
| EXPECT_THAT(p, FieldsAre(25, "foo", .5)); |
| EXPECT_THAT(p, FieldsAre(Ge(20), HasSubstr("o"), DoubleEq(.5))); |
| |
| // Some don't match. |
| EXPECT_THAT(p, Not(FieldsAre(26, "foo", .5))); |
| EXPECT_THAT(p, Not(FieldsAre(25, "fo", .5))); |
| EXPECT_THAT(p, Not(FieldsAre(25, "foo", .6))); |
| } |
| |
| TEST(FieldsAreTest, CanDescribeSelf) { |
| Matcher<const pair<std::string, int>&> m1 = FieldsAre("foo", 42); |
| EXPECT_EQ( |
| "has field #0 that is equal to \"foo\"" |
| ", and has field #1 that is equal to 42", |
| Describe(m1)); |
| EXPECT_EQ( |
| "has field #0 that isn't equal to \"foo\"" |
| ", or has field #1 that isn't equal to 42", |
| DescribeNegation(m1)); |
| } |
| |
| TEST(FieldsAreTest, CanExplainMatchResultTo) { |
| // The first one that fails is the one that gives the error. |
| Matcher<std::tuple<int, int, int>> m = |
| FieldsAre(GreaterThan(0), GreaterThan(0), GreaterThan(0)); |
| |
| EXPECT_EQ("whose field #0 does not match, which is 1 less than 0", |
| Explain(m, std::make_tuple(-1, -2, -3))); |
| EXPECT_EQ("whose field #1 does not match, which is 2 less than 0", |
| Explain(m, std::make_tuple(1, -2, -3))); |
| EXPECT_EQ("whose field #2 does not match, which is 3 less than 0", |
| Explain(m, std::make_tuple(1, 2, -3))); |
| |
| // If they all match, we get a long explanation of success. |
| EXPECT_EQ( |
| "whose all elements match, " |
| "where field #0 is a value which is 1 more than 0" |
| ", and field #1 is a value which is 2 more than 0" |
| ", and field #2 is a value which is 3 more than 0", |
| Explain(m, std::make_tuple(1, 2, 3))); |
| |
| // Only print those that have an explanation. |
| m = FieldsAre(GreaterThan(0), 0, GreaterThan(0)); |
| EXPECT_EQ( |
| "whose all elements match, " |
| "where field #0 is a value which is 1 more than 0" |
| ", and field #2 is a value which is 3 more than 0", |
| Explain(m, std::make_tuple(1, 0, 3))); |
| |
| // If only one has an explanation, then print that one. |
| m = FieldsAre(0, GreaterThan(0), 0); |
| EXPECT_EQ( |
| "whose all elements match, " |
| "where field #1 is a value which is 1 more than 0", |
| Explain(m, std::make_tuple(0, 1, 0))); |
| } |
| |
| #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 |
| TEST(FieldsAreTest, StructuredBindings) { |
| // testing::FieldsAre can also match aggregates and such with C++17 and up. |
| struct MyType { |
| int i; |
| std::string str; |
| }; |
| EXPECT_THAT((MyType{17, "foo"}), FieldsAre(Eq(17), HasSubstr("oo"))); |
| |
| // Test all the supported arities. |
| struct MyVarType1 { |
| int a; |
| }; |
| EXPECT_THAT(MyVarType1{}, FieldsAre(0)); |
| struct MyVarType2 { |
| int a, b; |
| }; |
| EXPECT_THAT(MyVarType2{}, FieldsAre(0, 0)); |
| struct MyVarType3 { |
| int a, b, c; |
| }; |
| EXPECT_THAT(MyVarType3{}, FieldsAre(0, 0, 0)); |
| struct MyVarType4 { |
| int a, b, c, d; |
| }; |
| EXPECT_THAT(MyVarType4{}, FieldsAre(0, 0, 0, 0)); |
| struct MyVarType5 { |
| int a, b, c, d, e; |
| }; |
| EXPECT_THAT(MyVarType5{}, FieldsAre(0, 0, 0, 0, 0)); |
| struct MyVarType6 { |
| int a, b, c, d, e, f; |
| }; |
| EXPECT_THAT(MyVarType6{}, FieldsAre(0, 0, 0, 0, 0, 0)); |
| struct MyVarType7 { |
| int a, b, c, d, e, f, g; |
| }; |
| EXPECT_THAT(MyVarType7{}, FieldsAre(0, 0, 0, 0, 0, 0, 0)); |
| struct MyVarType8 { |
| int a, b, c, d, e, f, g, h; |
| }; |
| EXPECT_THAT(MyVarType8{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0)); |
| struct MyVarType9 { |
| int a, b, c, d, e, f, g, h, i; |
| }; |
| EXPECT_THAT(MyVarType9{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0)); |
| struct MyVarType10 { |
| int a, b, c, d, e, f, g, h, i, j; |
| }; |
| EXPECT_THAT(MyVarType10{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); |
| struct MyVarType11 { |
| int a, b, c, d, e, f, g, h, i, j, k; |
| }; |
| EXPECT_THAT(MyVarType11{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); |
| struct MyVarType12 { |
| int a, b, c, d, e, f, g, h, i, j, k, l; |
| }; |
| EXPECT_THAT(MyVarType12{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); |
| struct MyVarType13 { |
| int a, b, c, d, e, f, g, h, i, j, k, l, m; |
| }; |
| EXPECT_THAT(MyVarType13{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); |
| struct MyVarType14 { |
| int a, b, c, d, e, f, g, h, i, j, k, l, m, n; |
| }; |
| EXPECT_THAT(MyVarType14{}, |
| FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); |
| struct MyVarType15 { |
| int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o; |
| }; |
| EXPECT_THAT(MyVarType15{}, |
| FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); |
| struct MyVarType16 { |
| int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p; |
| }; |
| EXPECT_THAT(MyVarType16{}, |
| FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); |
| } |
| #endif |
| |
| TEST(ContainsTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(Contains(Pointee(2)))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| } |
| |
| TEST(PairTest, UseGetInsteadOfMembers) { |
| PairWithGet pair{7, "ABC"}; |
| EXPECT_THAT(pair, Pair(7, "ABC")); |
| EXPECT_THAT(pair, Pair(Ge(7), HasSubstr("AB"))); |
| EXPECT_THAT(pair, Not(Pair(Lt(7), "ABC"))); |
| |
| std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; |
| EXPECT_THAT(v, |
| ElementsAre(Pair(11, std::string("Foo")), Pair(Ge(10), Not("")))); |
| } |
| |
| // Tests StartsWith(s). |
| |
| TEST(StartsWithTest, MatchesStringWithGivenPrefix) { |
| const Matcher<const char*> m1 = StartsWith(std::string("")); |
| EXPECT_TRUE(m1.Matches("Hi")); |
| EXPECT_TRUE(m1.Matches("")); |
| EXPECT_FALSE(m1.Matches(nullptr)); |
| |
| const Matcher<const std::string&> m2 = StartsWith("Hi"); |
| EXPECT_TRUE(m2.Matches("Hi")); |
| EXPECT_TRUE(m2.Matches("Hi Hi!")); |
| EXPECT_TRUE(m2.Matches("High")); |
| EXPECT_FALSE(m2.Matches("H")); |
| EXPECT_FALSE(m2.Matches(" Hi")); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| const Matcher<internal::StringView> m_empty = |
| StartsWith(internal::StringView("")); |
| EXPECT_TRUE(m_empty.Matches(internal::StringView())); |
| EXPECT_TRUE(m_empty.Matches(internal::StringView(""))); |
| EXPECT_TRUE(m_empty.Matches(internal::StringView("not empty"))); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| TEST(StartsWithTest, CanDescribeSelf) { |
| Matcher<const std::string> m = StartsWith("Hi"); |
| EXPECT_EQ("starts with \"Hi\"", Describe(m)); |
| } |
| |
| // Tests EndsWith(s). |
| |
| TEST(EndsWithTest, MatchesStringWithGivenSuffix) { |
| const Matcher<const char*> m1 = EndsWith(""); |
| EXPECT_TRUE(m1.Matches("Hi")); |
| EXPECT_TRUE(m1.Matches("")); |
| EXPECT_FALSE(m1.Matches(nullptr)); |
| |
| const Matcher<const std::string&> m2 = EndsWith(std::string("Hi")); |
| EXPECT_TRUE(m2.Matches("Hi")); |
| EXPECT_TRUE(m2.Matches("Wow Hi Hi")); |
| EXPECT_TRUE(m2.Matches("Super Hi")); |
| EXPECT_FALSE(m2.Matches("i")); |
| EXPECT_FALSE(m2.Matches("Hi ")); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| const Matcher<const internal::StringView&> m4 = |
| EndsWith(internal::StringView("")); |
| EXPECT_TRUE(m4.Matches("Hi")); |
| EXPECT_TRUE(m4.Matches("")); |
| EXPECT_TRUE(m4.Matches(internal::StringView())); |
| EXPECT_TRUE(m4.Matches(internal::StringView(""))); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| TEST(EndsWithTest, CanDescribeSelf) { |
| Matcher<const std::string> m = EndsWith("Hi"); |
| EXPECT_EQ("ends with \"Hi\"", Describe(m)); |
| } |
| |
| // Tests MatchesRegex(). |
| |
| TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) { |
| const Matcher<const char*> m1 = MatchesRegex("a.*z"); |
| EXPECT_TRUE(m1.Matches("az")); |
| EXPECT_TRUE(m1.Matches("abcz")); |
| EXPECT_FALSE(m1.Matches(nullptr)); |
| |
| const Matcher<const std::string&> m2 = MatchesRegex(new RE("a.*z")); |
| EXPECT_TRUE(m2.Matches("azbz")); |
| EXPECT_FALSE(m2.Matches("az1")); |
| EXPECT_FALSE(m2.Matches("1az")); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| const Matcher<const internal::StringView&> m3 = MatchesRegex("a.*z"); |
| EXPECT_TRUE(m3.Matches(internal::StringView("az"))); |
| EXPECT_TRUE(m3.Matches(internal::StringView("abcz"))); |
| EXPECT_FALSE(m3.Matches(internal::StringView("1az"))); |
| EXPECT_FALSE(m3.Matches(internal::StringView())); |
| const Matcher<const internal::StringView&> m4 = |
| MatchesRegex(internal::StringView("")); |
| EXPECT_TRUE(m4.Matches(internal::StringView(""))); |
| EXPECT_TRUE(m4.Matches(internal::StringView())); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| TEST(MatchesRegexTest, CanDescribeSelf) { |
| Matcher<const std::string> m1 = MatchesRegex(std::string("Hi.*")); |
| EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1)); |
| |
| Matcher<const char*> m2 = MatchesRegex(new RE("a.*")); |
| EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2)); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| Matcher<const internal::StringView> m3 = MatchesRegex(new RE("0.*")); |
| EXPECT_EQ("matches regular expression \"0.*\"", Describe(m3)); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| // Tests ContainsRegex(). |
| |
| TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) { |
| const Matcher<const char*> m1 = ContainsRegex(std::string("a.*z")); |
| EXPECT_TRUE(m1.Matches("az")); |
| EXPECT_TRUE(m1.Matches("0abcz1")); |
| EXPECT_FALSE(m1.Matches(nullptr)); |
| |
| const Matcher<const std::string&> m2 = ContainsRegex(new RE("a.*z")); |
| EXPECT_TRUE(m2.Matches("azbz")); |
| EXPECT_TRUE(m2.Matches("az1")); |
| EXPECT_FALSE(m2.Matches("1a")); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| const Matcher<const internal::StringView&> m3 = |
| ContainsRegex(new RE("a.*z")); |
| EXPECT_TRUE(m3.Matches(internal::StringView("azbz"))); |
| EXPECT_TRUE(m3.Matches(internal::StringView("az1"))); |
| EXPECT_FALSE(m3.Matches(internal::StringView("1a"))); |
| EXPECT_FALSE(m3.Matches(internal::StringView())); |
| const Matcher<const internal::StringView&> m4 = |
| ContainsRegex(internal::StringView("")); |
| EXPECT_TRUE(m4.Matches(internal::StringView(""))); |
| EXPECT_TRUE(m4.Matches(internal::StringView())); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| TEST(ContainsRegexTest, CanDescribeSelf) { |
| Matcher<const std::string> m1 = ContainsRegex("Hi.*"); |
| EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1)); |
| |
| Matcher<const char*> m2 = ContainsRegex(new RE("a.*")); |
| EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2)); |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| Matcher<const internal::StringView> m3 = ContainsRegex(new RE("0.*")); |
| EXPECT_EQ("contains regular expression \"0.*\"", Describe(m3)); |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| } |
| |
| // Tests for wide strings. |
| #if GTEST_HAS_STD_WSTRING |
| TEST(StdWideStrEqTest, MatchesEqual) { |
| Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello")); |
| EXPECT_TRUE(m.Matches(L"Hello")); |
| EXPECT_FALSE(m.Matches(L"hello")); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| |
| Matcher<const ::std::wstring&> m2 = StrEq(L"Hello"); |
| EXPECT_TRUE(m2.Matches(L"Hello")); |
| EXPECT_FALSE(m2.Matches(L"Hi")); |
| |
| Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); |
| EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); |
| EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E")); |
| |
| ::std::wstring str(L"01204500800"); |
| str[3] = L'\0'; |
| Matcher<const ::std::wstring&> m4 = StrEq(str); |
| EXPECT_TRUE(m4.Matches(str)); |
| str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; |
| Matcher<const ::std::wstring&> m5 = StrEq(str); |
| EXPECT_TRUE(m5.Matches(str)); |
| } |
| |
| TEST(StdWideStrEqTest, CanDescribeSelf) { |
| Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v"); |
| EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"", |
| Describe(m)); |
| |
| Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); |
| EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", |
| Describe(m2)); |
| |
| ::std::wstring str(L"01204500800"); |
| str[3] = L'\0'; |
| Matcher<const ::std::wstring&> m4 = StrEq(str); |
| EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); |
| str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; |
| Matcher<const ::std::wstring&> m5 = StrEq(str); |
| EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); |
| } |
| |
| TEST(StdWideStrNeTest, MatchesUnequalString) { |
| Matcher<const wchar_t*> m = StrNe(L"Hello"); |
| EXPECT_TRUE(m.Matches(L"")); |
| EXPECT_TRUE(m.Matches(nullptr)); |
| EXPECT_FALSE(m.Matches(L"Hello")); |
| |
| Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello")); |
| EXPECT_TRUE(m2.Matches(L"hello")); |
| EXPECT_FALSE(m2.Matches(L"Hello")); |
| } |
| |
| TEST(StdWideStrNeTest, CanDescribeSelf) { |
| Matcher<const wchar_t*> m = StrNe(L"Hi"); |
| EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); |
| } |
| |
| TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { |
| Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello")); |
| EXPECT_TRUE(m.Matches(L"Hello")); |
| EXPECT_TRUE(m.Matches(L"hello")); |
| EXPECT_FALSE(m.Matches(L"Hi")); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| |
| Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello"); |
| EXPECT_TRUE(m2.Matches(L"hello")); |
| EXPECT_FALSE(m2.Matches(L"Hi")); |
| } |
| |
| TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { |
| ::std::wstring str1(L"oabocdooeoo"); |
| ::std::wstring str2(L"OABOCDOOEOO"); |
| Matcher<const ::std::wstring&> m0 = StrCaseEq(str1); |
| EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0'))); |
| |
| str1[3] = str2[3] = L'\0'; |
| Matcher<const ::std::wstring&> m1 = StrCaseEq(str1); |
| EXPECT_TRUE(m1.Matches(str2)); |
| |
| str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; |
| str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; |
| Matcher<const ::std::wstring&> m2 = StrCaseEq(str1); |
| str1[9] = str2[9] = L'\0'; |
| EXPECT_FALSE(m2.Matches(str2)); |
| |
| Matcher<const ::std::wstring&> m3 = StrCaseEq(str1); |
| EXPECT_TRUE(m3.Matches(str2)); |
| |
| EXPECT_FALSE(m3.Matches(str2 + L"x")); |
| str2.append(1, L'\0'); |
| EXPECT_FALSE(m3.Matches(str2)); |
| EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9))); |
| } |
| |
| TEST(StdWideStrCaseEqTest, CanDescribeSelf) { |
| Matcher< ::std::wstring> m = StrCaseEq(L"Hi"); |
| EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); |
| } |
| |
| TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { |
| Matcher<const wchar_t*> m = StrCaseNe(L"Hello"); |
| EXPECT_TRUE(m.Matches(L"Hi")); |
| EXPECT_TRUE(m.Matches(nullptr)); |
| EXPECT_FALSE(m.Matches(L"Hello")); |
| EXPECT_FALSE(m.Matches(L"hello")); |
| |
| Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello")); |
| EXPECT_TRUE(m2.Matches(L"")); |
| EXPECT_FALSE(m2.Matches(L"Hello")); |
| } |
| |
| TEST(StdWideStrCaseNeTest, CanDescribeSelf) { |
| Matcher<const wchar_t*> m = StrCaseNe(L"Hi"); |
| EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); |
| } |
| |
| // Tests that HasSubstr() works for matching wstring-typed values. |
| TEST(StdWideHasSubstrTest, WorksForStringClasses) { |
| const Matcher< ::std::wstring> m1 = HasSubstr(L"foo"); |
| EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food."))); |
| EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo"))); |
| |
| const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo"); |
| EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food."))); |
| EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo"))); |
| } |
| |
| // Tests that HasSubstr() works for matching C-wide-string-typed values. |
| TEST(StdWideHasSubstrTest, WorksForCStrings) { |
| const Matcher<wchar_t*> m1 = HasSubstr(L"foo"); |
| EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food."))); |
| EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo"))); |
| EXPECT_FALSE(m1.Matches(nullptr)); |
| |
| const Matcher<const wchar_t*> m2 = HasSubstr(L"foo"); |
| EXPECT_TRUE(m2.Matches(L"I love food.")); |
| EXPECT_FALSE(m2.Matches(L"tofo")); |
| EXPECT_FALSE(m2.Matches(nullptr)); |
| } |
| |
| // Tests that HasSubstr(s) describes itself properly. |
| TEST(StdWideHasSubstrTest, CanDescribeSelf) { |
| Matcher< ::std::wstring> m = HasSubstr(L"foo\n\""); |
| EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); |
| } |
| |
| // Tests StartsWith(s). |
| |
| TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) { |
| const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L"")); |
| EXPECT_TRUE(m1.Matches(L"Hi")); |
| EXPECT_TRUE(m1.Matches(L"")); |
| EXPECT_FALSE(m1.Matches(nullptr)); |
| |
| const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi"); |
| EXPECT_TRUE(m2.Matches(L"Hi")); |
| EXPECT_TRUE(m2.Matches(L"Hi Hi!")); |
| EXPECT_TRUE(m2.Matches(L"High")); |
| EXPECT_FALSE(m2.Matches(L"H")); |
| EXPECT_FALSE(m2.Matches(L" Hi")); |
| } |
| |
| TEST(StdWideStartsWithTest, CanDescribeSelf) { |
| Matcher<const ::std::wstring> m = StartsWith(L"Hi"); |
| EXPECT_EQ("starts with L\"Hi\"", Describe(m)); |
| } |
| |
| // Tests EndsWith(s). |
| |
| TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) { |
| const Matcher<const wchar_t*> m1 = EndsWith(L""); |
| EXPECT_TRUE(m1.Matches(L"Hi")); |
| EXPECT_TRUE(m1.Matches(L"")); |
| EXPECT_FALSE(m1.Matches(nullptr)); |
| |
| const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi")); |
| EXPECT_TRUE(m2.Matches(L"Hi")); |
| EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); |
| EXPECT_TRUE(m2.Matches(L"Super Hi")); |
| EXPECT_FALSE(m2.Matches(L"i")); |
| EXPECT_FALSE(m2.Matches(L"Hi ")); |
| } |
| |
| TEST(StdWideEndsWithTest, CanDescribeSelf) { |
| Matcher<const ::std::wstring> m = EndsWith(L"Hi"); |
| EXPECT_EQ("ends with L\"Hi\"", Describe(m)); |
| } |
| |
| #endif // GTEST_HAS_STD_WSTRING |
| |
| typedef ::std::tuple<long, int> Tuple2; // NOLINT |
| |
| // Tests that Eq() matches a 2-tuple where the first field == the |
| // second field. |
| TEST(Eq2Test, MatchesEqualArguments) { |
| Matcher<const Tuple2&> m = Eq(); |
| EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); |
| EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); |
| } |
| |
| // Tests that Eq() describes itself properly. |
| TEST(Eq2Test, CanDescribeSelf) { |
| Matcher<const Tuple2&> m = Eq(); |
| EXPECT_EQ("are an equal pair", Describe(m)); |
| } |
| |
| // Tests that Ge() matches a 2-tuple where the first field >= the |
| // second field. |
| TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) { |
| Matcher<const Tuple2&> m = Ge(); |
| EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); |
| EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); |
| EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); |
| } |
| |
| // Tests that Ge() describes itself properly. |
| TEST(Ge2Test, CanDescribeSelf) { |
| Matcher<const Tuple2&> m = Ge(); |
| EXPECT_EQ("are a pair where the first >= the second", Describe(m)); |
| } |
| |
| // Tests that Gt() matches a 2-tuple where the first field > the |
| // second field. |
| TEST(Gt2Test, MatchesGreaterThanArguments) { |
| Matcher<const Tuple2&> m = Gt(); |
| EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); |
| EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); |
| EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); |
| } |
| |
| // Tests that Gt() describes itself properly. |
| TEST(Gt2Test, CanDescribeSelf) { |
| Matcher<const Tuple2&> m = Gt(); |
| EXPECT_EQ("are a pair where the first > the second", Describe(m)); |
| } |
| |
| // Tests that Le() matches a 2-tuple where the first field <= the |
| // second field. |
| TEST(Le2Test, MatchesLessThanOrEqualArguments) { |
| Matcher<const Tuple2&> m = Le(); |
| EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); |
| EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); |
| EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); |
| } |
| |
| // Tests that Le() describes itself properly. |
| TEST(Le2Test, CanDescribeSelf) { |
| Matcher<const Tuple2&> m = Le(); |
| EXPECT_EQ("are a pair where the first <= the second", Describe(m)); |
| } |
| |
| // Tests that Lt() matches a 2-tuple where the first field < the |
| // second field. |
| TEST(Lt2Test, MatchesLessThanArguments) { |
| Matcher<const Tuple2&> m = Lt(); |
| EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); |
| EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); |
| EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); |
| } |
| |
| // Tests that Lt() describes itself properly. |
| TEST(Lt2Test, CanDescribeSelf) { |
| Matcher<const Tuple2&> m = Lt(); |
| EXPECT_EQ("are a pair where the first < the second", Describe(m)); |
| } |
| |
| // Tests that Ne() matches a 2-tuple where the first field != the |
| // second field. |
| TEST(Ne2Test, MatchesUnequalArguments) { |
| Matcher<const Tuple2&> m = Ne(); |
| EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); |
| EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); |
| EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); |
| } |
| |
| // Tests that Ne() describes itself properly. |
| TEST(Ne2Test, CanDescribeSelf) { |
| Matcher<const Tuple2&> m = Ne(); |
| EXPECT_EQ("are an unequal pair", Describe(m)); |
| } |
| |
| TEST(PairMatchBaseTest, WorksWithMoveOnly) { |
| using Pointers = std::tuple<std::unique_ptr<int>, std::unique_ptr<int>>; |
| Matcher<Pointers> matcher = Eq(); |
| Pointers pointers; |
| // Tested values don't matter; the point is that matcher does not copy the |
| // matched values. |
| EXPECT_TRUE(matcher.Matches(pointers)); |
| } |
| |
| // Tests that IsNan() matches a NaN, with float. |
| TEST(IsNan, FloatMatchesNan) { |
| float quiet_nan = std::numeric_limits<float>::quiet_NaN(); |
| float other_nan = std::nanf("1"); |
| float real_value = 1.0f; |
| |
| Matcher<float> m = IsNan(); |
| EXPECT_TRUE(m.Matches(quiet_nan)); |
| EXPECT_TRUE(m.Matches(other_nan)); |
| EXPECT_FALSE(m.Matches(real_value)); |
| |
| Matcher<float&> m_ref = IsNan(); |
| EXPECT_TRUE(m_ref.Matches(quiet_nan)); |
| EXPECT_TRUE(m_ref.Matches(other_nan)); |
| EXPECT_FALSE(m_ref.Matches(real_value)); |
| |
| Matcher<const float&> m_cref = IsNan(); |
| EXPECT_TRUE(m_cref.Matches(quiet_nan)); |
| EXPECT_TRUE(m_cref.Matches(other_nan)); |
| EXPECT_FALSE(m_cref.Matches(real_value)); |
| } |
| |
| // Tests that IsNan() matches a NaN, with double. |
| TEST(IsNan, DoubleMatchesNan) { |
| double quiet_nan = std::numeric_limits<double>::quiet_NaN(); |
| double other_nan = std::nan("1"); |
| double real_value = 1.0; |
| |
| Matcher<double> m = IsNan(); |
| EXPECT_TRUE(m.Matches(quiet_nan)); |
| EXPECT_TRUE(m.Matches(other_nan)); |
| EXPECT_FALSE(m.Matches(real_value)); |
| |
| Matcher<double&> m_ref = IsNan(); |
| EXPECT_TRUE(m_ref.Matches(quiet_nan)); |
| EXPECT_TRUE(m_ref.Matches(other_nan)); |
| EXPECT_FALSE(m_ref.Matches(real_value)); |
| |
| Matcher<const double&> m_cref = IsNan(); |
| EXPECT_TRUE(m_cref.Matches(quiet_nan)); |
| EXPECT_TRUE(m_cref.Matches(other_nan)); |
| EXPECT_FALSE(m_cref.Matches(real_value)); |
| } |
| |
| // Tests that IsNan() matches a NaN, with long double. |
| TEST(IsNan, LongDoubleMatchesNan) { |
| long double quiet_nan = std::numeric_limits<long double>::quiet_NaN(); |
| long double other_nan = std::nan("1"); |
| long double real_value = 1.0; |
| |
| Matcher<long double> m = IsNan(); |
| EXPECT_TRUE(m.Matches(quiet_nan)); |
| EXPECT_TRUE(m.Matches(other_nan)); |
| EXPECT_FALSE(m.Matches(real_value)); |
| |
| Matcher<long double&> m_ref = IsNan(); |
| EXPECT_TRUE(m_ref.Matches(quiet_nan)); |
| EXPECT_TRUE(m_ref.Matches(other_nan)); |
| EXPECT_FALSE(m_ref.Matches(real_value)); |
| |
| Matcher<const long double&> m_cref = IsNan(); |
| EXPECT_TRUE(m_cref.Matches(quiet_nan)); |
| EXPECT_TRUE(m_cref.Matches(other_nan)); |
| EXPECT_FALSE(m_cref.Matches(real_value)); |
| } |
| |
| // Tests that IsNan() works with Not. |
| TEST(IsNan, NotMatchesNan) { |
| Matcher<float> mf = Not(IsNan()); |
| EXPECT_FALSE(mf.Matches(std::numeric_limits<float>::quiet_NaN())); |
| EXPECT_FALSE(mf.Matches(std::nanf("1"))); |
| EXPECT_TRUE(mf.Matches(1.0)); |
| |
| Matcher<double> md = Not(IsNan()); |
| EXPECT_FALSE(md.Matches(std::numeric_limits<double>::quiet_NaN())); |
| EXPECT_FALSE(md.Matches(std::nan("1"))); |
| EXPECT_TRUE(md.Matches(1.0)); |
| |
| Matcher<long double> mld = Not(IsNan()); |
| EXPECT_FALSE(mld.Matches(std::numeric_limits<long double>::quiet_NaN())); |
| EXPECT_FALSE(mld.Matches(std::nanl("1"))); |
| EXPECT_TRUE(mld.Matches(1.0)); |
| } |
| |
| // Tests that IsNan() can describe itself. |
| TEST(IsNan, CanDescribeSelf) { |
| Matcher<float> mf = IsNan(); |
| EXPECT_EQ("is NaN", Describe(mf)); |
| |
| Matcher<double> md = IsNan(); |
| EXPECT_EQ("is NaN", Describe(md)); |
| |
| Matcher<long double> mld = IsNan(); |
| EXPECT_EQ("is NaN", Describe(mld)); |
| } |
| |
| // Tests that IsNan() can describe itself with Not. |
| TEST(IsNan, CanDescribeSelfWithNot) { |
| Matcher<float> mf = Not(IsNan()); |
| EXPECT_EQ("isn't NaN", Describe(mf)); |
| |
| Matcher<double> md = Not(IsNan()); |
| EXPECT_EQ("isn't NaN", Describe(md)); |
| |
| Matcher<long double> mld = Not(IsNan()); |
| EXPECT_EQ("isn't NaN", Describe(mld)); |
| } |
| |
| // Tests that FloatEq() matches a 2-tuple where |
| // FloatEq(first field) matches the second field. |
| TEST(FloatEq2Test, MatchesEqualArguments) { |
| typedef ::std::tuple<float, float> Tpl; |
| Matcher<const Tpl&> m = FloatEq(); |
| EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
| EXPECT_TRUE(m.Matches(Tpl(0.3f, 0.1f + 0.1f + 0.1f))); |
| EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); |
| } |
| |
| // Tests that FloatEq() describes itself properly. |
| TEST(FloatEq2Test, CanDescribeSelf) { |
| Matcher<const ::std::tuple<float, float>&> m = FloatEq(); |
| EXPECT_EQ("are an almost-equal pair", Describe(m)); |
| } |
| |
| // Tests that NanSensitiveFloatEq() matches a 2-tuple where |
| // NanSensitiveFloatEq(first field) matches the second field. |
| TEST(NanSensitiveFloatEqTest, MatchesEqualArgumentsWithNaN) { |
| typedef ::std::tuple<float, float> Tpl; |
| Matcher<const Tpl&> m = NanSensitiveFloatEq(); |
| EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
| EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), |
| std::numeric_limits<float>::quiet_NaN()))); |
| EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); |
| EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN()))); |
| EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f))); |
| } |
| |
| // Tests that NanSensitiveFloatEq() describes itself properly. |
| TEST(NanSensitiveFloatEqTest, CanDescribeSelfWithNaNs) { |
| Matcher<const ::std::tuple<float, float>&> m = NanSensitiveFloatEq(); |
| EXPECT_EQ("are an almost-equal pair", Describe(m)); |
| } |
| |
| // Tests that DoubleEq() matches a 2-tuple where |
| // DoubleEq(first field) matches the second field. |
| TEST(DoubleEq2Test, MatchesEqualArguments) { |
| typedef ::std::tuple<double, double> Tpl; |
| Matcher<const Tpl&> m = DoubleEq(); |
| EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); |
| EXPECT_TRUE(m.Matches(Tpl(0.3, 0.1 + 0.1 + 0.1))); |
| EXPECT_FALSE(m.Matches(Tpl(1.1, 1.0))); |
| } |
| |
| // Tests that DoubleEq() describes itself properly. |
| TEST(DoubleEq2Test, CanDescribeSelf) { |
| Matcher<const ::std::tuple<double, double>&> m = DoubleEq(); |
| EXPECT_EQ("are an almost-equal pair", Describe(m)); |
| } |
| |
| // Tests that NanSensitiveDoubleEq() matches a 2-tuple where |
| // NanSensitiveDoubleEq(first field) matches the second field. |
| TEST(NanSensitiveDoubleEqTest, MatchesEqualArgumentsWithNaN) { |
| typedef ::std::tuple<double, double> Tpl; |
| Matcher<const Tpl&> m = NanSensitiveDoubleEq(); |
| EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
| EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), |
| std::numeric_limits<double>::quiet_NaN()))); |
| EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); |
| EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN()))); |
| EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f))); |
| } |
| |
| // Tests that DoubleEq() describes itself properly. |
| TEST(NanSensitiveDoubleEqTest, CanDescribeSelfWithNaNs) { |
| Matcher<const ::std::tuple<double, double>&> m = NanSensitiveDoubleEq(); |
| EXPECT_EQ("are an almost-equal pair", Describe(m)); |
| } |
| |
| // Tests that FloatEq() matches a 2-tuple where |
| // FloatNear(first field, max_abs_error) matches the second field. |
| TEST(FloatNear2Test, MatchesEqualArguments) { |
| typedef ::std::tuple<float, float> Tpl; |
| Matcher<const Tpl&> m = FloatNear(0.5f); |
| EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
| EXPECT_TRUE(m.Matches(Tpl(1.3f, 1.0f))); |
| EXPECT_FALSE(m.Matches(Tpl(1.8f, 1.0f))); |
| } |
| |
| // Tests that FloatNear() describes itself properly. |
| TEST(FloatNear2Test, CanDescribeSelf) { |
| Matcher<const ::std::tuple<float, float>&> m = FloatNear(0.5f); |
| EXPECT_EQ("are an almost-equal pair", Describe(m)); |
| } |
| |
| // Tests that NanSensitiveFloatNear() matches a 2-tuple where |
| // NanSensitiveFloatNear(first field) matches the second field. |
| TEST(NanSensitiveFloatNearTest, MatchesNearbyArgumentsWithNaN) { |
| typedef ::std::tuple<float, float> Tpl; |
| Matcher<const Tpl&> m = NanSensitiveFloatNear(0.5f); |
| EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
| EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); |
| EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), |
| std::numeric_limits<float>::quiet_NaN()))); |
| EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); |
| EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN()))); |
| EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f))); |
| } |
| |
| // Tests that NanSensitiveFloatNear() describes itself properly. |
| TEST(NanSensitiveFloatNearTest, CanDescribeSelfWithNaNs) { |
| Matcher<const ::std::tuple<float, float>&> m = NanSensitiveFloatNear(0.5f); |
| EXPECT_EQ("are an almost-equal pair", Describe(m)); |
| } |
| |
| // Tests that FloatEq() matches a 2-tuple where |
| // DoubleNear(first field, max_abs_error) matches the second field. |
| TEST(DoubleNear2Test, MatchesEqualArguments) { |
| typedef ::std::tuple<double, double> Tpl; |
| Matcher<const Tpl&> m = DoubleNear(0.5); |
| EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); |
| EXPECT_TRUE(m.Matches(Tpl(1.3, 1.0))); |
| EXPECT_FALSE(m.Matches(Tpl(1.8, 1.0))); |
| } |
| |
| // Tests that DoubleNear() describes itself properly. |
| TEST(DoubleNear2Test, CanDescribeSelf) { |
| Matcher<const ::std::tuple<double, double>&> m = DoubleNear(0.5); |
| EXPECT_EQ("are an almost-equal pair", Describe(m)); |
| } |
| |
| // Tests that NanSensitiveDoubleNear() matches a 2-tuple where |
| // NanSensitiveDoubleNear(first field) matches the second field. |
| TEST(NanSensitiveDoubleNearTest, MatchesNearbyArgumentsWithNaN) { |
| typedef ::std::tuple<double, double> Tpl; |
| Matcher<const Tpl&> m = NanSensitiveDoubleNear(0.5f); |
| EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
| EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); |
| EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), |
| std::numeric_limits<double>::quiet_NaN()))); |
| EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); |
| EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN()))); |
| EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f))); |
| } |
| |
| // Tests that NanSensitiveDoubleNear() describes itself properly. |
| TEST(NanSensitiveDoubleNearTest, CanDescribeSelfWithNaNs) { |
| Matcher<const ::std::tuple<double, double>&> m = NanSensitiveDoubleNear(0.5f); |
| EXPECT_EQ("are an almost-equal pair", Describe(m)); |
| } |
| |
| // Tests that Not(m) matches any value that doesn't match m. |
| TEST(NotTest, NegatesMatcher) { |
| Matcher<int> m; |
| m = Not(Eq(2)); |
| EXPECT_TRUE(m.Matches(3)); |
| EXPECT_FALSE(m.Matches(2)); |
| } |
| |
| // Tests that Not(m) describes itself properly. |
| TEST(NotTest, CanDescribeSelf) { |
| Matcher<int> m = Not(Eq(5)); |
| EXPECT_EQ("isn't equal to 5", Describe(m)); |
| } |
| |
| // Tests that monomorphic matchers are safely cast by the Not matcher. |
| TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) { |
| // greater_than_5 is a monomorphic matcher. |
| Matcher<int> greater_than_5 = Gt(5); |
| |
| Matcher<const int&> m = Not(greater_than_5); |
| Matcher<int&> m2 = Not(greater_than_5); |
| Matcher<int&> m3 = Not(m); |
| } |
| |
| // Helper to allow easy testing of AllOf matchers with num parameters. |
| void AllOfMatches(int num, const Matcher<int>& m) { |
| SCOPED_TRACE(Describe(m)); |
| EXPECT_TRUE(m.Matches(0)); |
| for (int i = 1; i <= num; ++i) { |
| EXPECT_FALSE(m.Matches(i)); |
| } |
| EXPECT_TRUE(m.Matches(num + 1)); |
| } |
| |
| // Tests that AllOf(m1, ..., mn) matches any value that matches all of |
| // the given matchers. |
| TEST(AllOfTest, MatchesWhenAllMatch) { |
| Matcher<int> m; |
| m = AllOf(Le(2), Ge(1)); |
| EXPECT_TRUE(m.Matches(1)); |
| EXPECT_TRUE(m.Matches(2)); |
| EXPECT_FALSE(m.Matches(0)); |
| EXPECT_FALSE(m.Matches(3)); |
| |
| m = AllOf(Gt(0), Ne(1), Ne(2)); |
| EXPECT_TRUE(m.Matches(3)); |
| EXPECT_FALSE(m.Matches(2)); |
| EXPECT_FALSE(m.Matches(1)); |
| EXPECT_FALSE(m.Matches(0)); |
| |
| m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); |
| EXPECT_TRUE(m.Matches(4)); |
| EXPECT_FALSE(m.Matches(3)); |
| EXPECT_FALSE(m.Matches(2)); |
| EXPECT_FALSE(m.Matches(1)); |
| EXPECT_FALSE(m.Matches(0)); |
| |
| m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); |
| EXPECT_TRUE(m.Matches(0)); |
| EXPECT_TRUE(m.Matches(1)); |
| EXPECT_FALSE(m.Matches(3)); |
| |
| // The following tests for varying number of sub-matchers. Due to the way |
| // the sub-matchers are handled it is enough to test every sub-matcher once |
| // with sub-matchers using the same matcher type. Varying matcher types are |
| // checked for above. |
| AllOfMatches(2, AllOf(Ne(1), Ne(2))); |
| AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3))); |
| AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4))); |
| AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5))); |
| AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6))); |
| AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7))); |
| AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), |
| Ne(8))); |
| AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), |
| Ne(8), Ne(9))); |
| AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), |
| Ne(9), Ne(10))); |
| AllOfMatches( |
| 50, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), |
| Ne(10), Ne(11), Ne(12), Ne(13), Ne(14), Ne(15), Ne(16), Ne(17), |
| Ne(18), Ne(19), Ne(20), Ne(21), Ne(22), Ne(23), Ne(24), Ne(25), |
| Ne(26), Ne(27), Ne(28), Ne(29), Ne(30), Ne(31), Ne(32), Ne(33), |
| Ne(34), Ne(35), Ne(36), Ne(37), Ne(38), Ne(39), Ne(40), Ne(41), |
| Ne(42), Ne(43), Ne(44), Ne(45), Ne(46), Ne(47), Ne(48), Ne(49), |
| Ne(50))); |
| } |
| |
| |
| // Tests that AllOf(m1, ..., mn) describes itself properly. |
| TEST(AllOfTest, CanDescribeSelf) { |
| Matcher<int> m; |
| m = AllOf(Le(2), Ge(1)); |
| EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m)); |
| |
| m = AllOf(Gt(0), Ne(1), Ne(2)); |
| std::string expected_descr1 = |
| "(is > 0) and (isn't equal to 1) and (isn't equal to 2)"; |
| EXPECT_EQ(expected_descr1, Describe(m)); |
| |
| m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); |
| std::string expected_descr2 = |
| "(is > 0) and (isn't equal to 1) and (isn't equal to 2) and (isn't equal " |
| "to 3)"; |
| EXPECT_EQ(expected_descr2, Describe(m)); |
| |
| m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); |
| std::string expected_descr3 = |
| "(is >= 0) and (is < 10) and (isn't equal to 3) and (isn't equal to 5) " |
| "and (isn't equal to 7)"; |
| EXPECT_EQ(expected_descr3, Describe(m)); |
| } |
| |
| // Tests that AllOf(m1, ..., mn) describes its negation properly. |
| TEST(AllOfTest, CanDescribeNegation) { |
| Matcher<int> m; |
| m = AllOf(Le(2), Ge(1)); |
| std::string expected_descr4 = "(isn't <= 2) or (isn't >= 1)"; |
| EXPECT_EQ(expected_descr4, DescribeNegation(m)); |
| |
| m = AllOf(Gt(0), Ne(1), Ne(2)); |
| std::string expected_descr5 = |
| "(isn't > 0) or (is equal to 1) or (is equal to 2)"; |
| EXPECT_EQ(expected_descr5, DescribeNegation(m)); |
| |
| m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); |
| std::string expected_descr6 = |
| "(isn't > 0) or (is equal to 1) or (is equal to 2) or (is equal to 3)"; |
| EXPECT_EQ(expected_descr6, DescribeNegation(m)); |
| |
| m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); |
| std::string expected_desr7 = |
| "(isn't >= 0) or (isn't < 10) or (is equal to 3) or (is equal to 5) or " |
| "(is equal to 7)"; |
| EXPECT_EQ(expected_desr7, DescribeNegation(m)); |
| |
| m = AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), |
| Ne(10), Ne(11)); |
| AllOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
| EXPECT_THAT(Describe(m), EndsWith("and (isn't equal to 11)")); |
| AllOfMatches(11, m); |
| } |
| |
| // Tests that monomorphic matchers are safely cast by the AllOf matcher. |
| TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) { |
| // greater_than_5 and less_than_10 are monomorphic matchers. |
| Matcher<int> greater_than_5 = Gt(5); |
| Matcher<int> less_than_10 = Lt(10); |
| |
| Matcher<const int&> m = AllOf(greater_than_5, less_than_10); |
| Matcher<int&> m2 = AllOf(greater_than_5, less_than_10); |
| Matcher<int&> m3 = AllOf(greater_than_5, m2); |
| |
| // Tests that BothOf works when composing itself. |
| Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10); |
| Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10); |
| } |
| |
| TEST(AllOfTest, ExplainsResult) { |
| Matcher<int> m; |
| |
| // Successful match. Both matchers need to explain. The second |
| // matcher doesn't give an explanation, so only the first matcher's |
| // explanation is printed. |
| m = AllOf(GreaterThan(10), Lt(30)); |
| EXPECT_EQ("which is 15 more than 10", Explain(m, 25)); |
| |
| // Successful match. Both matchers need to explain. |
| m = AllOf(GreaterThan(10), GreaterThan(20)); |
| EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20", |
| Explain(m, 30)); |
| |
| // Successful match. All matchers need to explain. The second |
| // matcher doesn't given an explanation. |
| m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20)); |
| EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20", |
| Explain(m, 25)); |
| |
| // Successful match. All matchers need to explain. |
| m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); |
| EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, " |
| "and which is 10 more than 30", |
| Explain(m, 40)); |
| |
| // Failed match. The first matcher, which failed, needs to |
| // explain. |
| m = AllOf(GreaterThan(10), GreaterThan(20)); |
| EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); |
| |
| // Failed match. The second matcher, which failed, needs to |
| // explain. Since it doesn't given an explanation, nothing is |
| // printed. |
| m = AllOf(GreaterThan(10), Lt(30)); |
| EXPECT_EQ("", Explain(m, 40)); |
| |
| // Failed match. The second matcher, which failed, needs to |
| // explain. |
| m = AllOf(GreaterThan(10), GreaterThan(20)); |
| EXPECT_EQ("which is 5 less than 20", Explain(m, 15)); |
| } |
| |
| // Helper to allow easy testing of AnyOf matchers with num parameters. |
| static void AnyOfMatches(int num, const Matcher<int>& m) { |
| SCOPED_TRACE(Describe(m)); |
| EXPECT_FALSE(m.Matches(0)); |
| for (int i = 1; i <= num; ++i) { |
| EXPECT_TRUE(m.Matches(i)); |
| } |
| EXPECT_FALSE(m.Matches(num + 1)); |
| } |
| |
| static void AnyOfStringMatches(int num, const Matcher<std::string>& m) { |
| SCOPED_TRACE(Describe(m)); |
| EXPECT_FALSE(m.Matches(std::to_string(0))); |
| |
| for (int i = 1; i <= num; ++i) { |
| EXPECT_TRUE(m.Matches(std::to_string(i))); |
| } |
| EXPECT_FALSE(m.Matches(std::to_string(num + 1))); |
| } |
| |
| // Tests that AnyOf(m1, ..., mn) matches any value that matches at |
| // least one of the given matchers. |
| TEST(AnyOfTest, MatchesWhenAnyMatches) { |
| Matcher<int> m; |
| m = AnyOf(Le(1), Ge(3)); |
| EXPECT_TRUE(m.Matches(1)); |
| EXPECT_TRUE(m.Matches(4)); |
| EXPECT_FALSE(m.Matches(2)); |
| |
| m = AnyOf(Lt(0), Eq(1), Eq(2)); |
| EXPECT_TRUE(m.Matches(-1)); |
| EXPECT_TRUE(m.Matches(1)); |
| EXPECT_TRUE(m.Matches(2)); |
| EXPECT_FALSE(m.Matches(0)); |
| |
| m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); |
| EXPECT_TRUE(m.Matches(-1)); |
| EXPECT_TRUE(m.Matches(1)); |
| EXPECT_TRUE(m.Matches(2)); |
| EXPECT_TRUE(m.Matches(3)); |
| EXPECT_FALSE(m.Matches(0)); |
| |
| m = AnyOf(Le(0), Gt(10), 3, 5, 7); |
| EXPECT_TRUE(m.Matches(0)); |
| EXPECT_TRUE(m.Matches(11)); |
| EXPECT_TRUE(m.Matches(3)); |
| EXPECT_FALSE(m.Matches(2)); |
| |
| // The following tests for varying number of sub-matchers. Due to the way |
| // the sub-matchers are handled it is enough to test every sub-matcher once |
| // with sub-matchers using the same matcher type. Varying matcher types are |
| // checked for above. |
| AnyOfMatches(2, AnyOf(1, 2)); |
| AnyOfMatches(3, AnyOf(1, 2, 3)); |
| AnyOfMatches(4, AnyOf(1, 2, 3, 4)); |
| AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5)); |
| AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6)); |
| AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7)); |
| AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8)); |
| AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9)); |
| AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); |
| } |
| |
| // Tests the variadic version of the AnyOfMatcher. |
| TEST(AnyOfTest, VariadicMatchesWhenAnyMatches) { |
| // Also make sure AnyOf is defined in the right namespace and does not depend |
| // on ADL. |
| Matcher<int> m = ::testing::AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
| |
| EXPECT_THAT(Describe(m), EndsWith("or (is equal to 11)")); |
| AnyOfMatches(11, m); |
| AnyOfMatches(50, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, |
| 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, |
| 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
| 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, |
| 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)); |
| AnyOfStringMatches( |
| 50, AnyOf("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", |
| "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", |
| "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", |
| "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", |
| "43", "44", "45", "46", "47", "48", "49", "50")); |
| } |
| |
| TEST(ConditionalTest, MatchesFirstIfCondition) { |
| Matcher<std::string> eq_red = Eq("red"); |
| Matcher<std::string> ne_red = Ne("red"); |
| Matcher<std::string> m = Conditional(true, eq_red, ne_red); |
| EXPECT_TRUE(m.Matches("red")); |
| EXPECT_FALSE(m.Matches("green")); |
| |
| StringMatchResultListener listener; |
| StringMatchResultListener expected; |
| EXPECT_FALSE(m.MatchAndExplain("green", &listener)); |
| EXPECT_FALSE(eq_red.MatchAndExplain("green", &expected)); |
| EXPECT_THAT(listener.str(), Eq(expected.str())); |
| } |
| |
| TEST(ConditionalTest, MatchesSecondIfCondition) { |
| Matcher<std::string> eq_red = Eq("red"); |
| Matcher<std::string> ne_red = Ne("red"); |
| Matcher<std::string> m = Conditional(false, eq_red, ne_red); |
| EXPECT_FALSE(m.Matches("red")); |
| EXPECT_TRUE(m.Matches("green")); |
| |
| StringMatchResultListener listener; |
| StringMatchResultListener expected; |
| EXPECT_FALSE(m.MatchAndExplain("red", &listener)); |
| EXPECT_FALSE(ne_red.MatchAndExplain("red", &expected)); |
| EXPECT_THAT(listener.str(), Eq(expected.str())); |
| } |
| |
| // Tests the variadic version of the ElementsAreMatcher |
| TEST(ElementsAreTest, HugeMatcher) { |
| vector<int> test_vector{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; |
| |
| EXPECT_THAT(test_vector, |
| ElementsAre(Eq(1), Eq(2), Lt(13), Eq(4), Eq(5), Eq(6), Eq(7), |
| Eq(8), Eq(9), Eq(10), Gt(1), Eq(12))); |
| } |
| |
| // Tests the variadic version of the UnorderedElementsAreMatcher |
| TEST(ElementsAreTest, HugeMatcherStr) { |
| vector<std::string> test_vector{ |
| "literal_string", "", "", "", "", "", "", "", "", "", "", ""}; |
| |
| EXPECT_THAT(test_vector, UnorderedElementsAre("literal_string", _, _, _, _, _, |
| _, _, _, _, _, _)); |
| } |
| |
| // Tests the variadic version of the UnorderedElementsAreMatcher |
| TEST(ElementsAreTest, HugeMatcherUnordered) { |
| vector<int> test_vector{2, 1, 8, 5, 4, 6, 7, 3, 9, 12, 11, 10}; |
| |
| EXPECT_THAT(test_vector, UnorderedElementsAre( |
| Eq(2), Eq(1), Gt(7), Eq(5), Eq(4), Eq(6), Eq(7), |
| Eq(3), Eq(9), Eq(12), Eq(11), Ne(122))); |
| } |
| |
| |
| // Tests that AnyOf(m1, ..., mn) describes itself properly. |
| TEST(AnyOfTest, CanDescribeSelf) { |
| Matcher<int> m; |
| m = AnyOf(Le(1), Ge(3)); |
| |
| EXPECT_EQ("(is <= 1) or (is >= 3)", |
| Describe(m)); |
| |
| m = AnyOf(Lt(0), Eq(1), Eq(2)); |
| EXPECT_EQ("(is < 0) or (is equal to 1) or (is equal to 2)", Describe(m)); |
| |
| m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); |
| EXPECT_EQ("(is < 0) or (is equal to 1) or (is equal to 2) or (is equal to 3)", |
| Describe(m)); |
| |
| m = AnyOf(Le(0), Gt(10), 3, 5, 7); |
| EXPECT_EQ( |
| "(is <= 0) or (is > 10) or (is equal to 3) or (is equal to 5) or (is " |
| "equal to 7)", |
| Describe(m)); |
| } |
| |
| // Tests that AnyOf(m1, ..., mn) describes its negation properly. |
| TEST(AnyOfTest, CanDescribeNegation) { |
| Matcher<int> m; |
| m = AnyOf(Le(1), Ge(3)); |
| EXPECT_EQ("(isn't <= 1) and (isn't >= 3)", |
| DescribeNegation(m)); |
| |
| m = AnyOf(Lt(0), Eq(1), Eq(2)); |
| EXPECT_EQ("(isn't < 0) and (isn't equal to 1) and (isn't equal to 2)", |
| DescribeNegation(m)); |
| |
| m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); |
| EXPECT_EQ( |
| "(isn't < 0) and (isn't equal to 1) and (isn't equal to 2) and (isn't " |
| "equal to 3)", |
| DescribeNegation(m)); |
| |
| m = AnyOf(Le(0), Gt(10), 3, 5, 7); |
| EXPECT_EQ( |
| "(isn't <= 0) and (isn't > 10) and (isn't equal to 3) and (isn't equal " |
| "to 5) and (isn't equal to 7)", |
| DescribeNegation(m)); |
| } |
| |
| // Tests that monomorphic matchers are safely cast by the AnyOf matcher. |
| TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) { |
| // greater_than_5 and less_than_10 are monomorphic matchers. |
| Matcher<int> greater_than_5 = Gt(5); |
| Matcher<int> less_than_10 = Lt(10); |
| |
| Matcher<const int&> m = AnyOf(greater_than_5, less_than_10); |
| Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10); |
| Matcher<int&> m3 = AnyOf(greater_than_5, m2); |
| |
| // Tests that EitherOf works when composing itself. |
| Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10); |
| Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10); |
| } |
| |
| TEST(AnyOfTest, ExplainsResult) { |
| Matcher<int> m; |
| |
| // Failed match. Both matchers need to explain. The second |
| // matcher doesn't give an explanation, so only the first matcher's |
| // explanation is printed. |
| m = AnyOf(GreaterThan(10), Lt(0)); |
| EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); |
| |
| // Failed match. Both matchers need to explain. |
| m = AnyOf(GreaterThan(10), GreaterThan(20)); |
| EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20", |
| Explain(m, 5)); |
| |
| // Failed match. All matchers need to explain. The second |
| // matcher doesn't given an explanation. |
| m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30)); |
| EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30", |
| Explain(m, 5)); |
| |
| // Failed match. All matchers need to explain. |
| m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); |
| EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, " |
| "and which is 25 less than 30", |
| Explain(m, 5)); |
| |
| // Successful match. The first matcher, which succeeded, needs to |
| // explain. |
| m = AnyOf(GreaterThan(10), GreaterThan(20)); |
| EXPECT_EQ("which is 5 more than 10", Explain(m, 15)); |
| |
| // Successful match. The second matcher, which succeeded, needs to |
| // explain. Since it doesn't given an explanation, nothing is |
| // printed. |
| m = AnyOf(GreaterThan(10), Lt(30)); |
| EXPECT_EQ("", Explain(m, 0)); |
| |
| // Successful match. The second matcher, which succeeded, needs to |
| // explain. |
| m = AnyOf(GreaterThan(30), GreaterThan(20)); |
| EXPECT_EQ("which is 5 more than 20", Explain(m, 25)); |
| } |
| |
| // The following predicate function and predicate functor are for |
| // testing the Truly(predicate) matcher. |
| |
| // Returns non-zero if the input is positive. Note that the return |
| // type of this function is not bool. It's OK as Truly() accepts any |
| // unary function or functor whose return type can be implicitly |
| // converted to bool. |
| int IsPositive(double x) { |
| return x > 0 ? 1 : 0; |
| } |
| |
| // This functor returns true if the input is greater than the given |
| // number. |
| class IsGreaterThan { |
| public: |
| explicit IsGreaterThan(int threshold) : threshold_(threshold) {} |
| |
| bool operator()(int n) const { return n > threshold_; } |
| |
| private: |
| int threshold_; |
| }; |
| |
| // For testing Truly(). |
| const int foo = 0; |
| |
| // This predicate returns true if and only if the argument references foo and |
| // has a zero value. |
| bool ReferencesFooAndIsZero(const int& n) { |
| return (&n == &foo) && (n == 0); |
| } |
| |
| // Tests that Truly(predicate) matches what satisfies the given |
| // predicate. |
| TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) { |
| Matcher<double> m = Truly(IsPositive); |
| EXPECT_TRUE(m.Matches(2.0)); |
| EXPECT_FALSE(m.Matches(-1.5)); |
| } |
| |
| // Tests that Truly(predicate_functor) works too. |
| TEST(TrulyTest, CanBeUsedWithFunctor) { |
| Matcher<int> m = Truly(IsGreaterThan(5)); |
| EXPECT_TRUE(m.Matches(6)); |
| EXPECT_FALSE(m.Matches(4)); |
| } |
| |
| // A class that can be implicitly converted to bool. |
| class ConvertibleToBool { |
| public: |
| explicit ConvertibleToBool(int number) : number_(number) {} |
| operator bool() const { return number_ != 0; } |
| |
| private: |
| int number_; |
| }; |
| |
| ConvertibleToBool IsNotZero(int number) { |
| return ConvertibleToBool(number); |
| } |
| |
| // Tests that the predicate used in Truly() may return a class that's |
| // implicitly convertible to bool, even when the class has no |
| // operator!(). |
| TEST(TrulyTest, PredicateCanReturnAClassConvertibleToBool) { |
| Matcher<int> m = Truly(IsNotZero); |
| EXPECT_TRUE(m.Matches(1)); |
| EXPECT_FALSE(m.Matches(0)); |
| } |
| |
| // Tests that Truly(predicate) can describe itself properly. |
| TEST(TrulyTest, CanDescribeSelf) { |
| Matcher<double> m = Truly(IsPositive); |
| EXPECT_EQ("satisfies the given predicate", |
| Describe(m)); |
| } |
| |
| // Tests that Truly(predicate) works when the matcher takes its |
| // argument by reference. |
| TEST(TrulyTest, WorksForByRefArguments) { |
| Matcher<const int&> m = Truly(ReferencesFooAndIsZero); |
| EXPECT_TRUE(m.Matches(foo)); |
| int n = 0; |
| EXPECT_FALSE(m.Matches(n)); |
| } |
| |
| // Tests that Truly(predicate) provides a helpful reason when it fails. |
| TEST(TrulyTest, ExplainsFailures) { |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(Truly(IsPositive), -1, &listener)); |
| EXPECT_EQ(listener.str(), "didn't satisfy the given predicate"); |
| } |
| |
| // Tests that Matches(m) is a predicate satisfied by whatever that |
| // matches matcher m. |
| TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) { |
| EXPECT_TRUE(Matches(Ge(0))(1)); |
| EXPECT_FALSE(Matches(Eq('a'))('b')); |
| } |
| |
| // Tests that Matches(m) works when the matcher takes its argument by |
| // reference. |
| TEST(MatchesTest, WorksOnByRefArguments) { |
| int m = 0, n = 0; |
| EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n)); |
| EXPECT_FALSE(Matches(Ref(m))(n)); |
| } |
| |
| // Tests that a Matcher on non-reference type can be used in |
| // Matches(). |
| TEST(MatchesTest, WorksWithMatcherOnNonRefType) { |
| Matcher<int> eq5 = Eq(5); |
| EXPECT_TRUE(Matches(eq5)(5)); |
| EXPECT_FALSE(Matches(eq5)(2)); |
| } |
| |
| // Tests Value(value, matcher). Since Value() is a simple wrapper for |
| // Matches(), which has been tested already, we don't spend a lot of |
| // effort on testing Value(). |
| TEST(ValueTest, WorksWithPolymorphicMatcher) { |
| EXPECT_TRUE(Value("hi", StartsWith("h"))); |
| EXPECT_FALSE(Value(5, Gt(10))); |
| } |
| |
| TEST(ValueTest, WorksWithMonomorphicMatcher) { |
| const Matcher<int> is_zero = Eq(0); |
| EXPECT_TRUE(Value(0, is_zero)); |
| EXPECT_FALSE(Value('a', is_zero)); |
| |
| int n = 0; |
| const Matcher<const int&> ref_n = Ref(n); |
| EXPECT_TRUE(Value(n, ref_n)); |
| EXPECT_FALSE(Value(1, ref_n)); |
| } |
| |
| TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) { |
| StringMatchResultListener listener1; |
| EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1)); |
| EXPECT_EQ("% 2 == 0", listener1.str()); |
| |
| StringMatchResultListener listener2; |
| EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2)); |
| EXPECT_EQ("", listener2.str()); |
| } |
| |
| TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) { |
| const Matcher<int> is_even = PolymorphicIsEven(); |
| StringMatchResultListener listener1; |
| EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1)); |
| EXPECT_EQ("% 2 == 0", listener1.str()); |
| |
| const Matcher<const double&> is_zero = Eq(0); |
| StringMatchResultListener listener2; |
| EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2)); |
| EXPECT_EQ("", listener2.str()); |
| } |
| |
| MATCHER(ConstructNoArg, "") { return true; } |
| MATCHER_P(Construct1Arg, arg1, "") { return true; } |
| MATCHER_P2(Construct2Args, arg1, arg2, "") { return true; } |
| |
| TEST(MatcherConstruct, ExplicitVsImplicit) { |
| { |
| // No arg constructor can be constructed with empty brace. |
| ConstructNoArgMatcher m = {}; |
| (void)m; |
| // And with no args |
| ConstructNoArgMatcher m2; |
| (void)m2; |
| } |
| { |
| // The one arg constructor has an explicit constructor. |
| // This is to prevent the implicit conversion. |
| using M = Construct1ArgMatcherP<int>; |
| EXPECT_TRUE((std::is_constructible<M, int>::value)); |
| EXPECT_FALSE((std::is_convertible<int, M>::value)); |
| } |
| { |
| // Multiple arg matchers can be constructed with an implicit construction. |
| Construct2ArgsMatcherP2<int, double> m = {1, 2.2}; |
| (void)m; |
| } |
| } |
| |
| MATCHER_P(Really, inner_matcher, "") { |
| return ExplainMatchResult(inner_matcher, arg, result_listener); |
| } |
| |
| TEST(ExplainMatchResultTest, WorksInsideMATCHER) { |
| EXPECT_THAT(0, Really(Eq(0))); |
| } |
| |
| TEST(DescribeMatcherTest, WorksWithValue) { |
| EXPECT_EQ("is equal to 42", DescribeMatcher<int>(42)); |
| EXPECT_EQ("isn't equal to 42", DescribeMatcher<int>(42, true)); |
| } |
| |
| TEST(DescribeMatcherTest, WorksWithMonomorphicMatcher) { |
| const Matcher<int> monomorphic = Le(0); |
| EXPECT_EQ("is <= 0", DescribeMatcher<int>(monomorphic)); |
| EXPECT_EQ("isn't <= 0", DescribeMatcher<int>(monomorphic, true)); |
| } |
| |
| TEST(DescribeMatcherTest, WorksWithPolymorphicMatcher) { |
| EXPECT_EQ("is even", DescribeMatcher<int>(PolymorphicIsEven())); |
| EXPECT_EQ("is odd", DescribeMatcher<int>(PolymorphicIsEven(), true)); |
| } |
| |
| TEST(AllArgsTest, WorksForTuple) { |
| EXPECT_THAT(std::make_tuple(1, 2L), AllArgs(Lt())); |
| EXPECT_THAT(std::make_tuple(2L, 1), Not(AllArgs(Lt()))); |
| } |
| |
| TEST(AllArgsTest, WorksForNonTuple) { |
| EXPECT_THAT(42, AllArgs(Gt(0))); |
| EXPECT_THAT('a', Not(AllArgs(Eq('b')))); |
| } |
| |
| class AllArgsHelper { |
| public: |
| AllArgsHelper() {} |
| |
| MOCK_METHOD2(Helper, int(char x, int y)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper); |
| }; |
| |
| TEST(AllArgsTest, WorksInWithClause) { |
| AllArgsHelper helper; |
| ON_CALL(helper, Helper(_, _)) |
| .With(AllArgs(Lt())) |
| .WillByDefault(Return(1)); |
| EXPECT_CALL(helper, Helper(_, _)); |
| EXPECT_CALL(helper, Helper(_, _)) |
| .With(AllArgs(Gt())) |
| .WillOnce(Return(2)); |
| |
| EXPECT_EQ(1, helper.Helper('\1', 2)); |
| EXPECT_EQ(2, helper.Helper('a', 1)); |
| } |
| |
| class OptionalMatchersHelper { |
| public: |
| OptionalMatchersHelper() {} |
| |
| MOCK_METHOD0(NoArgs, int()); |
| |
| MOCK_METHOD1(OneArg, int(int y)); |
| |
| MOCK_METHOD2(TwoArgs, int(char x, int y)); |
| |
| MOCK_METHOD1(Overloaded, int(char x)); |
| MOCK_METHOD2(Overloaded, int(char x, int y)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(OptionalMatchersHelper); |
| }; |
| |
| TEST(AllArgsTest, WorksWithoutMatchers) { |
| OptionalMatchersHelper helper; |
| |
| ON_CALL(helper, NoArgs).WillByDefault(Return(10)); |
| ON_CALL(helper, OneArg).WillByDefault(Return(20)); |
| ON_CALL(helper, TwoArgs).WillByDefault(Return(30)); |
| |
| EXPECT_EQ(10, helper.NoArgs()); |
| EXPECT_EQ(20, helper.OneArg(1)); |
| EXPECT_EQ(30, helper.TwoArgs('\1', 2)); |
| |
| EXPECT_CALL(helper, NoArgs).Times(1); |
| EXPECT_CALL(helper, OneArg).WillOnce(Return(100)); |
| EXPECT_CALL(helper, OneArg(17)).WillOnce(Return(200)); |
| EXPECT_CALL(helper, TwoArgs).Times(0); |
| |
| EXPECT_EQ(10, helper.NoArgs()); |
| EXPECT_EQ(100, helper.OneArg(1)); |
| EXPECT_EQ(200, helper.OneArg(17)); |
| } |
| |
| // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value |
| // matches the matcher. |
| TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) { |
| ASSERT_THAT(5, Ge(2)) << "This should succeed."; |
| ASSERT_THAT("Foo", EndsWith("oo")); |
| EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too."; |
| EXPECT_THAT("Hello", StartsWith("Hell")); |
| } |
| |
| // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value |
| // doesn't match the matcher. |
| TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) { |
| // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(), |
| // which cannot reference auto variables. |
| static unsigned short n; // NOLINT |
| n = 5; |
| |
| EXPECT_FATAL_FAILURE(ASSERT_THAT(n, Gt(10)), |
| "Value of: n\n" |
| "Expected: is > 10\n" |
| " Actual: 5" + OfType("unsigned short")); |
| n = 0; |
| EXPECT_NONFATAL_FAILURE( |
| EXPECT_THAT(n, AllOf(Le(7), Ge(5))), |
| "Value of: n\n" |
| "Expected: (is <= 7) and (is >= 5)\n" |
| " Actual: 0" + OfType("unsigned short")); |
| } |
| |
| // Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument |
| // has a reference type. |
| TEST(MatcherAssertionTest, WorksForByRefArguments) { |
| // We use a static variable here as EXPECT_FATAL_FAILURE() cannot |
| // reference auto variables. |
| static int n; |
| n = 0; |
| EXPECT_THAT(n, AllOf(Le(7), Ref(n))); |
| EXPECT_FATAL_FAILURE(ASSERT_THAT(n, Not(Ref(n))), |
| "Value of: n\n" |
| "Expected: does not reference the variable @"); |
| // Tests the "Actual" part. |
| EXPECT_FATAL_FAILURE(ASSERT_THAT(n, Not(Ref(n))), |
| "Actual: 0" + OfType("int") + ", which is located @"); |
| } |
| |
| // Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is |
| // monomorphic. |
| TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) { |
| Matcher<const char*> starts_with_he = StartsWith("he"); |
| ASSERT_THAT("hello", starts_with_he); |
| |
| Matcher<const std::string&> ends_with_ok = EndsWith("ok"); |
| ASSERT_THAT("book", ends_with_ok); |
| const std::string bad = "bad"; |
| EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok), |
| "Value of: bad\n" |
| "Expected: ends with \"ok\"\n" |
| " Actual: \"bad\""); |
| Matcher<int> is_greater_than_5 = Gt(5); |
| EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5), |
| "Value of: 5\n" |
| "Expected: is > 5\n" |
| " Actual: 5" + OfType("int")); |
| } |
| |
| // Tests floating-point matchers. |
| template <typename RawType> |
| class FloatingPointTest : public testing::Test { |
| protected: |
| typedef testing::internal::FloatingPoint<RawType> Floating; |
| typedef typename Floating::Bits Bits; |
| |
| FloatingPointTest() |
| : max_ulps_(Floating::kMaxUlps), |
| zero_bits_(Floating(0).bits()), |
| one_bits_(Floating(1).bits()), |
| infinity_bits_(Floating(Floating::Infinity()).bits()), |
| close_to_positive_zero_( |
| Floating::ReinterpretBits(zero_bits_ + max_ulps_/2)), |
| close_to_negative_zero_( |
| -Floating::ReinterpretBits(zero_bits_ + max_ulps_ - max_ulps_/2)), |
| further_from_negative_zero_(-Floating::ReinterpretBits( |
| zero_bits_ + max_ulps_ + 1 - max_ulps_/2)), |
| close_to_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_)), |
| further_from_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_ + 1)), |
| infinity_(Floating::Infinity()), |
| close_to_infinity_( |
| Floating::ReinterpretBits(infinity_bits_ - max_ulps_)), |
| further_from_infinity_( |
| Floating::ReinterpretBits(infinity_bits_ - max_ulps_ - 1)), |
| max_(Floating::Max()), |
| nan1_(Floating::ReinterpretBits(Floating::kExponentBitMask | 1)), |
| nan2_(Floating::ReinterpretBits(Floating::kExponentBitMask | 200)) { |
| } |
| |
| void TestSize() { |
| EXPECT_EQ(sizeof(RawType), sizeof(Bits)); |
| } |
| |
| // A battery of tests for FloatingEqMatcher::Matches. |
| // matcher_maker is a pointer to a function which creates a FloatingEqMatcher. |
| void TestMatches( |
| testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType)) { |
| Matcher<RawType> m1 = matcher_maker(0.0); |
| EXPECT_TRUE(m1.Matches(-0.0)); |
| EXPECT_TRUE(m1.Matches(close_to_positive_zero_)); |
| EXPECT_TRUE(m1.Matches(close_to_negative_zero_)); |
| EXPECT_FALSE(m1.Matches(1.0)); |
| |
| Matcher<RawType> m2 = matcher_maker(close_to_positive_zero_); |
| EXPECT_FALSE(m2.Matches(further_from_negative_zero_)); |
| |
| Matcher<RawType> m3 = matcher_maker(1.0); |
| EXPECT_TRUE(m3.Matches(close_to_one_)); |
| EXPECT_FALSE(m3.Matches(further_from_one_)); |
| |
| // Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above. |
| EXPECT_FALSE(m3.Matches(0.0)); |
| |
| Matcher<RawType> m4 = matcher_maker(-infinity_); |
| EXPECT_TRUE(m4.Matches(-close_to_infinity_)); |
| |
| Matcher<RawType> m5 = matcher_maker(infinity_); |
| EXPECT_TRUE(m5.Matches(close_to_infinity_)); |
| |
| // This is interesting as the representations of infinity_ and nan1_ |
| // are only 1 DLP apart. |
| EXPECT_FALSE(m5.Matches(nan1_)); |
| |
| // matcher_maker can produce a Matcher<const RawType&>, which is needed in |
| // some cases. |
| Matcher<const RawType&> m6 = matcher_maker(0.0); |
| EXPECT_TRUE(m6.Matches(-0.0)); |
| EXPECT_TRUE(m6.Matches(close_to_positive_zero_)); |
| EXPECT_FALSE(m6.Matches(1.0)); |
| |
| // matcher_maker can produce a Matcher<RawType&>, which is needed in some |
| // cases. |
| Matcher<RawType&> m7 = matcher_maker(0.0); |
| RawType x = 0.0; |
| EXPECT_TRUE(m7.Matches(x)); |
| x = 0.01f; |
| EXPECT_FALSE(m7.Matches(x)); |
| } |
| |
| // Pre-calculated numbers to be used by the tests. |
| |
| const Bits max_ulps_; |
| |
| const Bits zero_bits_; // The bits that represent 0.0. |
| const Bits one_bits_; // The bits that represent 1.0. |
| const Bits infinity_bits_; // The bits that represent +infinity. |
| |
| // Some numbers close to 0.0. |
| const RawType close_to_positive_zero_; |
| const RawType close_to_negative_zero_; |
| const RawType further_from_negative_zero_; |
| |
| // Some numbers close to 1.0. |
| const RawType close_to_one_; |
| const RawType further_from_one_; |
| |
| // Some numbers close to +infinity. |
| const RawType infinity_; |
| const RawType close_to_infinity_; |
| const RawType further_from_infinity_; |
| |
| // Maximum representable value that's not infinity. |
| const RawType max_; |
| |
| // Some NaNs. |
| const RawType nan1_; |
| const RawType nan2_; |
| }; |
| |
| // Tests floating-point matchers with fixed epsilons. |
| template <typename RawType> |
| class FloatingPointNearTest : public FloatingPointTest<RawType> { |
| protected: |
| typedef FloatingPointTest<RawType> ParentType; |
| |
| // A battery of tests for FloatingEqMatcher::Matches with a fixed epsilon. |
| // matcher_maker is a pointer to a function which creates a FloatingEqMatcher. |
| void TestNearMatches( |
| testing::internal::FloatingEqMatcher<RawType> |
| (*matcher_maker)(RawType, RawType)) { |
| Matcher<RawType> m1 = matcher_maker(0.0, 0.0); |
| EXPECT_TRUE(m1.Matches(0.0)); |
| EXPECT_TRUE(m1.Matches(-0.0)); |
| EXPECT_FALSE(m1.Matches(ParentType::close_to_positive_zero_)); |
| EXPECT_FALSE(m1.Matches(ParentType::close_to_negative_zero_)); |
| EXPECT_FALSE(m1.Matches(1.0)); |
| |
| Matcher<RawType> m2 = matcher_maker(0.0, 1.0); |
| EXPECT_TRUE(m2.Matches(0.0)); |
| EXPECT_TRUE(m2.Matches(-0.0)); |
| EXPECT_TRUE(m2.Matches(1.0)); |
| EXPECT_TRUE(m2.Matches(-1.0)); |
| EXPECT_FALSE(m2.Matches(ParentType::close_to_one_)); |
| EXPECT_FALSE(m2.Matches(-ParentType::close_to_one_)); |
| |
| // Check that inf matches inf, regardless of the of the specified max |
| // absolute error. |
| Matcher<RawType> m3 = matcher_maker(ParentType::infinity_, 0.0); |
| EXPECT_TRUE(m3.Matches(ParentType::infinity_)); |
| EXPECT_FALSE(m3.Matches(ParentType::close_to_infinity_)); |
| EXPECT_FALSE(m3.Matches(-ParentType::infinity_)); |
| |
| Matcher<RawType> m4 = matcher_maker(-ParentType::infinity_, 0.0); |
| EXPECT_TRUE(m4.Matches(-ParentType::infinity_)); |
| EXPECT_FALSE(m4.Matches(-ParentType::close_to_infinity_)); |
| EXPECT_FALSE(m4.Matches(ParentType::infinity_)); |
| |
| // Test various overflow scenarios. |
| Matcher<RawType> m5 = matcher_maker(ParentType::max_, ParentType::max_); |
| EXPECT_TRUE(m5.Matches(ParentType::max_)); |
| EXPECT_FALSE(m5.Matches(-ParentType::max_)); |
| |
| Matcher<RawType> m6 = matcher_maker(-ParentType::max_, ParentType::max_); |
| EXPECT_FALSE(m6.Matches(ParentType::max_)); |
| EXPECT_TRUE(m6.Matches(-ParentType::max_)); |
| |
| Matcher<RawType> m7 = matcher_maker(ParentType::max_, 0); |
| EXPECT_TRUE(m7.Matches(ParentType::max_)); |
| EXPECT_FALSE(m7.Matches(-ParentType::max_)); |
| |
| Matcher<RawType> m8 = matcher_maker(-ParentType::max_, 0); |
| EXPECT_FALSE(m8.Matches(ParentType::max_)); |
| EXPECT_TRUE(m8.Matches(-ParentType::max_)); |
| |
| // The difference between max() and -max() normally overflows to infinity, |
| // but it should still match if the max_abs_error is also infinity. |
| Matcher<RawType> m9 = matcher_maker( |
| ParentType::max_, ParentType::infinity_); |
| EXPECT_TRUE(m8.Matches(-ParentType::max_)); |
| |
| // matcher_maker can produce a Matcher<const RawType&>, which is needed in |
| // some cases. |
| Matcher<const RawType&> m10 = matcher_maker(0.0, 1.0); |
| EXPECT_TRUE(m10.Matches(-0.0)); |
| EXPECT_TRUE(m10.Matches(ParentType::close_to_positive_zero_)); |
| EXPECT_FALSE(m10.Matches(ParentType::close_to_one_)); |
| |
| // matcher_maker can produce a Matcher<RawType&>, which is needed in some |
| // cases. |
| Matcher<RawType&> m11 = matcher_maker(0.0, 1.0); |
| RawType x = 0.0; |
| EXPECT_TRUE(m11.Matches(x)); |
| x = 1.0f; |
| EXPECT_TRUE(m11.Matches(x)); |
| x = -1.0f; |
| EXPECT_TRUE(m11.Matches(x)); |
| x = 1.1f; |
| EXPECT_FALSE(m11.Matches(x)); |
| x = -1.1f; |
| EXPECT_FALSE(m11.Matches(x)); |
| } |
| }; |
| |
| // Instantiate FloatingPointTest for testing floats. |
| typedef FloatingPointTest<float> FloatTest; |
| |
| TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) { |
| TestMatches(&FloatEq); |
| } |
| |
| TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) { |
| TestMatches(&NanSensitiveFloatEq); |
| } |
| |
| TEST_F(FloatTest, FloatEqCannotMatchNaN) { |
| // FloatEq never matches NaN. |
| Matcher<float> m = FloatEq(nan1_); |
| EXPECT_FALSE(m.Matches(nan1_)); |
| EXPECT_FALSE(m.Matches(nan2_)); |
| EXPECT_FALSE(m.Matches(1.0)); |
| } |
| |
| TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) { |
| // NanSensitiveFloatEq will match NaN. |
| Matcher<float> m = NanSensitiveFloatEq(nan1_); |
| EXPECT_TRUE(m.Matches(nan1_)); |
| EXPECT_TRUE(m.Matches(nan2_)); |
| EXPECT_FALSE(m.Matches(1.0)); |
| } |
| |
| TEST_F(FloatTest, FloatEqCanDescribeSelf) { |
| Matcher<float> m1 = FloatEq(2.0f); |
| EXPECT_EQ("is approximately 2", Describe(m1)); |
| EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); |
| |
| Matcher<float> m2 = FloatEq(0.5f); |
| EXPECT_EQ("is approximately 0.5", Describe(m2)); |
| EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); |
| |
| Matcher<float> m3 = FloatEq(nan1_); |
| EXPECT_EQ("never matches", Describe(m3)); |
| EXPECT_EQ("is anything", DescribeNegation(m3)); |
| } |
| |
| TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) { |
| Matcher<float> m1 = NanSensitiveFloatEq(2.0f); |
| EXPECT_EQ("is approximately 2", Describe(m1)); |
| EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); |
| |
| Matcher<float> m2 = NanSensitiveFloatEq(0.5f); |
| EXPECT_EQ("is approximately 0.5", Describe(m2)); |
| EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); |
| |
| Matcher<float> m3 = NanSensitiveFloatEq(nan1_); |
| EXPECT_EQ("is NaN", Describe(m3)); |
| EXPECT_EQ("isn't NaN", DescribeNegation(m3)); |
| } |
| |
| // Instantiate FloatingPointTest for testing floats with a user-specified |
| // max absolute error. |
| typedef FloatingPointNearTest<float> FloatNearTest; |
| |
| TEST_F(FloatNearTest, FloatNearMatches) { |
| TestNearMatches(&FloatNear); |
| } |
| |
| TEST_F(FloatNearTest, NanSensitiveFloatNearApproximatelyMatchesFloats) { |
| TestNearMatches(&NanSensitiveFloatNear); |
| } |
| |
| TEST_F(FloatNearTest, FloatNearCanDescribeSelf) { |
| Matcher<float> m1 = FloatNear(2.0f, 0.5f); |
| EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); |
| EXPECT_EQ( |
| "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); |
| |
| Matcher<float> m2 = FloatNear(0.5f, 0.5f); |
| EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); |
| EXPECT_EQ( |
| "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); |
| |
| Matcher<float> m3 = FloatNear(nan1_, 0.0); |
| EXPECT_EQ("never matches", Describe(m3)); |
| EXPECT_EQ("is anything", DescribeNegation(m3)); |
| } |
| |
| TEST_F(FloatNearTest, NanSensitiveFloatNearCanDescribeSelf) { |
| Matcher<float> m1 = NanSensitiveFloatNear(2.0f, 0.5f); |
| EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); |
| EXPECT_EQ( |
| "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); |
| |
| Matcher<float> m2 = NanSensitiveFloatNear(0.5f, 0.5f); |
| EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); |
| EXPECT_EQ( |
| "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); |
| |
| Matcher<float> m3 = NanSensitiveFloatNear(nan1_, 0.1f); |
| EXPECT_EQ("is NaN", Describe(m3)); |
| EXPECT_EQ("isn't NaN", DescribeNegation(m3)); |
| } |
| |
| TEST_F(FloatNearTest, FloatNearCannotMatchNaN) { |
| // FloatNear never matches NaN. |
| Matcher<float> m = FloatNear(ParentType::nan1_, 0.1f); |
| EXPECT_FALSE(m.Matches(nan1_)); |
| EXPECT_FALSE(m.Matches(nan2_)); |
| EXPECT_FALSE(m.Matches(1.0)); |
| } |
| |
| TEST_F(FloatNearTest, NanSensitiveFloatNearCanMatchNaN) { |
| // NanSensitiveFloatNear will match NaN. |
| Matcher<float> m = NanSensitiveFloatNear(nan1_, 0.1f); |
| EXPECT_TRUE(m.Matches(nan1_)); |
| EXPECT_TRUE(m.Matches(nan2_)); |
| EXPECT_FALSE(m.Matches(1.0)); |
| } |
| |
| // Instantiate FloatingPointTest for testing doubles. |
| typedef FloatingPointTest<double> DoubleTest; |
| |
| TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) { |
| TestMatches(&DoubleEq); |
| } |
| |
| TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) { |
| TestMatches(&NanSensitiveDoubleEq); |
| } |
| |
| TEST_F(DoubleTest, DoubleEqCannotMatchNaN) { |
| // DoubleEq never matches NaN. |
| Matcher<double> m = DoubleEq(nan1_); |
| EXPECT_FALSE(m.Matches(nan1_)); |
| EXPECT_FALSE(m.Matches(nan2_)); |
| EXPECT_FALSE(m.Matches(1.0)); |
| } |
| |
| TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) { |
| // NanSensitiveDoubleEq will match NaN. |
| Matcher<double> m = NanSensitiveDoubleEq(nan1_); |
| EXPECT_TRUE(m.Matches(nan1_)); |
| EXPECT_TRUE(m.Matches(nan2_)); |
| EXPECT_FALSE(m.Matches(1.0)); |
| } |
| |
| TEST_F(DoubleTest, DoubleEqCanDescribeSelf) { |
| Matcher<double> m1 = DoubleEq(2.0); |
| EXPECT_EQ("is approximately 2", Describe(m1)); |
| EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); |
| |
| Matcher<double> m2 = DoubleEq(0.5); |
| EXPECT_EQ("is approximately 0.5", Describe(m2)); |
| EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); |
| |
| Matcher<double> m3 = DoubleEq(nan1_); |
| EXPECT_EQ("never matches", Describe(m3)); |
| EXPECT_EQ("is anything", DescribeNegation(m3)); |
| } |
| |
| TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) { |
| Matcher<double> m1 = NanSensitiveDoubleEq(2.0); |
| EXPECT_EQ("is approximately 2", Describe(m1)); |
| EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); |
| |
| Matcher<double> m2 = NanSensitiveDoubleEq(0.5); |
| EXPECT_EQ("is approximately 0.5", Describe(m2)); |
| EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); |
| |
| Matcher<double> m3 = NanSensitiveDoubleEq(nan1_); |
| EXPECT_EQ("is NaN", Describe(m3)); |
| EXPECT_EQ("isn't NaN", DescribeNegation(m3)); |
| } |
| |
| // Instantiate FloatingPointTest for testing floats with a user-specified |
| // max absolute error. |
| typedef FloatingPointNearTest<double> DoubleNearTest; |
| |
| TEST_F(DoubleNearTest, DoubleNearMatches) { |
| TestNearMatches(&DoubleNear); |
| } |
| |
| TEST_F(DoubleNearTest, NanSensitiveDoubleNearApproximatelyMatchesDoubles) { |
| TestNearMatches(&NanSensitiveDoubleNear); |
| } |
| |
| TEST_F(DoubleNearTest, DoubleNearCanDescribeSelf) { |
| Matcher<double> m1 = DoubleNear(2.0, 0.5); |
| EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); |
| EXPECT_EQ( |
| "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); |
| |
| Matcher<double> m2 = DoubleNear(0.5, 0.5); |
| EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); |
| EXPECT_EQ( |
| "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); |
| |
| Matcher<double> m3 = DoubleNear(nan1_, 0.0); |
| EXPECT_EQ("never matches", Describe(m3)); |
| EXPECT_EQ("is anything", DescribeNegation(m3)); |
| } |
| |
| TEST_F(DoubleNearTest, ExplainsResultWhenMatchFails) { |
| EXPECT_EQ("", Explain(DoubleNear(2.0, 0.1), 2.05)); |
| EXPECT_EQ("which is 0.2 from 2", Explain(DoubleNear(2.0, 0.1), 2.2)); |
| EXPECT_EQ("which is -0.3 from 2", Explain(DoubleNear(2.0, 0.1), 1.7)); |
| |
| const std::string explanation = |
| Explain(DoubleNear(2.1, 1e-10), 2.1 + 1.2e-10); |
| // Different C++ implementations may print floating-point numbers |
| // slightly differently. |
| EXPECT_TRUE(explanation == "which is 1.2e-10 from 2.1" || // GCC |
| explanation == "which is 1.2e-010 from 2.1") // MSVC |
| << " where explanation is \"" << explanation << "\"."; |
| } |
| |
| TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanDescribeSelf) { |
| Matcher<double> m1 = NanSensitiveDoubleNear(2.0, 0.5); |
| EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); |
| EXPECT_EQ( |
| "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); |
| |
| Matcher<double> m2 = NanSensitiveDoubleNear(0.5, 0.5); |
| EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); |
| EXPECT_EQ( |
| "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); |
| |
| Matcher<double> m3 = NanSensitiveDoubleNear(nan1_, 0.1); |
| EXPECT_EQ("is NaN", Describe(m3)); |
| EXPECT_EQ("isn't NaN", DescribeNegation(m3)); |
| } |
| |
| TEST_F(DoubleNearTest, DoubleNearCannotMatchNaN) { |
| // DoubleNear never matches NaN. |
| Matcher<double> m = DoubleNear(ParentType::nan1_, 0.1); |
| EXPECT_FALSE(m.Matches(nan1_)); |
| EXPECT_FALSE(m.Matches(nan2_)); |
| EXPECT_FALSE(m.Matches(1.0)); |
| } |
| |
| TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanMatchNaN) { |
| // NanSensitiveDoubleNear will match NaN. |
| Matcher<double> m = NanSensitiveDoubleNear(nan1_, 0.1); |
| EXPECT_TRUE(m.Matches(nan1_)); |
| EXPECT_TRUE(m.Matches(nan2_)); |
| EXPECT_FALSE(m.Matches(1.0)); |
| } |
| |
| TEST(PointeeTest, RawPointer) { |
| const Matcher<int*> m = Pointee(Ge(0)); |
| |
| int n = 1; |
| EXPECT_TRUE(m.Matches(&n)); |
| n = -1; |
| EXPECT_FALSE(m.Matches(&n)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointeeTest, RawPointerToConst) { |
| const Matcher<const double*> m = Pointee(Ge(0)); |
| |
| double x = 1; |
| EXPECT_TRUE(m.Matches(&x)); |
| x = -1; |
| EXPECT_FALSE(m.Matches(&x)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointeeTest, ReferenceToConstRawPointer) { |
| const Matcher<int* const &> m = Pointee(Ge(0)); |
| |
| int n = 1; |
| EXPECT_TRUE(m.Matches(&n)); |
| n = -1; |
| EXPECT_FALSE(m.Matches(&n)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointeeTest, ReferenceToNonConstRawPointer) { |
| const Matcher<double* &> m = Pointee(Ge(0)); |
| |
| double x = 1.0; |
| double* p = &x; |
| EXPECT_TRUE(m.Matches(p)); |
| x = -1; |
| EXPECT_FALSE(m.Matches(p)); |
| p = nullptr; |
| EXPECT_FALSE(m.Matches(p)); |
| } |
| |
| TEST(PointeeTest, SmartPointer) { |
| const Matcher<std::unique_ptr<int>> m = Pointee(Ge(0)); |
| |
| std::unique_ptr<int> n(new int(1)); |
| EXPECT_TRUE(m.Matches(n)); |
| } |
| |
| TEST(PointeeTest, SmartPointerToConst) { |
| const Matcher<std::unique_ptr<const int>> m = Pointee(Ge(0)); |
| |
| // There's no implicit conversion from unique_ptr<int> to const |
| // unique_ptr<const int>, so we must pass a unique_ptr<const int> into the |
| // matcher. |
| std::unique_ptr<const int> n(new int(1)); |
| EXPECT_TRUE(m.Matches(n)); |
| } |
| |
| TEST(PointerTest, RawPointer) { |
| int n = 1; |
| const Matcher<int*> m = Pointer(Eq(&n)); |
| |
| EXPECT_TRUE(m.Matches(&n)); |
| |
| int* p = nullptr; |
| EXPECT_FALSE(m.Matches(p)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointerTest, RawPointerToConst) { |
| int n = 1; |
| const Matcher<const int*> m = Pointer(Eq(&n)); |
| |
| EXPECT_TRUE(m.Matches(&n)); |
| |
| int* p = nullptr; |
| EXPECT_FALSE(m.Matches(p)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointerTest, SmartPointer) { |
| std::unique_ptr<int> n(new int(10)); |
| int* raw_n = n.get(); |
| const Matcher<std::unique_ptr<int>> m = Pointer(Eq(raw_n)); |
| |
| EXPECT_TRUE(m.Matches(n)); |
| } |
| |
| TEST(PointerTest, SmartPointerToConst) { |
| std::unique_ptr<const int> n(new int(10)); |
| const int* raw_n = n.get(); |
| const Matcher<std::unique_ptr<const int>> m = Pointer(Eq(raw_n)); |
| |
| // There's no implicit conversion from unique_ptr<int> to const |
| // unique_ptr<const int>, so we must pass a unique_ptr<const int> into the |
| // matcher. |
| std::unique_ptr<const int> p(new int(10)); |
| EXPECT_FALSE(m.Matches(p)); |
| } |
| |
| TEST(AddressTest, NonConst) { |
| int n = 1; |
| const Matcher<int> m = Address(Eq(&n)); |
| |
| EXPECT_TRUE(m.Matches(n)); |
| |
| int other = 5; |
| |
| EXPECT_FALSE(m.Matches(other)); |
| |
| int& n_ref = n; |
| |
| EXPECT_TRUE(m.Matches(n_ref)); |
| } |
| |
| TEST(AddressTest, Const) { |
| const int n = 1; |
| const Matcher<int> m = Address(Eq(&n)); |
| |
| EXPECT_TRUE(m.Matches(n)); |
| |
| int other = 5; |
| |
| EXPECT_FALSE(m.Matches(other)); |
| } |
| |
| TEST(AddressTest, MatcherDoesntCopy) { |
| std::unique_ptr<int> n(new int(1)); |
| const Matcher<std::unique_ptr<int>> m = Address(Eq(&n)); |
| |
| EXPECT_TRUE(m.Matches(n)); |
| } |
| |
| TEST(AddressTest, Describe) { |
| Matcher<int> matcher = Address(_); |
| EXPECT_EQ("has address that is anything", Describe(matcher)); |
| EXPECT_EQ("does not have address that is anything", |
| DescribeNegation(matcher)); |
| } |
| |
| MATCHER_P(FieldIIs, inner_matcher, "") { |
| return ExplainMatchResult(inner_matcher, arg.i, result_listener); |
| } |
| |
| #if GTEST_HAS_RTTI |
| TEST(WhenDynamicCastToTest, SameType) { |
| Derived derived; |
| derived.i = 4; |
| |
| // Right type. A pointer is passed down. |
| Base* as_base_ptr = &derived; |
| EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Not(IsNull()))); |
| EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(4)))); |
| EXPECT_THAT(as_base_ptr, |
| Not(WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(5))))); |
| } |
| |
| TEST(WhenDynamicCastToTest, WrongTypes) { |
| Base base; |
| Derived derived; |
| OtherDerived other_derived; |
| |
| // Wrong types. NULL is passed. |
| EXPECT_THAT(&base, Not(WhenDynamicCastTo<Derived*>(Pointee(_)))); |
| EXPECT_THAT(&base, WhenDynamicCastTo<Derived*>(IsNull())); |
| Base* as_base_ptr = &derived; |
| EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<OtherDerived*>(Pointee(_)))); |
| EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<OtherDerived*>(IsNull())); |
| as_base_ptr = &other_derived; |
| EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<Derived*>(Pointee(_)))); |
| EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull())); |
| } |
| |
| TEST(WhenDynamicCastToTest, AlreadyNull) { |
| // Already NULL. |
| Base* as_base_ptr = nullptr; |
| EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull())); |
| } |
| |
| struct AmbiguousCastTypes { |
| class VirtualDerived : public virtual Base {}; |
| class DerivedSub1 : public VirtualDerived {}; |
| class DerivedSub2 : public VirtualDerived {}; |
| class ManyDerivedInHierarchy : public DerivedSub1, public DerivedSub2 {}; |
| }; |
| |
| TEST(WhenDynamicCastToTest, AmbiguousCast) { |
| AmbiguousCastTypes::DerivedSub1 sub1; |
| AmbiguousCastTypes::ManyDerivedInHierarchy many_derived; |
| // Multiply derived from Base. dynamic_cast<> returns NULL. |
| Base* as_base_ptr = |
| static_cast<AmbiguousCastTypes::DerivedSub1*>(&many_derived); |
| EXPECT_THAT(as_base_ptr, |
| WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(IsNull())); |
| as_base_ptr = &sub1; |
| EXPECT_THAT( |
| as_base_ptr, |
| WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(Not(IsNull()))); |
| } |
| |
| TEST(WhenDynamicCastToTest, Describe) { |
| Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_)); |
| const std::string prefix = |
| "when dynamic_cast to " + internal::GetTypeName<Derived*>() + ", "; |
| EXPECT_EQ(prefix + "points to a value that is anything", Describe(matcher)); |
| EXPECT_EQ(prefix + "does not point to a value that is anything", |
| DescribeNegation(matcher)); |
| } |
| |
| TEST(WhenDynamicCastToTest, Explain) { |
| Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_)); |
| Base* null = nullptr; |
| EXPECT_THAT(Explain(matcher, null), HasSubstr("NULL")); |
| Derived derived; |
| EXPECT_TRUE(matcher.Matches(&derived)); |
| EXPECT_THAT(Explain(matcher, &derived), HasSubstr("which points to ")); |
| |
| // With references, the matcher itself can fail. Test for that one. |
| Matcher<const Base&> ref_matcher = WhenDynamicCastTo<const OtherDerived&>(_); |
| EXPECT_THAT(Explain(ref_matcher, derived), |
| HasSubstr("which cannot be dynamic_cast")); |
| } |
| |
| TEST(WhenDynamicCastToTest, GoodReference) { |
| Derived derived; |
| derived.i = 4; |
| Base& as_base_ref = derived; |
| EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(FieldIIs(4))); |
| EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(Not(FieldIIs(5)))); |
| } |
| |
| TEST(WhenDynamicCastToTest, BadReference) { |
| Derived derived; |
| Base& as_base_ref = derived; |
| EXPECT_THAT(as_base_ref, Not(WhenDynamicCastTo<const OtherDerived&>(_))); |
| } |
| #endif // GTEST_HAS_RTTI |
| |
| // Minimal const-propagating pointer. |
| template <typename T> |
| class ConstPropagatingPtr { |
| public: |
| typedef T element_type; |
| |
| ConstPropagatingPtr() : val_() {} |
| explicit ConstPropagatingPtr(T* t) : val_(t) {} |
| ConstPropagatingPtr(const ConstPropagatingPtr& other) : val_(other.val_) {} |
| |
| T* get() { return val_; } |
| T& operator*() { return *val_; } |
| // Most smart pointers return non-const T* and T& from the next methods. |
| const T* get() const { return val_; } |
| const T& operator*() const { return *val_; } |
| |
| private: |
| T* val_; |
| }; |
| |
| TEST(PointeeTest, WorksWithConstPropagatingPointers) { |
| const Matcher< ConstPropagatingPtr<int> > m = Pointee(Lt(5)); |
| int three = 3; |
| const ConstPropagatingPtr<int> co(&three); |
| ConstPropagatingPtr<int> o(&three); |
| EXPECT_TRUE(m.Matches(o)); |
| EXPECT_TRUE(m.Matches(co)); |
| *o = 6; |
| EXPECT_FALSE(m.Matches(o)); |
| EXPECT_FALSE(m.Matches(ConstPropagatingPtr<int>())); |
| } |
| |
| TEST(PointeeTest, NeverMatchesNull) { |
| const Matcher<const char*> m = Pointee(_); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| // Tests that we can write Pointee(value) instead of Pointee(Eq(value)). |
| TEST(PointeeTest, MatchesAgainstAValue) { |
| const Matcher<int*> m = Pointee(5); |
| |
| int n = 5; |
| EXPECT_TRUE(m.Matches(&n)); |
| n = -1; |
| EXPECT_FALSE(m.Matches(&n)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointeeTest, CanDescribeSelf) { |
| const Matcher<int*> m = Pointee(Gt(3)); |
| EXPECT_EQ("points to a value that is > 3", Describe(m)); |
| EXPECT_EQ("does not point to a value that is > 3", |
| DescribeNegation(m)); |
| } |
| |
| TEST(PointeeTest, CanExplainMatchResult) { |
| const Matcher<const std::string*> m = Pointee(StartsWith("Hi")); |
| |
| EXPECT_EQ("", Explain(m, static_cast<const std::string*>(nullptr))); |
| |
| const Matcher<long*> m2 = Pointee(GreaterThan(1)); // NOLINT |
| long n = 3; // NOLINT |
| EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1", |
| Explain(m2, &n)); |
| } |
| |
| TEST(PointeeTest, AlwaysExplainsPointee) { |
| const Matcher<int*> m = Pointee(0); |
| int n = 42; |
| EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n)); |
| } |
| |
| // An uncopyable class. |
| class Uncopyable { |
| public: |
| Uncopyable() : value_(-1) {} |
| explicit Uncopyable(int a_value) : value_(a_value) {} |
| |
| int value() const { return value_; } |
| void set_value(int i) { value_ = i; } |
| |
| private: |
| int value_; |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable); |
| }; |
| |
| // Returns true if and only if x.value() is positive. |
| bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; } |
| |
| MATCHER_P(UncopyableIs, inner_matcher, "") { |
| return ExplainMatchResult(inner_matcher, arg.value(), result_listener); |
| } |
| |
| // A user-defined struct for testing Field(). |
| struct AStruct { |
| AStruct() : x(0), y(1.0), z(5), p(nullptr) {} |
| AStruct(const AStruct& rhs) |
| : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {} |
| |
| int x; // A non-const field. |
| const double y; // A const field. |
| Uncopyable z; // An uncopyable field. |
| const char* p; // A pointer field. |
| }; |
| |
| // A derived struct for testing Field(). |
| struct DerivedStruct : public AStruct { |
| char ch; |
| }; |
| |
| // Tests that Field(&Foo::field, ...) works when field is non-const. |
| TEST(FieldTest, WorksForNonConstField) { |
| Matcher<AStruct> m = Field(&AStruct::x, Ge(0)); |
| Matcher<AStruct> m_with_name = Field("x", &AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when field is const. |
| TEST(FieldTest, WorksForConstField) { |
| AStruct a; |
| |
| Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0)); |
| Matcher<AStruct> m_with_name = Field("y", &AStruct::y, Ge(0.0)); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| m = Field(&AStruct::y, Le(0.0)); |
| m_with_name = Field("y", &AStruct::y, Le(0.0)); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when field is not copyable. |
| TEST(FieldTest, WorksForUncopyableField) { |
| AStruct a; |
| |
| Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive)); |
| EXPECT_TRUE(m.Matches(a)); |
| m = Field(&AStruct::z, Not(Truly(ValueIsPositive))); |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when field is a pointer. |
| TEST(FieldTest, WorksForPointerField) { |
| // Matching against NULL. |
| Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(nullptr)); |
| AStruct a; |
| EXPECT_TRUE(m.Matches(a)); |
| a.p = "hi"; |
| EXPECT_FALSE(m.Matches(a)); |
| |
| // Matching a pointer that is not NULL. |
| m = Field(&AStruct::p, StartsWith("hi")); |
| a.p = "hill"; |
| EXPECT_TRUE(m.Matches(a)); |
| a.p = "hole"; |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Field() works when the object is passed by reference. |
| TEST(FieldTest, WorksForByRefArgument) { |
| Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when the argument's type |
| // is a sub-type of Foo. |
| TEST(FieldTest, WorksForArgumentOfSubType) { |
| // Note that the matcher expects DerivedStruct but we say AStruct |
| // inside Field(). |
| Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0)); |
| |
| DerivedStruct d; |
| EXPECT_TRUE(m.Matches(d)); |
| d.x = -1; |
| EXPECT_FALSE(m.Matches(d)); |
| } |
| |
| // Tests that Field(&Foo::field, m) works when field's type and m's |
| // argument type are compatible but not the same. |
| TEST(FieldTest, WorksForCompatibleMatcherType) { |
| // The field is an int, but the inner matcher expects a signed char. |
| Matcher<const AStruct&> m = Field(&AStruct::x, |
| Matcher<signed char>(Ge(0))); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Field() can describe itself. |
| TEST(FieldTest, CanDescribeSelf) { |
| Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); |
| |
| EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); |
| } |
| |
| TEST(FieldTest, CanDescribeSelfWithFieldName) { |
| Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0)); |
| |
| EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose field `field_name` isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| // Tests that Field() can explain the match result. |
| TEST(FieldTest, CanExplainMatchResult) { |
| Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| a.x = 1; |
| EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a)); |
| |
| m = Field(&AStruct::x, GreaterThan(0)); |
| EXPECT_EQ( |
| "whose given field is 1" + OfType("int") + ", which is 1 more than 0", |
| Explain(m, a)); |
| } |
| |
| TEST(FieldTest, CanExplainMatchResultWithFieldName) { |
| Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0)); |
| |
| AStruct a; |
| a.x = 1; |
| EXPECT_EQ("whose field `field_name` is 1" + OfType("int"), Explain(m, a)); |
| |
| m = Field("field_name", &AStruct::x, GreaterThan(0)); |
| EXPECT_EQ("whose field `field_name` is 1" + OfType("int") + |
| ", which is 1 more than 0", |
| Explain(m, a)); |
| } |
| |
| // Tests that Field() works when the argument is a pointer to const. |
| TEST(FieldForPointerTest, WorksForPointerToConst) { |
| Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(&a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Field() works when the argument is a pointer to non-const. |
| TEST(FieldForPointerTest, WorksForPointerToNonConst) { |
| Matcher<AStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(&a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Field() works when the argument is a reference to a const pointer. |
| TEST(FieldForPointerTest, WorksForReferenceToConstPointer) { |
| Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(&a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Field() does not match the NULL pointer. |
| TEST(FieldForPointerTest, DoesNotMatchNull) { |
| Matcher<const AStruct*> m = Field(&AStruct::x, _); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when the argument's type |
| // is a sub-type of const Foo*. |
| TEST(FieldForPointerTest, WorksForArgumentOfSubType) { |
| // Note that the matcher expects DerivedStruct but we say AStruct |
| // inside Field(). |
| Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| DerivedStruct d; |
| EXPECT_TRUE(m.Matches(&d)); |
| d.x = -1; |
| EXPECT_FALSE(m.Matches(&d)); |
| } |
| |
| // Tests that Field() can describe itself when used to match a pointer. |
| TEST(FieldForPointerTest, CanDescribeSelf) { |
| Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); |
| } |
| |
| TEST(FieldForPointerTest, CanDescribeSelfWithFieldName) { |
| Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0)); |
| |
| EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose field `field_name` isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| // Tests that Field() can explain the result of matching a pointer. |
| TEST(FieldForPointerTest, CanExplainMatchResult) { |
| Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| a.x = 1; |
| EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(nullptr))); |
| EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"), |
| Explain(m, &a)); |
| |
| m = Field(&AStruct::x, GreaterThan(0)); |
| EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") + |
| ", which is 1 more than 0", Explain(m, &a)); |
| } |
| |
| TEST(FieldForPointerTest, CanExplainMatchResultWithFieldName) { |
| Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0)); |
| |
| AStruct a; |
| a.x = 1; |
| EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(nullptr))); |
| EXPECT_EQ( |
| "which points to an object whose field `field_name` is 1" + OfType("int"), |
| Explain(m, &a)); |
| |
| m = Field("field_name", &AStruct::x, GreaterThan(0)); |
| EXPECT_EQ("which points to an object whose field `field_name` is 1" + |
| OfType("int") + ", which is 1 more than 0", |
| Explain(m, &a)); |
| } |
| |
| // A user-defined class for testing Property(). |
| class AClass { |
| public: |
| AClass() : n_(0) {} |
| |
| // A getter that returns a non-reference. |
| int n() const { return n_; } |
| |
| void set_n(int new_n) { n_ = new_n; } |
| |
| // A getter that returns a reference to const. |
| const std::string& s() const { return s_; } |
| |
| const std::string& s_ref() const & { return s_; } |
| |
| void set_s(const std::string& new_s) { s_ = new_s; } |
| |
| // A getter that returns a reference to non-const. |
| double& x() const { return x_; } |
| |
| private: |
| int n_; |
| std::string s_; |
| |
| static double x_; |
| }; |
| |
| double AClass::x_ = 0.0; |
| |
| // A derived class for testing Property(). |
| class DerivedClass : public AClass { |
| public: |
| int k() const { return k_; } |
| private: |
| int k_; |
| }; |
| |
| // Tests that Property(&Foo::property, ...) works when property() |
| // returns a non-reference. |
| TEST(PropertyTest, WorksForNonReferenceProperty) { |
| Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); |
| Matcher<const AClass&> m_with_name = Property("n", &AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| |
| a.set_n(-1); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when property() |
| // returns a reference to const. |
| TEST(PropertyTest, WorksForReferenceToConstProperty) { |
| Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi")); |
| Matcher<const AClass&> m_with_name = |
| Property("s", &AClass::s, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when property() is |
| // ref-qualified. |
| TEST(PropertyTest, WorksForRefQualifiedProperty) { |
| Matcher<const AClass&> m = Property(&AClass::s_ref, StartsWith("hi")); |
| Matcher<const AClass&> m_with_name = |
| Property("s", &AClass::s_ref, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when property() |
| // returns a reference to non-const. |
| TEST(PropertyTest, WorksForReferenceToNonConstProperty) { |
| double x = 0.0; |
| AClass a; |
| |
| Matcher<const AClass&> m = Property(&AClass::x, Ref(x)); |
| EXPECT_FALSE(m.Matches(a)); |
| |
| m = Property(&AClass::x, Not(Ref(x))); |
| EXPECT_TRUE(m.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when the argument is |
| // passed by value. |
| TEST(PropertyTest, WorksForByValueArgument) { |
| Matcher<AClass> m = Property(&AClass::s, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when the argument's |
| // type is a sub-type of Foo. |
| TEST(PropertyTest, WorksForArgumentOfSubType) { |
| // The matcher expects a DerivedClass, but inside the Property() we |
| // say AClass. |
| Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0)); |
| |
| DerivedClass d; |
| d.set_n(1); |
| EXPECT_TRUE(m.Matches(d)); |
| |
| d.set_n(-1); |
| EXPECT_FALSE(m.Matches(d)); |
| } |
| |
| // Tests that Property(&Foo::property, m) works when property()'s type |
| // and m's argument type are compatible but different. |
| TEST(PropertyTest, WorksForCompatibleMatcherType) { |
| // n() returns an int but the inner matcher expects a signed char. |
| Matcher<const AClass&> m = Property(&AClass::n, |
| Matcher<signed char>(Ge(0))); |
| |
| Matcher<const AClass&> m_with_name = |
| Property("n", &AClass::n, Matcher<signed char>(Ge(0))); |
| |
| AClass a; |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| a.set_n(-1); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Property() can describe itself. |
| TEST(PropertyTest, CanDescribeSelf) { |
| Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); |
| |
| EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose given property isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| TEST(PropertyTest, CanDescribeSelfWithPropertyName) { |
| Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0)); |
| |
| EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| // Tests that Property() can explain the match result. |
| TEST(PropertyTest, CanExplainMatchResult) { |
| Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a)); |
| |
| m = Property(&AClass::n, GreaterThan(0)); |
| EXPECT_EQ( |
| "whose given property is 1" + OfType("int") + ", which is 1 more than 0", |
| Explain(m, a)); |
| } |
| |
| TEST(PropertyTest, CanExplainMatchResultWithPropertyName) { |
| Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int"), Explain(m, a)); |
| |
| m = Property("fancy_name", &AClass::n, GreaterThan(0)); |
| EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int") + |
| ", which is 1 more than 0", |
| Explain(m, a)); |
| } |
| |
| // Tests that Property() works when the argument is a pointer to const. |
| TEST(PropertyForPointerTest, WorksForPointerToConst) { |
| Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_TRUE(m.Matches(&a)); |
| |
| a.set_n(-1); |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Property() works when the argument is a pointer to non-const. |
| TEST(PropertyForPointerTest, WorksForPointerToNonConst) { |
| Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(&a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Property() works when the argument is a reference to a |
| // const pointer. |
| TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) { |
| Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(&a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Property() does not match the NULL pointer. |
| TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) { |
| Matcher<const AClass*> m = Property(&AClass::x, _); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when the argument's |
| // type is a sub-type of const Foo*. |
| TEST(PropertyForPointerTest, WorksForArgumentOfSubType) { |
| // The matcher expects a DerivedClass, but inside the Property() we |
| // say AClass. |
| Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0)); |
| |
| DerivedClass d; |
| d.set_n(1); |
| EXPECT_TRUE(m.Matches(&d)); |
| |
| d.set_n(-1); |
| EXPECT_FALSE(m.Matches(&d)); |
| } |
| |
| // Tests that Property() can describe itself when used to match a pointer. |
| TEST(PropertyForPointerTest, CanDescribeSelf) { |
| Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); |
| |
| EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose given property isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| TEST(PropertyForPointerTest, CanDescribeSelfWithPropertyDescription) { |
| Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0)); |
| |
| EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| // Tests that Property() can explain the result of matching a pointer. |
| TEST(PropertyForPointerTest, CanExplainMatchResult) { |
| Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_EQ("", Explain(m, static_cast<const AClass*>(nullptr))); |
| EXPECT_EQ( |
| "which points to an object whose given property is 1" + OfType("int"), |
| Explain(m, &a)); |
| |
| m = Property(&AClass::n, GreaterThan(0)); |
| EXPECT_EQ("which points to an object whose given property is 1" + |
| OfType("int") + ", which is 1 more than 0", |
| Explain(m, &a)); |
| } |
| |
| TEST(PropertyForPointerTest, CanExplainMatchResultWithPropertyName) { |
| Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_EQ("", Explain(m, static_cast<const AClass*>(nullptr))); |
| EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + |
| OfType("int"), |
| Explain(m, &a)); |
| |
| m = Property("fancy_name", &AClass::n, GreaterThan(0)); |
| EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + |
| OfType("int") + ", which is 1 more than 0", |
| Explain(m, &a)); |
| } |
| |
| // Tests ResultOf. |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f is a |
| // function pointer. |
| std::string IntToStringFunction(int input) { |
| return input == 1 ? "foo" : "bar"; |
| } |
| |
| TEST(ResultOfTest, WorksForFunctionPointers) { |
| Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(std::string("foo"))); |
| |
| EXPECT_TRUE(matcher.Matches(1)); |
| EXPECT_FALSE(matcher.Matches(2)); |
| } |
| |
| // Tests that ResultOf() can describe itself. |
| TEST(ResultOfTest, CanDescribeItself) { |
| Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo")); |
| |
| EXPECT_EQ("is mapped by the given callable to a value that " |
| "is equal to \"foo\"", Describe(matcher)); |
| EXPECT_EQ("is mapped by the given callable to a value that " |
| "isn't equal to \"foo\"", DescribeNegation(matcher)); |
| } |
| |
| // Tests that ResultOf() can explain the match result. |
| int IntFunction(int input) { return input == 42 ? 80 : 90; } |
| |
| TEST(ResultOfTest, CanExplainMatchResult) { |
| Matcher<int> matcher = ResultOf(&IntFunction, Ge(85)); |
| EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"), |
| Explain(matcher, 36)); |
| |
| matcher = ResultOf(&IntFunction, GreaterThan(85)); |
| EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") + |
| ", which is 5 more than 85", Explain(matcher, 36)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f(x) |
| // returns a non-reference. |
| TEST(ResultOfTest, WorksForNonReferenceResults) { |
| Matcher<int> matcher = ResultOf(&IntFunction, Eq(80)); |
| |
| EXPECT_TRUE(matcher.Matches(42)); |
| EXPECT_FALSE(matcher.Matches(36)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f(x) |
| // returns a reference to non-const. |
| double& DoubleFunction(double& input) { return input; } // NOLINT |
| |
| Uncopyable& RefUncopyableFunction(Uncopyable& obj) { // NOLINT |
| return obj; |
| } |
| |
| TEST(ResultOfTest, WorksForReferenceToNonConstResults) { |
| double x = 3.14; |
| double x2 = x; |
| Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x)); |
| |
| EXPECT_TRUE(matcher.Matches(x)); |
| EXPECT_FALSE(matcher.Matches(x2)); |
| |
| // Test that ResultOf works with uncopyable objects |
| Uncopyable obj(0); |
| Uncopyable obj2(0); |
| Matcher<Uncopyable&> matcher2 = |
| ResultOf(&RefUncopyableFunction, Ref(obj)); |
| |
| EXPECT_TRUE(matcher2.Matches(obj)); |
| EXPECT_FALSE(matcher2.Matches(obj2)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f(x) |
| // returns a reference to const. |
| const std::string& StringFunction(const std::string& input) { return input; } |
| |
| TEST(ResultOfTest, WorksForReferenceToConstResults) { |
| std::string s = "foo"; |
| std::string s2 = s; |
| Matcher<const std::string&> matcher = ResultOf(&StringFunction, Ref(s)); |
| |
| EXPECT_TRUE(matcher.Matches(s)); |
| EXPECT_FALSE(matcher.Matches(s2)); |
| } |
| |
| // Tests that ResultOf(f, m) works when f(x) and m's |
| // argument types are compatible but different. |
| TEST(ResultOfTest, WorksForCompatibleMatcherTypes) { |
| // IntFunction() returns int but the inner matcher expects a signed char. |
| Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85))); |
| |
| EXPECT_TRUE(matcher.Matches(36)); |
| EXPECT_FALSE(matcher.Matches(42)); |
| } |
| |
| // Tests that the program aborts when ResultOf is passed |
| // a NULL function pointer. |
| TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) { |
| EXPECT_DEATH_IF_SUPPORTED( |
| ResultOf(static_cast<std::string (*)(int dummy)>(nullptr), |
| Eq(std::string("foo"))), |
| "NULL function pointer is passed into ResultOf\\(\\)\\."); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f is a |
| // function reference. |
| TEST(ResultOfTest, WorksForFunctionReferences) { |
| Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo")); |
| EXPECT_TRUE(matcher.Matches(1)); |
| EXPECT_FALSE(matcher.Matches(2)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f is a |
| // function object. |
| struct Functor { |
| std::string operator()(int input) const { |
| return IntToStringFunction(input); |
| } |
| }; |
| |
| TEST(ResultOfTest, WorksForFunctors) { |
| Matcher<int> matcher = ResultOf(Functor(), Eq(std::string("foo"))); |
| |
| EXPECT_TRUE(matcher.Matches(1)); |
| EXPECT_FALSE(matcher.Matches(2)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f is a |
| // functor with more than one operator() defined. ResultOf() must work |
| // for each defined operator(). |
| struct PolymorphicFunctor { |
| typedef int result_type; |
| int operator()(int n) { return n; } |
| int operator()(const char* s) { return static_cast<int>(strlen(s)); } |
| std::string operator()(int *p) { return p ? "good ptr" : "null"; } |
| }; |
| |
| TEST(ResultOfTest, WorksForPolymorphicFunctors) { |
| Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5)); |
| |
| EXPECT_TRUE(matcher_int.Matches(10)); |
| EXPECT_FALSE(matcher_int.Matches(2)); |
| |
| Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5)); |
| |
| EXPECT_TRUE(matcher_string.Matches("long string")); |
| EXPECT_FALSE(matcher_string.Matches("shrt")); |
| } |
| |
| TEST(ResultOfTest, WorksForPolymorphicFunctorsIgnoringResultType) { |
| Matcher<int*> matcher = ResultOf(PolymorphicFunctor(), "good ptr"); |
| |
| int n = 0; |
| EXPECT_TRUE(matcher.Matches(&n)); |
| EXPECT_FALSE(matcher.Matches(nullptr)); |
| } |
| |
| TEST(ResultOfTest, WorksForLambdas) { |
| Matcher<int> matcher = ResultOf( |
| [](int str_len) { |
| return std::string(static_cast<size_t>(str_len), 'x'); |
| }, |
| "xxx"); |
| EXPECT_TRUE(matcher.Matches(3)); |
| EXPECT_FALSE(matcher.Matches(1)); |
| } |
| |
| TEST(ResultOfTest, WorksForNonCopyableArguments) { |
| Matcher<std::unique_ptr<int>> matcher = ResultOf( |
| [](const std::unique_ptr<int>& str_len) { |
| return std::string(static_cast<size_t>(*str_len), 'x'); |
| }, |
| "xxx"); |
| EXPECT_TRUE(matcher.Matches(std::unique_ptr<int>(new int(3)))); |
| EXPECT_FALSE(matcher.Matches(std::unique_ptr<int>(new int(1)))); |
| } |
| |
| const int* ReferencingFunction(const int& n) { return &n; } |
| |
| struct ReferencingFunctor { |
| typedef const int* result_type; |
| result_type operator()(const int& n) { return &n; } |
| }; |
| |
| TEST(ResultOfTest, WorksForReferencingCallables) { |
| const int n = 1; |
| const int n2 = 1; |
| Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n)); |
| EXPECT_TRUE(matcher2.Matches(n)); |
| EXPECT_FALSE(matcher2.Matches(n2)); |
| |
| Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n)); |
| EXPECT_TRUE(matcher3.Matches(n)); |
| EXPECT_FALSE(matcher3.Matches(n2)); |
| } |
| |
| class DivisibleByImpl { |
| public: |
| explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {} |
| |
| // For testing using ExplainMatchResultTo() with polymorphic matchers. |
| template <typename T> |
| bool MatchAndExplain(const T& n, MatchResultListener* listener) const { |
| *listener << "which is " << (n % divider_) << " modulo " |
| << divider_; |
| return (n % divider_) == 0; |
| } |
| |
| void DescribeTo(ostream* os) const { |
| *os << "is divisible by " << divider_; |
| } |
| |
| void DescribeNegationTo(ostream* os) const { |
| *os << "is not divisible by " << divider_; |
| } |
| |
| void set_divider(int a_divider) { divider_ = a_divider; } |
| int divider() const { return divider_; } |
| |
| private: |
| int divider_; |
| }; |
| |
| PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) { |
| return MakePolymorphicMatcher(DivisibleByImpl(n)); |
| } |
| |
| // Tests that when AllOf() fails, only the first failing matcher is |
| // asked to explain why. |
| TEST(ExplainMatchResultTest, AllOf_False_False) { |
| const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); |
| EXPECT_EQ("which is 1 modulo 4", Explain(m, 5)); |
| } |
| |
| // Tests that when AllOf() fails, only the first failing matcher is |
| // asked to explain why. |
| TEST(ExplainMatchResultTest, AllOf_False_True) { |
| const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); |
| EXPECT_EQ("which is 2 modulo 4", Explain(m, 6)); |
| } |
| |
| // Tests that when AllOf() fails, only the first failing matcher is |
| // asked to explain why. |
| TEST(ExplainMatchResultTest, AllOf_True_False) { |
| const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3)); |
| EXPECT_EQ("which is 2 modulo 3", Explain(m, 5)); |
| } |
| |
| // Tests that when AllOf() succeeds, all matchers are asked to explain |
| // why. |
| TEST(ExplainMatchResultTest, AllOf_True_True) { |
| const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3)); |
| EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6)); |
| } |
| |
| TEST(ExplainMatchResultTest, AllOf_True_True_2) { |
| const Matcher<int> m = AllOf(Ge(2), Le(3)); |
| EXPECT_EQ("", Explain(m, 2)); |
| } |
| |
| TEST(ExplainmatcherResultTest, MonomorphicMatcher) { |
| const Matcher<int> m = GreaterThan(5); |
| EXPECT_EQ("which is 1 more than 5", Explain(m, 6)); |
| } |
| |
| // The following two tests verify that values without a public copy |
| // ctor can be used as arguments to matchers like Eq(), Ge(), and etc |
| // with the help of ByRef(). |
| |
| class NotCopyable { |
| public: |
| explicit NotCopyable(int a_value) : value_(a_value) {} |
| |
| int value() const { return value_; } |
| |
| bool operator==(const NotCopyable& rhs) const { |
| return value() == rhs.value(); |
| } |
| |
| bool operator>=(const NotCopyable& rhs) const { |
| return value() >= rhs.value(); |
| } |
| private: |
| int value_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable); |
| }; |
| |
| TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) { |
| const NotCopyable const_value1(1); |
| const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1)); |
| |
| const NotCopyable n1(1), n2(2); |
| EXPECT_TRUE(m.Matches(n1)); |
| EXPECT_FALSE(m.Matches(n2)); |
| } |
| |
| TEST(ByRefTest, AllowsNotCopyableValueInMatchers) { |
| NotCopyable value2(2); |
| const Matcher<NotCopyable&> m = Ge(ByRef(value2)); |
| |
| NotCopyable n1(1), n2(2); |
| EXPECT_FALSE(m.Matches(n1)); |
| EXPECT_TRUE(m.Matches(n2)); |
| } |
| |
| TEST(IsEmptyTest, ImplementsIsEmpty) { |
| vector<int> container; |
| EXPECT_THAT(container, IsEmpty()); |
| container.push_back(0); |
| EXPECT_THAT(container, Not(IsEmpty())); |
| container.push_back(1); |
| EXPECT_THAT(container, Not(IsEmpty())); |
| } |
| |
| TEST(IsEmptyTest, WorksWithString) { |
| std::string text; |
| EXPECT_THAT(text, IsEmpty()); |
| text = "foo"; |
| EXPECT_THAT(text, Not(IsEmpty())); |
| text = std::string("\0", 1); |
| EXPECT_THAT(text, Not(IsEmpty())); |
| } |
| |
| TEST(IsEmptyTest, CanDescribeSelf) { |
| Matcher<vector<int> > m = IsEmpty(); |
| EXPECT_EQ("is empty", Describe(m)); |
| EXPECT_EQ("isn't empty", DescribeNegation(m)); |
| } |
| |
| TEST(IsEmptyTest, ExplainsResult) { |
| Matcher<vector<int> > m = IsEmpty(); |
| vector<int> container; |
| EXPECT_EQ("", Explain(m, container)); |
| container.push_back(0); |
| EXPECT_EQ("whose size is 1", Explain(m, container)); |
| } |
| |
| TEST(IsEmptyTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(IsEmpty())); |
| helper.Call({}); |
| } |
| |
| TEST(IsTrueTest, IsTrueIsFalse) { |
| EXPECT_THAT(true, IsTrue()); |
| EXPECT_THAT(false, IsFalse()); |
| EXPECT_THAT(true, Not(IsFalse())); |
| EXPECT_THAT(false, Not(IsTrue())); |
| EXPECT_THAT(0, Not(IsTrue())); |
| EXPECT_THAT(0, IsFalse()); |
| EXPECT_THAT(nullptr, Not(IsTrue())); |
| EXPECT_THAT(nullptr, IsFalse()); |
| EXPECT_THAT(-1, IsTrue()); |
| EXPECT_THAT(-1, Not(IsFalse())); |
| EXPECT_THAT(1, IsTrue()); |
| EXPECT_THAT(1, Not(IsFalse())); |
| EXPECT_THAT(2, IsTrue()); |
| EXPECT_THAT(2, Not(IsFalse())); |
| int a = 42; |
| EXPECT_THAT(a, IsTrue()); |
| EXPECT_THAT(a, Not(IsFalse())); |
| EXPECT_THAT(&a, IsTrue()); |
| EXPECT_THAT(&a, Not(IsFalse())); |
| EXPECT_THAT(false, Not(IsTrue())); |
| EXPECT_THAT(true, Not(IsFalse())); |
| EXPECT_THAT(std::true_type(), IsTrue()); |
| EXPECT_THAT(std::true_type(), Not(IsFalse())); |
| EXPECT_THAT(std::false_type(), IsFalse()); |
| EXPECT_THAT(std::false_type(), Not(IsTrue())); |
| EXPECT_THAT(nullptr, Not(IsTrue())); |
| EXPECT_THAT(nullptr, IsFalse()); |
| std::unique_ptr<int> null_unique; |
| std::unique_ptr<int> nonnull_unique(new int(0)); |
| EXPECT_THAT(null_unique, Not(IsTrue())); |
| EXPECT_THAT(null_unique, IsFalse()); |
| EXPECT_THAT(nonnull_unique, IsTrue()); |
| EXPECT_THAT(nonnull_unique, Not(IsFalse())); |
| } |
| |
| TEST(SizeIsTest, ImplementsSizeIs) { |
| vector<int> container; |
| EXPECT_THAT(container, SizeIs(0)); |
| EXPECT_THAT(container, Not(SizeIs(1))); |
| container.push_back(0); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| EXPECT_THAT(container, SizeIs(1)); |
| container.push_back(0); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| EXPECT_THAT(container, SizeIs(2)); |
| } |
| |
| TEST(SizeIsTest, WorksWithMap) { |
| map<std::string, int> container; |
| EXPECT_THAT(container, SizeIs(0)); |
| EXPECT_THAT(container, Not(SizeIs(1))); |
| container.insert(make_pair("foo", 1)); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| EXPECT_THAT(container, SizeIs(1)); |
| container.insert(make_pair("bar", 2)); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| EXPECT_THAT(container, SizeIs(2)); |
| } |
| |
| TEST(SizeIsTest, WorksWithReferences) { |
| vector<int> container; |
| Matcher<const vector<int>&> m = SizeIs(1); |
| EXPECT_THAT(container, Not(m)); |
| container.push_back(0); |
| EXPECT_THAT(container, m); |
| } |
| |
| TEST(SizeIsTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(SizeIs(3))); |
| helper.Call(MakeUniquePtrs({1, 2, 3})); |
| } |
| |
| // SizeIs should work for any type that provides a size() member function. |
| // For example, a size_type member type should not need to be provided. |
| struct MinimalistCustomType { |
| int size() const { return 1; } |
| }; |
| TEST(SizeIsTest, WorksWithMinimalistCustomType) { |
| MinimalistCustomType container; |
| EXPECT_THAT(container, SizeIs(1)); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| } |
| |
| TEST(SizeIsTest, CanDescribeSelf) { |
| Matcher<vector<int> > m = SizeIs(2); |
| EXPECT_EQ("size is equal to 2", Describe(m)); |
| EXPECT_EQ("size isn't equal to 2", DescribeNegation(m)); |
| } |
| |
| TEST(SizeIsTest, ExplainsResult) { |
| Matcher<vector<int> > m1 = SizeIs(2); |
| Matcher<vector<int> > m2 = SizeIs(Lt(2u)); |
| Matcher<vector<int> > m3 = SizeIs(AnyOf(0, 3)); |
| Matcher<vector<int> > m4 = SizeIs(Gt(1u)); |
| vector<int> container; |
| EXPECT_EQ("whose size 0 doesn't match", Explain(m1, container)); |
| EXPECT_EQ("whose size 0 matches", Explain(m2, container)); |
| EXPECT_EQ("whose size 0 matches", Explain(m3, container)); |
| EXPECT_EQ("whose size 0 doesn't match", Explain(m4, container)); |
| container.push_back(0); |
| container.push_back(0); |
| EXPECT_EQ("whose size 2 matches", Explain(m1, container)); |
| EXPECT_EQ("whose size 2 doesn't match", Explain(m2, container)); |
| EXPECT_EQ("whose size 2 doesn't match", Explain(m3, container)); |
| EXPECT_EQ("whose size 2 matches", Explain(m4, container)); |
| } |
| |
| #if GTEST_HAS_TYPED_TEST |
| // Tests ContainerEq with different container types, and |
| // different element types. |
| |
| template <typename T> |
| class ContainerEqTest : public testing::Test {}; |
| |
| typedef testing::Types< |
| set<int>, |
| vector<size_t>, |
| multiset<size_t>, |
| list<int> > |
| ContainerEqTestTypes; |
| |
| TYPED_TEST_SUITE(ContainerEqTest, ContainerEqTestTypes); |
| |
| // Tests that the filled container is equal to itself. |
| TYPED_TEST(ContainerEqTest, EqualsSelf) { |
| static const int vals[] = {1, 1, 2, 3, 5, 8}; |
| TypeParam my_set(vals, vals + 6); |
| const Matcher<TypeParam> m = ContainerEq(my_set); |
| EXPECT_TRUE(m.Matches(my_set)); |
| EXPECT_EQ("", Explain(m, my_set)); |
| } |
| |
| // Tests that missing values are reported. |
| TYPED_TEST(ContainerEqTest, ValueMissing) { |
| static const int vals[] = {1, 1, 2, 3, 5, 8}; |
| static const int test_vals[] = {2, 1, 8, 5}; |
| TypeParam my_set(vals, vals + 6); |
| TypeParam test_set(test_vals, test_vals + 4); |
| const Matcher<TypeParam> m = ContainerEq(my_set); |
| EXPECT_FALSE(m.Matches(test_set)); |
| EXPECT_EQ("which doesn't have these expected elements: 3", |
| Explain(m, test_set)); |
| } |
| |
| // Tests that added values are reported. |
| TYPED_TEST(ContainerEqTest, ValueAdded) { |
| static const int vals[] = {1, 1, 2, 3, 5, 8}; |
| static const int test_vals[] = {1, 2, 3, 5, 8, 46}; |
| TypeParam my_set(vals, vals + 6); |
| TypeParam test_set(test_vals, test_vals + 6); |
| const Matcher<const TypeParam&> m = ContainerEq(my_set); |
| EXPECT_FALSE(m.Matches(test_set)); |
| EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set)); |
| } |
| |
| // Tests that added and missing values are reported together. |
| TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) { |
| static const int vals[] = {1, 1, 2, 3, 5, 8}; |
| static const int test_vals[] = {1, 2, 3, 8, 46}; |
| TypeParam my_set(vals, vals + 6); |
| TypeParam test_set(test_vals, test_vals + 5); |
| const Matcher<TypeParam> m = ContainerEq(my_set); |
| EXPECT_FALSE(m.Matches(test_set)); |
| EXPECT_EQ("which has these unexpected elements: 46,\n" |
| "and doesn't have these expected elements: 5", |
| Explain(m, test_set)); |
| } |
| |
| // Tests duplicated value -- expect no explanation. |
| TYPED_TEST(ContainerEqTest, DuplicateDifference) { |
| static const int vals[] = {1, 1, 2, 3, 5, 8}; |
| static const int test_vals[] = {1, 2, 3, 5, 8}; |
| TypeParam my_set(vals, vals + 6); |
| TypeParam test_set(test_vals, test_vals + 5); |
| const Matcher<const TypeParam&> m = ContainerEq(my_set); |
| // Depending on the container, match may be true or false |
| // But in any case there should be no explanation. |
| EXPECT_EQ("", Explain(m, test_set)); |
| } |
| #endif // GTEST_HAS_TYPED_TEST |
| |
| // Tests that multiple missing values are reported. |
| // Using just vector here, so order is predictable. |
| TEST(ContainerEqExtraTest, MultipleValuesMissing) { |
| static const int vals[] = {1, 1, 2, 3, 5, 8}; |
| static const int test_vals[] = {2, 1, 5}; |
| vector<int> my_set(vals, vals + 6); |
| vector<int> test_set(test_vals, test_vals + 3); |
| const Matcher<vector<int> > m = ContainerEq(my_set); |
| EXPECT_FALSE(m.Matches(test_set)); |
| EXPECT_EQ("which doesn't have these expected elements: 3, 8", |
| Explain(m, test_set)); |
| } |
| |
| // Tests that added values are reported. |
| // Using just vector here, so order is predictable. |
| TEST(ContainerEqExtraTest, MultipleValuesAdded) { |
| static const int vals[] = {1, 1, 2, 3, 5, 8}; |
| static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46}; |
| list<size_t> my_set(vals, vals + 6); |
| list<size_t> test_set(test_vals, test_vals + 7); |
| const Matcher<const list<size_t>&> m = ContainerEq(my_set); |
| EXPECT_FALSE(m.Matches(test_set)); |
| EXPECT_EQ("which has these unexpected elements: 92, 46", |
| Explain(m, test_set)); |
| } |
| |
| // Tests that added and missing values are reported together. |
| TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) { |
| static const int vals[] = {1, 1, 2, 3, 5, 8}; |
| static const int test_vals[] = {1, 2, 3, 92, 46}; |
| list<size_t> my_set(vals, vals + 6); |
| list<size_t> test_set(test_vals, test_vals + 5); |
| const Matcher<const list<size_t> > m = ContainerEq(my_set); |
| EXPECT_FALSE(m.Matches(test_set)); |
| EXPECT_EQ("which has these unexpected elements: 92, 46,\n" |
| "and doesn't have these expected elements: 5, 8", |
| Explain(m, test_set)); |
| } |
| |
| // Tests to see that duplicate elements are detected, |
| // but (as above) not reported in the explanation. |
| TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) { |
| static const int vals[] = {1, 1, 2, 3, 5, 8}; |
| static const int test_vals[] = {1, 2, 3, 5, 8}; |
| vector<int> my_set(vals, vals + 6); |
| vector<int> test_set(test_vals, test_vals + 5); |
| const Matcher<vector<int> > m = ContainerEq(my_set); |
| EXPECT_TRUE(m.Matches(my_set)); |
| EXPECT_FALSE(m.Matches(test_set)); |
| // There is nothing to report when both sets contain all the same values. |
| EXPECT_EQ("", Explain(m, test_set)); |
| } |
| |
| // Tests that ContainerEq works for non-trivial associative containers, |
| // like maps. |
| TEST(ContainerEqExtraTest, WorksForMaps) { |
| map<int, std::string> my_map; |
| my_map[0] = "a"; |
| my_map[1] = "b"; |
| |
| map<int, std::string> test_map; |
| test_map[0] = "aa"; |
| test_map[1] = "b"; |
| |
| const Matcher<const map<int, std::string>&> m = ContainerEq(my_map); |
| EXPECT_TRUE(m.Matches(my_map)); |
| EXPECT_FALSE(m.Matches(test_map)); |
| |
| EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n" |
| "and doesn't have these expected elements: (0, \"a\")", |
| Explain(m, test_map)); |
| } |
| |
| TEST(ContainerEqExtraTest, WorksForNativeArray) { |
| int a1[] = {1, 2, 3}; |
| int a2[] = {1, 2, 3}; |
| int b[] = {1, 2, 4}; |
| |
| EXPECT_THAT(a1, ContainerEq(a2)); |
| EXPECT_THAT(a1, Not(ContainerEq(b))); |
| } |
| |
| TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) { |
| const char a1[][3] = {"hi", "lo"}; |
| const char a2[][3] = {"hi", "lo"}; |
| const char b[][3] = {"lo", "hi"}; |
| |
| // Tests using ContainerEq() in the first dimension. |
| EXPECT_THAT(a1, ContainerEq(a2)); |
| EXPECT_THAT(a1, Not(ContainerEq(b))); |
| |
| // Tests using ContainerEq() in the second dimension. |
| EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1]))); |
| EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1]))); |
| } |
| |
| TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) { |
| const int a1[] = {1, 2, 3}; |
| const int a2[] = {1, 2, 3}; |
| const int b[] = {1, 2, 3, 4}; |
| |
| const int* const p1 = a1; |
| EXPECT_THAT(std::make_tuple(p1, 3), ContainerEq(a2)); |
| EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(b))); |
| |
| const int c[] = {1, 3, 2}; |
| EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(c))); |
| } |
| |
| TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) { |
| std::string a1[][3] = { |
| {"hi", "hello", "ciao"}, |
| {"bye", "see you", "ciao"} |
| }; |
| |
| std::string a2[][3] = { |
| {"hi", "hello", "ciao"}, |
| {"bye", "see you", "ciao"} |
| }; |
| |
| const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2); |
| EXPECT_THAT(a1, m); |
| |
| a2[0][0] = "ha"; |
| EXPECT_THAT(a1, m); |
| } |
| |
| TEST(WhenSortedByTest, WorksForEmptyContainer) { |
| const vector<int> numbers; |
| EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre())); |
| EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1)))); |
| } |
| |
| TEST(WhenSortedByTest, WorksForNonEmptyContainer) { |
| vector<unsigned> numbers; |
| numbers.push_back(3); |
| numbers.push_back(1); |
| numbers.push_back(2); |
| numbers.push_back(2); |
| EXPECT_THAT(numbers, WhenSortedBy(greater<unsigned>(), |
| ElementsAre(3, 2, 2, 1))); |
| EXPECT_THAT(numbers, Not(WhenSortedBy(greater<unsigned>(), |
| ElementsAre(1, 2, 2, 3)))); |
| } |
| |
| TEST(WhenSortedByTest, WorksForNonVectorContainer) { |
| list<std::string> words; |
| words.push_back("say"); |
| words.push_back("hello"); |
| words.push_back("world"); |
| EXPECT_THAT(words, WhenSortedBy(less<std::string>(), |
| ElementsAre("hello", "say", "world"))); |
| EXPECT_THAT(words, Not(WhenSortedBy(less<std::string>(), |
| ElementsAre("say", "hello", "world")))); |
| } |
| |
| TEST(WhenSortedByTest, WorksForNativeArray) { |
| const int numbers[] = {1, 3, 2, 4}; |
| const int sorted_numbers[] = {1, 2, 3, 4}; |
| EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre(1, 2, 3, 4))); |
| EXPECT_THAT(numbers, WhenSortedBy(less<int>(), |
| ElementsAreArray(sorted_numbers))); |
| EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1, 3, 2, 4)))); |
| } |
| |
| TEST(WhenSortedByTest, CanDescribeSelf) { |
| const Matcher<vector<int> > m = WhenSortedBy(less<int>(), ElementsAre(1, 2)); |
| EXPECT_EQ("(when sorted) has 2 elements where\n" |
| "element #0 is equal to 1,\n" |
| "element #1 is equal to 2", |
| Describe(m)); |
| EXPECT_EQ("(when sorted) doesn't have 2 elements, or\n" |
| "element #0 isn't equal to 1, or\n" |
| "element #1 isn't equal to 2", |
| DescribeNegation(m)); |
| } |
| |
| TEST(WhenSortedByTest, ExplainsMatchResult) { |
| const int a[] = {2, 1}; |
| EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match", |
| Explain(WhenSortedBy(less<int>(), ElementsAre(2, 3)), a)); |
| EXPECT_EQ("which is { 1, 2 } when sorted", |
| Explain(WhenSortedBy(less<int>(), ElementsAre(1, 2)), a)); |
| } |
| |
| // WhenSorted() is a simple wrapper on WhenSortedBy(). Hence we don't |
| // need to test it as exhaustively as we test the latter. |
| |
| TEST(WhenSortedTest, WorksForEmptyContainer) { |
| const vector<int> numbers; |
| EXPECT_THAT(numbers, WhenSorted(ElementsAre())); |
| EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1)))); |
| } |
| |
| TEST(WhenSortedTest, WorksForNonEmptyContainer) { |
| list<std::string> words; |
| words.push_back("3"); |
| words.push_back("1"); |
| words.push_back("2"); |
| words.push_back("2"); |
| EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3"))); |
| EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2")))); |
| } |
| |
| TEST(WhenSortedTest, WorksForMapTypes) { |
| map<std::string, int> word_counts; |
| word_counts["and"] = 1; |
| word_counts["the"] = 1; |
| word_counts["buffalo"] = 2; |
| EXPECT_THAT(word_counts, |
| WhenSorted(ElementsAre(Pair("and", 1), Pair("buffalo", 2), |
| Pair("the", 1)))); |
| EXPECT_THAT(word_counts, |
| Not(WhenSorted(ElementsAre(Pair("and", 1), Pair("the", 1), |
| Pair("buffalo", 2))))); |
| } |
| |
| TEST(WhenSortedTest, WorksForMultiMapTypes) { |
| multimap<int, int> ifib; |
| ifib.insert(make_pair(8, 6)); |
| ifib.insert(make_pair(2, 3)); |
| ifib.insert(make_pair(1, 1)); |
| ifib.insert(make_pair(3, 4)); |
| ifib.insert(make_pair(1, 2)); |
| ifib.insert(make_pair(5, 5)); |
| EXPECT_THAT(ifib, WhenSorted(ElementsAre(Pair(1, 1), |
| Pair(1, 2), |
| Pair(2, 3), |
| Pair(3, 4), |
| Pair(5, 5), |
| Pair(8, 6)))); |
| EXPECT_THAT(ifib, Not(WhenSorted(ElementsAre(Pair(8, 6), |
| Pair(2, 3), |
| Pair(1, 1), |
| Pair(3, 4), |
| Pair(1, 2), |
| Pair(5, 5))))); |
| } |
| |
| TEST(WhenSortedTest, WorksForPolymorphicMatcher) { |
| std::deque<int> d; |
| d.push_back(2); |
| d.push_back(1); |
| EXPECT_THAT(d, WhenSorted(ElementsAre(1, 2))); |
| EXPECT_THAT(d, Not(WhenSorted(ElementsAre(2, 1)))); |
| } |
| |
| TEST(WhenSortedTest, WorksForVectorConstRefMatcher) { |
| std::deque<int> d; |
| d.push_back(2); |
| d.push_back(1); |
| Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2); |
| EXPECT_THAT(d, WhenSorted(vector_match)); |
| Matcher<const std::vector<int>&> not_vector_match = ElementsAre(2, 1); |
| EXPECT_THAT(d, Not(WhenSorted(not_vector_match))); |
| } |
| |
| // Deliberately bare pseudo-container. |
| // Offers only begin() and end() accessors, yielding InputIterator. |
| template <typename T> |
| class Streamlike { |
| private: |
| class ConstIter; |
| public: |
| typedef ConstIter const_iterator; |
| typedef T value_type; |
| |
| template <typename InIter> |
| Streamlike(InIter first, InIter last) : remainder_(first, last) {} |
| |
| const_iterator begin() const { |
| return const_iterator(this, remainder_.begin()); |
| } |
| const_iterator end() const { |
| return const_iterator(this, remainder_.end()); |
| } |
| |
| private: |
| class ConstIter : public std::iterator<std::input_iterator_tag, |
| value_type, |
| ptrdiff_t, |
| const value_type*, |
| const value_type&> { |
| public: |
| ConstIter(const Streamlike* s, |
| typename std::list<value_type>::iterator pos) |
| : s_(s), pos_(pos) {} |
| |
| const value_type& operator*() const { return *pos_; } |
| const value_type* operator->() const { return &*pos_; } |
| ConstIter& operator++() { |
| s_->remainder_.erase(pos_++); |
| return *this; |
| } |
| |
| // *iter++ is required to work (see std::istreambuf_iterator). |
| // (void)iter++ is also required to work. |
| class PostIncrProxy { |
| public: |
| explicit PostIncrProxy(const value_type& value) : value_(value) {} |
| value_type operator*() const { return value_; } |
| private: |
| value_type value_; |
| }; |
| PostIncrProxy operator++(int) { |
| PostIncrProxy proxy(**this); |
| ++(*this); |
| return proxy; |
| } |
| |
| friend bool operator==(const ConstIter& a, const ConstIter& b) { |
| return a.s_ == b.s_ && a.pos_ == b.pos_; |
| } |
| friend bool operator!=(const ConstIter& a, const ConstIter& b) { |
| return !(a == b); |
| } |
| |
| private: |
| const Streamlike* s_; |
| typename std::list<value_type>::iterator pos_; |
| }; |
| |
| friend std::ostream& operator<<(std::ostream& os, const Streamlike& s) { |
| os << "["; |
| typedef typename std::list<value_type>::const_iterator Iter; |
| const char* sep = ""; |
| for (Iter it = s.remainder_.begin(); it != s.remainder_.end(); ++it) { |
| os << sep << *it; |
| sep = ","; |
| } |
| os << "]"; |
| return os; |
| } |
| |
| mutable std::list<value_type> remainder_; // modified by iteration |
| }; |
| |
| TEST(StreamlikeTest, Iteration) { |
| const int a[5] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(a, a + 5); |
| Streamlike<int>::const_iterator it = s.begin(); |
| const int* ip = a; |
| while (it != s.end()) { |
| SCOPED_TRACE(ip - a); |
| EXPECT_EQ(*ip++, *it++); |
| } |
| } |
| |
| TEST(BeginEndDistanceIsTest, WorksWithForwardList) { |
| std::forward_list<int> container; |
| EXPECT_THAT(container, BeginEndDistanceIs(0)); |
| EXPECT_THAT(container, Not(BeginEndDistanceIs(1))); |
| container.push_front(0); |
| EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); |
| EXPECT_THAT(container, BeginEndDistanceIs(1)); |
| container.push_front(0); |
| EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); |
| EXPECT_THAT(container, BeginEndDistanceIs(2)); |
| } |
| |
| TEST(BeginEndDistanceIsTest, WorksWithNonStdList) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| Streamlike<int> s(a, a + 5); |
| EXPECT_THAT(s, BeginEndDistanceIs(5)); |
| } |
| |
| TEST(BeginEndDistanceIsTest, CanDescribeSelf) { |
| Matcher<vector<int> > m = BeginEndDistanceIs(2); |
| EXPECT_EQ("distance between begin() and end() is equal to 2", Describe(m)); |
| EXPECT_EQ("distance between begin() and end() isn't equal to 2", |
| DescribeNegation(m)); |
| } |
| |
| TEST(BeginEndDistanceIsTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(BeginEndDistanceIs(2))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| } |
| |
| TEST(BeginEndDistanceIsTest, ExplainsResult) { |
| Matcher<vector<int> > m1 = BeginEndDistanceIs(2); |
| Matcher<vector<int> > m2 = BeginEndDistanceIs(Lt(2)); |
| Matcher<vector<int> > m3 = BeginEndDistanceIs(AnyOf(0, 3)); |
| Matcher<vector<int> > m4 = BeginEndDistanceIs(GreaterThan(1)); |
| vector<int> container; |
| EXPECT_EQ("whose distance between begin() and end() 0 doesn't match", |
| Explain(m1, container)); |
| EXPECT_EQ("whose distance between begin() and end() 0 matches", |
| Explain(m2, container)); |
| EXPECT_EQ("whose distance between begin() and end() 0 matches", |
| Explain(m3, container)); |
| EXPECT_EQ( |
| "whose distance between begin() and end() 0 doesn't match, which is 1 " |
| "less than 1", |
| Explain(m4, container)); |
| container.push_back(0); |
| container.push_back(0); |
| EXPECT_EQ("whose distance between begin() and end() 2 matches", |
| Explain(m1, container)); |
| EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", |
| Explain(m2, container)); |
| EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", |
| Explain(m3, container)); |
| EXPECT_EQ( |
| "whose distance between begin() and end() 2 matches, which is 1 more " |
| "than 1", |
| Explain(m4, container)); |
| } |
| |
| TEST(WhenSortedTest, WorksForStreamlike) { |
| // Streamlike 'container' provides only minimal iterator support. |
| // Its iterators are tagged with input_iterator_tag. |
| const int a[5] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| EXPECT_THAT(s, WhenSorted(ElementsAre(1, 2, 3, 4, 5))); |
| EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); |
| } |
| |
| TEST(WhenSortedTest, WorksForVectorConstRefMatcherOnStreamlike) { |
| const int a[] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2, 3, 4, 5); |
| EXPECT_THAT(s, WhenSorted(vector_match)); |
| EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); |
| } |
| |
| TEST(IsSupersetOfTest, WorksForNativeArray) { |
| const int subset[] = {1, 4}; |
| const int superset[] = {1, 2, 4}; |
| const int disjoint[] = {1, 0, 3}; |
| EXPECT_THAT(subset, IsSupersetOf(subset)); |
| EXPECT_THAT(subset, Not(IsSupersetOf(superset))); |
| EXPECT_THAT(superset, IsSupersetOf(subset)); |
| EXPECT_THAT(subset, Not(IsSupersetOf(disjoint))); |
| EXPECT_THAT(disjoint, Not(IsSupersetOf(subset))); |
| } |
| |
| TEST(IsSupersetOfTest, WorksWithDuplicates) { |
| const int not_enough[] = {1, 2}; |
| const int enough[] = {1, 1, 2}; |
| const int expected[] = {1, 1}; |
| EXPECT_THAT(not_enough, Not(IsSupersetOf(expected))); |
| EXPECT_THAT(enough, IsSupersetOf(expected)); |
| } |
| |
| TEST(IsSupersetOfTest, WorksForEmpty) { |
| vector<int> numbers; |
| vector<int> expected; |
| EXPECT_THAT(numbers, IsSupersetOf(expected)); |
| expected.push_back(1); |
| EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); |
| expected.clear(); |
| numbers.push_back(1); |
| numbers.push_back(2); |
| EXPECT_THAT(numbers, IsSupersetOf(expected)); |
| expected.push_back(1); |
| EXPECT_THAT(numbers, IsSupersetOf(expected)); |
| expected.push_back(2); |
| EXPECT_THAT(numbers, IsSupersetOf(expected)); |
| expected.push_back(3); |
| EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); |
| } |
| |
| TEST(IsSupersetOfTest, WorksForStreamlike) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| expected.push_back(5); |
| EXPECT_THAT(s, IsSupersetOf(expected)); |
| |
| expected.push_back(0); |
| EXPECT_THAT(s, Not(IsSupersetOf(expected))); |
| } |
| |
| TEST(IsSupersetOfTest, TakesStlContainer) { |
| const int actual[] = {3, 1, 2}; |
| |
| ::std::list<int> expected; |
| expected.push_back(1); |
| expected.push_back(3); |
| EXPECT_THAT(actual, IsSupersetOf(expected)); |
| |
| expected.push_back(4); |
| EXPECT_THAT(actual, Not(IsSupersetOf(expected))); |
| } |
| |
| TEST(IsSupersetOfTest, Describe) { |
| typedef std::vector<int> IntVec; |
| IntVec expected; |
| expected.push_back(111); |
| expected.push_back(222); |
| expected.push_back(333); |
| EXPECT_THAT( |
| Describe<IntVec>(IsSupersetOf(expected)), |
| Eq("a surjection from elements to requirements exists such that:\n" |
| " - an element is equal to 111\n" |
| " - an element is equal to 222\n" |
| " - an element is equal to 333")); |
| } |
| |
| TEST(IsSupersetOfTest, DescribeNegation) { |
| typedef std::vector<int> IntVec; |
| IntVec expected; |
| expected.push_back(111); |
| expected.push_back(222); |
| expected.push_back(333); |
| EXPECT_THAT( |
| DescribeNegation<IntVec>(IsSupersetOf(expected)), |
| Eq("no surjection from elements to requirements exists such that:\n" |
| " - an element is equal to 111\n" |
| " - an element is equal to 222\n" |
| " - an element is equal to 333")); |
| } |
| |
| TEST(IsSupersetOfTest, MatchAndExplain) { |
| std::vector<int> v; |
| v.push_back(2); |
| v.push_back(3); |
| std::vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| StringMatchResultListener listener; |
| ASSERT_FALSE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), |
| Eq("where the following matchers don't match any elements:\n" |
| "matcher #0: is equal to 1")); |
| |
| v.push_back(1); |
| listener.Clear(); |
| ASSERT_TRUE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), Eq("where:\n" |
| " - element #0 is matched by matcher #1,\n" |
| " - element #2 is matched by matcher #0")); |
| } |
| |
| TEST(IsSupersetOfTest, WorksForRhsInitializerList) { |
| const int numbers[] = {1, 3, 6, 2, 4, 5}; |
| EXPECT_THAT(numbers, IsSupersetOf({1, 2})); |
| EXPECT_THAT(numbers, Not(IsSupersetOf({3, 0}))); |
| } |
| |
| TEST(IsSupersetOfTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(IsSupersetOf({Pointee(1)}))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| EXPECT_CALL(helper, Call(Not(IsSupersetOf({Pointee(1), Pointee(2)})))); |
| helper.Call(MakeUniquePtrs({2})); |
| } |
| |
| TEST(IsSubsetOfTest, WorksForNativeArray) { |
| const int subset[] = {1, 4}; |
| const int superset[] = {1, 2, 4}; |
| const int disjoint[] = {1, 0, 3}; |
| EXPECT_THAT(subset, IsSubsetOf(subset)); |
| EXPECT_THAT(subset, IsSubsetOf(superset)); |
| EXPECT_THAT(superset, Not(IsSubsetOf(subset))); |
| EXPECT_THAT(subset, Not(IsSubsetOf(disjoint))); |
| EXPECT_THAT(disjoint, Not(IsSubsetOf(subset))); |
| } |
| |
| TEST(IsSubsetOfTest, WorksWithDuplicates) { |
| const int not_enough[] = {1, 2}; |
| const int enough[] = {1, 1, 2}; |
| const int actual[] = {1, 1}; |
| EXPECT_THAT(actual, Not(IsSubsetOf(not_enough))); |
| EXPECT_THAT(actual, IsSubsetOf(enough)); |
| } |
| |
| TEST(IsSubsetOfTest, WorksForEmpty) { |
| vector<int> numbers; |
| vector<int> expected; |
| EXPECT_THAT(numbers, IsSubsetOf(expected)); |
| expected.push_back(1); |
| EXPECT_THAT(numbers, IsSubsetOf(expected)); |
| expected.clear(); |
| numbers.push_back(1); |
| numbers.push_back(2); |
| EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); |
| expected.push_back(1); |
| EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); |
| expected.push_back(2); |
| EXPECT_THAT(numbers, IsSubsetOf(expected)); |
| expected.push_back(3); |
| EXPECT_THAT(numbers, IsSubsetOf(expected)); |
| } |
| |
| TEST(IsSubsetOfTest, WorksForStreamlike) { |
| const int a[5] = {1, 2}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| vector<int> expected; |
| expected.push_back(1); |
| EXPECT_THAT(s, Not(IsSubsetOf(expected))); |
| expected.push_back(2); |
| expected.push_back(5); |
| EXPECT_THAT(s, IsSubsetOf(expected)); |
| } |
| |
| TEST(IsSubsetOfTest, TakesStlContainer) { |
| const int actual[] = {3, 1, 2}; |
| |
| ::std::list<int> expected; |
| expected.push_back(1); |
| expected.push_back(3); |
| EXPECT_THAT(actual, Not(IsSubsetOf(expected))); |
| |
| expected.push_back(2); |
| expected.push_back(4); |
| EXPECT_THAT(actual, IsSubsetOf(expected)); |
| } |
| |
| TEST(IsSubsetOfTest, Describe) { |
| typedef std::vector<int> IntVec; |
| IntVec expected; |
| expected.push_back(111); |
| expected.push_back(222); |
| expected.push_back(333); |
| |
| EXPECT_THAT( |
| Describe<IntVec>(IsSubsetOf(expected)), |
| Eq("an injection from elements to requirements exists such that:\n" |
| " - an element is equal to 111\n" |
| " - an element is equal to 222\n" |
| " - an element is equal to 333")); |
| } |
| |
| TEST(IsSubsetOfTest, DescribeNegation) { |
| typedef std::vector<int> IntVec; |
| IntVec expected; |
| expected.push_back(111); |
| expected.push_back(222); |
| expected.push_back(333); |
| EXPECT_THAT( |
| DescribeNegation<IntVec>(IsSubsetOf(expected)), |
| Eq("no injection from elements to requirements exists such that:\n" |
| " - an element is equal to 111\n" |
| " - an element is equal to 222\n" |
| " - an element is equal to 333")); |
| } |
| |
| TEST(IsSubsetOfTest, MatchAndExplain) { |
| std::vector<int> v; |
| v.push_back(2); |
| v.push_back(3); |
| std::vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| StringMatchResultListener listener; |
| ASSERT_FALSE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), |
| Eq("where the following elements don't match any matchers:\n" |
| "element #1: 3")); |
| |
| expected.push_back(3); |
| listener.Clear(); |
| ASSERT_TRUE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), Eq("where:\n" |
| " - element #0 is matched by matcher #1,\n" |
| " - element #1 is matched by matcher #2")); |
| } |
| |
| TEST(IsSubsetOfTest, WorksForRhsInitializerList) { |
| const int numbers[] = {1, 2, 3}; |
| EXPECT_THAT(numbers, IsSubsetOf({1, 2, 3, 4})); |
| EXPECT_THAT(numbers, Not(IsSubsetOf({1, 2}))); |
| } |
| |
| TEST(IsSubsetOfTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(IsSubsetOf({Pointee(1), Pointee(2)}))); |
| helper.Call(MakeUniquePtrs({1})); |
| EXPECT_CALL(helper, Call(Not(IsSubsetOf({Pointee(1)})))); |
| helper.Call(MakeUniquePtrs({2})); |
| } |
| |
| // Tests using ElementsAre() and ElementsAreArray() with stream-like |
| // "containers". |
| |
| TEST(ElemensAreStreamTest, WorksForStreamlike) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| EXPECT_THAT(s, ElementsAre(1, 2, 3, 4, 5)); |
| EXPECT_THAT(s, Not(ElementsAre(2, 1, 4, 5, 3))); |
| } |
| |
| TEST(ElemensAreArrayStreamTest, WorksForStreamlike) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| expected.push_back(3); |
| expected.push_back(4); |
| expected.push_back(5); |
| EXPECT_THAT(s, ElementsAreArray(expected)); |
| |
| expected[3] = 0; |
| EXPECT_THAT(s, Not(ElementsAreArray(expected))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithUncopyable) { |
| Uncopyable objs[2]; |
| objs[0].set_value(-3); |
| objs[1].set_value(1); |
| EXPECT_THAT(objs, ElementsAre(UncopyableIs(-3), Truly(ValueIsPositive))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(ElementsAre(Pointee(1), Pointee(2)))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| |
| EXPECT_CALL(helper, Call(ElementsAreArray({Pointee(3), Pointee(4)}))); |
| helper.Call(MakeUniquePtrs({3, 4})); |
| } |
| |
| TEST(ElementsAreTest, TakesStlContainer) { |
| const int actual[] = {3, 1, 2}; |
| |
| ::std::list<int> expected; |
| expected.push_back(3); |
| expected.push_back(1); |
| expected.push_back(2); |
| EXPECT_THAT(actual, ElementsAreArray(expected)); |
| |
| expected.push_back(4); |
| EXPECT_THAT(actual, Not(ElementsAreArray(expected))); |
| } |
| |
| // Tests for UnorderedElementsAreArray() |
| |
| TEST(UnorderedElementsAreArrayTest, SucceedsWhenExpected) { |
| const int a[] = {0, 1, 2, 3, 4}; |
| std::vector<int> s(std::begin(a), std::end(a)); |
| do { |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(a), |
| s, &listener)) << listener.str(); |
| } while (std::next_permutation(s.begin(), s.end())); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, VectorBool) { |
| const bool a[] = {0, 1, 0, 1, 1}; |
| const bool b[] = {1, 0, 1, 1, 0}; |
| std::vector<bool> expected(std::begin(a), std::end(a)); |
| std::vector<bool> actual(std::begin(b), std::end(b)); |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(expected), |
| actual, &listener)) << listener.str(); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, WorksForStreamlike) { |
| // Streamlike 'container' provides only minimal iterator support. |
| // Its iterators are tagged with input_iterator_tag, and it has no |
| // size() or empty() methods. |
| const int a[5] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| ::std::vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| expected.push_back(3); |
| expected.push_back(4); |
| expected.push_back(5); |
| EXPECT_THAT(s, UnorderedElementsAreArray(expected)); |
| |
| expected.push_back(6); |
| EXPECT_THAT(s, Not(UnorderedElementsAreArray(expected))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, TakesStlContainer) { |
| const int actual[] = {3, 1, 2}; |
| |
| ::std::list<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| expected.push_back(3); |
| EXPECT_THAT(actual, UnorderedElementsAreArray(expected)); |
| |
| expected.push_back(4); |
| EXPECT_THAT(actual, Not(UnorderedElementsAreArray(expected))); |
| } |
| |
| |
| TEST(UnorderedElementsAreArrayTest, TakesInitializerList) { |
| const int a[5] = {2, 1, 4, 5, 3}; |
| EXPECT_THAT(a, UnorderedElementsAreArray({1, 2, 3, 4, 5})); |
| EXPECT_THAT(a, Not(UnorderedElementsAreArray({1, 2, 3, 4, 6}))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfCStrings) { |
| const std::string a[5] = {"a", "b", "c", "d", "e"}; |
| EXPECT_THAT(a, UnorderedElementsAreArray({"a", "b", "c", "d", "e"})); |
| EXPECT_THAT(a, Not(UnorderedElementsAreArray({"a", "b", "c", "d", "ef"}))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { |
| const int a[5] = {2, 1, 4, 5, 3}; |
| EXPECT_THAT(a, UnorderedElementsAreArray( |
| {Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)})); |
| EXPECT_THAT(a, Not(UnorderedElementsAreArray( |
| {Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)}))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, |
| TakesInitializerListOfDifferentTypedMatchers) { |
| const int a[5] = {2, 1, 4, 5, 3}; |
| // The compiler cannot infer the type of the initializer list if its |
| // elements have different types. We must explicitly specify the |
| // unified element type in this case. |
| EXPECT_THAT(a, UnorderedElementsAreArray<Matcher<int> >( |
| {Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)})); |
| EXPECT_THAT(a, Not(UnorderedElementsAreArray<Matcher<int> >( |
| {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)}))); |
| } |
| |
| |
| TEST(UnorderedElementsAreArrayTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, |
| Call(UnorderedElementsAreArray({Pointee(1), Pointee(2)}))); |
| helper.Call(MakeUniquePtrs({2, 1})); |
| } |
| |
| class UnorderedElementsAreTest : public testing::Test { |
| protected: |
| typedef std::vector<int> IntVec; |
| }; |
| |
| TEST_F(UnorderedElementsAreTest, WorksWithUncopyable) { |
| Uncopyable objs[2]; |
| objs[0].set_value(-3); |
| objs[1].set_value(1); |
| EXPECT_THAT(objs, |
| UnorderedElementsAre(Truly(ValueIsPositive), UncopyableIs(-3))); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, SucceedsWhenExpected) { |
| const int a[] = {1, 2, 3}; |
| std::vector<int> s(std::begin(a), std::end(a)); |
| do { |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), |
| s, &listener)) << listener.str(); |
| } while (std::next_permutation(s.begin(), s.end())); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailsWhenAnElementMatchesNoMatcher) { |
| const int a[] = {1, 2, 3}; |
| std::vector<int> s(std::begin(a), std::end(a)); |
| std::vector<Matcher<int> > mv; |
| mv.push_back(1); |
| mv.push_back(2); |
| mv.push_back(2); |
| // The element with value '3' matches nothing: fail fast. |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAreArray(mv), |
| s, &listener)) << listener.str(); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, WorksForStreamlike) { |
| // Streamlike 'container' provides only minimal iterator support. |
| // Its iterators are tagged with input_iterator_tag, and it has no |
| // size() or empty() methods. |
| const int a[5] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| EXPECT_THAT(s, UnorderedElementsAre(1, 2, 3, 4, 5)); |
| EXPECT_THAT(s, Not(UnorderedElementsAre(2, 2, 3, 4, 5))); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(UnorderedElementsAre(Pointee(1), Pointee(2)))); |
| helper.Call(MakeUniquePtrs({2, 1})); |
| } |
| |
| // One naive implementation of the matcher runs in O(N!) time, which is too |
| // slow for many real-world inputs. This test shows that our matcher can match |
| // 100 inputs very quickly (a few milliseconds). An O(100!) is 10^158 |
| // iterations and obviously effectively incomputable. |
| // [ RUN ] UnorderedElementsAreTest.Performance |
| // [ OK ] UnorderedElementsAreTest.Performance (4 ms) |
| TEST_F(UnorderedElementsAreTest, Performance) { |
| std::vector<int> s; |
| std::vector<Matcher<int> > mv; |
| for (int i = 0; i < 100; ++i) { |
| s.push_back(i); |
| mv.push_back(_); |
| } |
| mv[50] = Eq(0); |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), |
| s, &listener)) << listener.str(); |
| } |
| |
| // Another variant of 'Performance' with similar expectations. |
| // [ RUN ] UnorderedElementsAreTest.PerformanceHalfStrict |
| // [ OK ] UnorderedElementsAreTest.PerformanceHalfStrict (4 ms) |
| TEST_F(UnorderedElementsAreTest, PerformanceHalfStrict) { |
| std::vector<int> s; |
| std::vector<Matcher<int> > mv; |
| for (int i = 0; i < 100; ++i) { |
| s.push_back(i); |
| if (i & 1) { |
| mv.push_back(_); |
| } else { |
| mv.push_back(i); |
| } |
| } |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), |
| s, &listener)) << listener.str(); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageCountWrong) { |
| std::vector<int> v; |
| v.push_back(4); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), |
| v, &listener)) << listener.str(); |
| EXPECT_THAT(listener.str(), Eq("which has 1 element")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageCountWrongZero) { |
| std::vector<int> v; |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), |
| v, &listener)) << listener.str(); |
| EXPECT_THAT(listener.str(), Eq("")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatchers) { |
| std::vector<int> v; |
| v.push_back(1); |
| v.push_back(1); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), |
| v, &listener)) << listener.str(); |
| EXPECT_THAT( |
| listener.str(), |
| Eq("where the following matchers don't match any elements:\n" |
| "matcher #1: is equal to 2")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedElements) { |
| std::vector<int> v; |
| v.push_back(1); |
| v.push_back(2); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 1), |
| v, &listener)) << listener.str(); |
| EXPECT_THAT( |
| listener.str(), |
| Eq("where the following elements don't match any matchers:\n" |
| "element #1: 2")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatcherAndElement) { |
| std::vector<int> v; |
| v.push_back(2); |
| v.push_back(3); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), |
| v, &listener)) << listener.str(); |
| EXPECT_THAT( |
| listener.str(), |
| Eq("where" |
| " the following matchers don't match any elements:\n" |
| "matcher #0: is equal to 1\n" |
| "and" |
| " where" |
| " the following elements don't match any matchers:\n" |
| "element #1: 3")); |
| } |
| |
| // Test helper for formatting element, matcher index pairs in expectations. |
| static std::string EMString(int element, int matcher) { |
| stringstream ss; |
| ss << "(element #" << element << ", matcher #" << matcher << ")"; |
| return ss.str(); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageImperfectMatchOnly) { |
| // A situation where all elements and matchers have a match |
| // associated with them, but the max matching is not perfect. |
| std::vector<std::string> v; |
| v.push_back("a"); |
| v.push_back("b"); |
| v.push_back("c"); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult( |
| UnorderedElementsAre("a", "a", AnyOf("b", "c")), v, &listener)) |
| << listener.str(); |
| |
| std::string prefix = |
| "where no permutation of the elements can satisfy all matchers, " |
| "and the closest match is 2 of 3 matchers with the " |
| "pairings:\n"; |
| |
| // We have to be a bit loose here, because there are 4 valid max matches. |
| EXPECT_THAT( |
| listener.str(), |
| AnyOf(prefix + "{\n " + EMString(0, 0) + |
| ",\n " + EMString(1, 2) + "\n}", |
| prefix + "{\n " + EMString(0, 1) + |
| ",\n " + EMString(1, 2) + "\n}", |
| prefix + "{\n " + EMString(0, 0) + |
| ",\n " + EMString(2, 2) + "\n}", |
| prefix + "{\n " + EMString(0, 1) + |
| ",\n " + EMString(2, 2) + "\n}")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, Describe) { |
| EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre()), |
| Eq("is empty")); |
| EXPECT_THAT( |
| Describe<IntVec>(UnorderedElementsAre(345)), |
| Eq("has 1 element and that element is equal to 345")); |
| EXPECT_THAT( |
| Describe<IntVec>(UnorderedElementsAre(111, 222, 333)), |
| Eq("has 3 elements and there exists some permutation " |
| "of elements such that:\n" |
| " - element #0 is equal to 111, and\n" |
| " - element #1 is equal to 222, and\n" |
| " - element #2 is equal to 333")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, DescribeNegation) { |
| EXPECT_THAT(DescribeNegation<IntVec>(UnorderedElementsAre()), |
| Eq("isn't empty")); |
| EXPECT_THAT( |
| DescribeNegation<IntVec>(UnorderedElementsAre(345)), |
| Eq("doesn't have 1 element, or has 1 element that isn't equal to 345")); |
| EXPECT_THAT( |
| DescribeNegation<IntVec>(UnorderedElementsAre(123, 234, 345)), |
| Eq("doesn't have 3 elements, or there exists no permutation " |
| "of elements such that:\n" |
| " - element #0 is equal to 123, and\n" |
| " - element #1 is equal to 234, and\n" |
| " - element #2 is equal to 345")); |
| } |
| |
| namespace { |
| |
| // Used as a check on the more complex max flow method used in the |
| // real testing::internal::FindMaxBipartiteMatching. This method is |
| // compatible but runs in worst-case factorial time, so we only |
| // use it in testing for small problem sizes. |
| template <typename Graph> |
| class BacktrackingMaxBPMState { |
| public: |
| // Does not take ownership of 'g'. |
| explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) { } |
| |
| ElementMatcherPairs Compute() { |
| if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) { |
| return best_so_far_; |
| } |
| lhs_used_.assign(graph_->LhsSize(), kUnused); |
| rhs_used_.assign(graph_->RhsSize(), kUnused); |
| for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { |
| matches_.clear(); |
| RecurseInto(irhs); |
| if (best_so_far_.size() == graph_->RhsSize()) |
| break; |
| } |
| return best_so_far_; |
| } |
| |
| private: |
| static const size_t kUnused = static_cast<size_t>(-1); |
| |
| void PushMatch(size_t lhs, size_t rhs) { |
| matches_.push_back(ElementMatcherPair(lhs, rhs)); |
| lhs_used_[lhs] = rhs; |
| rhs_used_[rhs] = lhs; |
| if (matches_.size() > best_so_far_.size()) { |
| best_so_far_ = matches_; |
| } |
| } |
| |
| void PopMatch() { |
| const ElementMatcherPair& back = matches_.back(); |
| lhs_used_[back.first] = kUnused; |
| rhs_used_[back.second] = kUnused; |
| matches_.pop_back(); |
| } |
| |
| bool RecurseInto(size_t irhs) { |
| if (rhs_used_[irhs] != kUnused) { |
| return true; |
| } |
| for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { |
| if (lhs_used_[ilhs] != kUnused) { |
| continue; |
| } |
| if (!graph_->HasEdge(ilhs, irhs)) { |
| continue; |
| } |
| PushMatch(ilhs, irhs); |
| if (best_so_far_.size() == graph_->RhsSize()) { |
| return false; |
| } |
| for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) { |
| if (!RecurseInto(mi)) return false; |
| } |
| PopMatch(); |
| } |
| return true; |
| } |
| |
| const Graph* graph_; // not owned |
| std::vector<size_t> lhs_used_; |
| std::vector<size_t> rhs_used_; |
| ElementMatcherPairs matches_; |
| ElementMatcherPairs best_so_far_; |
| }; |
| |
| template <typename Graph> |
| const size_t BacktrackingMaxBPMState<Graph>::kUnused; |
| |
| } // namespace |
| |
| // Implement a simple backtracking algorithm to determine if it is possible |
| // to find one element per matcher, without reusing elements. |
| template <typename Graph> |
| ElementMatcherPairs |
| FindBacktrackingMaxBPM(const Graph& g) { |
| return BacktrackingMaxBPMState<Graph>(&g).Compute(); |
| } |
| |
| class BacktrackingBPMTest : public ::testing::Test { }; |
| |
| // Tests the MaxBipartiteMatching algorithm with square matrices. |
| // The single int param is the # of nodes on each of the left and right sides. |
| class BipartiteTest : public ::testing::TestWithParam<size_t> {}; |
| |
| // Verify all match graphs up to some moderate number of edges. |
| TEST_P(BipartiteTest, Exhaustive) { |
| size_t nodes = GetParam(); |
| MatchMatrix graph(nodes, nodes); |
| do { |
| ElementMatcherPairs matches = |
| internal::FindMaxBipartiteMatching(graph); |
| EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size()) |
| << "graph: " << graph.DebugString(); |
| // Check that all elements of matches are in the graph. |
| // Check that elements of first and second are unique. |
| std::vector<bool> seen_element(graph.LhsSize()); |
| std::vector<bool> seen_matcher(graph.RhsSize()); |
| SCOPED_TRACE(PrintToString(matches)); |
| for (size_t i = 0; i < matches.size(); ++i) { |
| size_t ilhs = matches[i].first; |
| size_t irhs = matches[i].second; |
| EXPECT_TRUE(graph.HasEdge(ilhs, irhs)); |
| EXPECT_FALSE(seen_element[ilhs]); |
| EXPECT_FALSE(seen_matcher[irhs]); |
| seen_element[ilhs] = true; |
| seen_matcher[irhs] = true; |
| } |
| } while (graph.NextGraph()); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteTest, |
| ::testing::Range(size_t{0}, size_t{5})); |
| |
| // Parameterized by a pair interpreted as (LhsSize, RhsSize). |
| class BipartiteNonSquareTest |
| : public ::testing::TestWithParam<std::pair<size_t, size_t> > { |
| }; |
| |
| TEST_F(BipartiteNonSquareTest, SimpleBacktracking) { |
| // ....... |
| // 0:-----\ : |
| // 1:---\ | : |
| // 2:---\ | : |
| // 3:-\ | | : |
| // :.......: |
| // 0 1 2 |
| MatchMatrix g(4, 3); |
| constexpr std::array<std::array<size_t, 2>, 4> kEdges = { |
| {{{0, 2}}, {{1, 1}}, {{2, 1}}, {{3, 0}}}}; |
| for (size_t i = 0; i < kEdges.size(); ++i) { |
| g.SetEdge(kEdges[i][0], kEdges[i][1], true); |
| } |
| EXPECT_THAT(FindBacktrackingMaxBPM(g), |
| ElementsAre(Pair(3, 0), |
| Pair(AnyOf(1, 2), 1), |
| Pair(0, 2))) << g.DebugString(); |
| } |
| |
| // Verify a few nonsquare matrices. |
| TEST_P(BipartiteNonSquareTest, Exhaustive) { |
| size_t nlhs = GetParam().first; |
| size_t nrhs = GetParam().second; |
| MatchMatrix graph(nlhs, nrhs); |
| do { |
| EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), |
| internal::FindMaxBipartiteMatching(graph).size()) |
| << "graph: " << graph.DebugString() |
| << "\nbacktracking: " |
| << PrintToString(FindBacktrackingMaxBPM(graph)) |
| << "\nmax flow: " |
| << PrintToString(internal::FindMaxBipartiteMatching(graph)); |
| } while (graph.NextGraph()); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteNonSquareTest, |
| testing::Values( |
| std::make_pair(1, 2), |
| std::make_pair(2, 1), |
| std::make_pair(3, 2), |
| std::make_pair(2, 3), |
| std::make_pair(4, 1), |
| std::make_pair(1, 4), |
| std::make_pair(4, 3), |
| std::make_pair(3, 4))); |
| |
| class BipartiteRandomTest |
| : public ::testing::TestWithParam<std::pair<int, int> > { |
| }; |
| |
| // Verifies a large sample of larger graphs. |
| TEST_P(BipartiteRandomTest, LargerNets) { |
| int nodes = GetParam().first; |
| int iters = GetParam().second; |
| MatchMatrix graph(static_cast<size_t>(nodes), static_cast<size_t>(nodes)); |
| |
| auto seed = static_cast<uint32_t>(GTEST_FLAG_GET(random_seed)); |
| if (seed == 0) { |
| seed = static_cast<uint32_t>(time(nullptr)); |
| } |
| |
| for (; iters > 0; --iters, ++seed) { |
| srand(static_cast<unsigned int>(seed)); |
| graph.Randomize(); |
| EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), |
| internal::FindMaxBipartiteMatching(graph).size()) |
| << " graph: " << graph.DebugString() |
| << "\nTo reproduce the failure, rerun the test with the flag" |
| " --" << GTEST_FLAG_PREFIX_ << "random_seed=" << seed; |
| } |
| } |
| |
| // Test argument is a std::pair<int, int> representing (nodes, iters). |
| INSTANTIATE_TEST_SUITE_P(Samples, BipartiteRandomTest, |
| testing::Values( |
| std::make_pair(5, 10000), |
| std::make_pair(6, 5000), |
| std::make_pair(7, 2000), |
| std::make_pair(8, 500), |
| std::make_pair(9, 100))); |
| |
| // Tests IsReadableTypeName(). |
| |
| TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) { |
| EXPECT_TRUE(IsReadableTypeName("int")); |
| EXPECT_TRUE(IsReadableTypeName("const unsigned char*")); |
| EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>")); |
| EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)")); |
| } |
| |
| TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) { |
| EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName")); |
| EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]")); |
| EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass")); |
| } |
| |
| TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) { |
| EXPECT_FALSE( |
| IsReadableTypeName("basic_string<char, std::char_traits<char> >")); |
| EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >")); |
| } |
| |
| TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) { |
| EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)")); |
| } |
| |
| // Tests FormatMatcherDescription(). |
| |
| TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) { |
| EXPECT_EQ("is even", |
| FormatMatcherDescription(false, "IsEven", Strings())); |
| EXPECT_EQ("not (is even)", |
| FormatMatcherDescription(true, "IsEven", Strings())); |
| |
| const char* params[] = {"5"}; |
| EXPECT_EQ("equals 5", |
| FormatMatcherDescription(false, "Equals", |
| Strings(params, params + 1))); |
| |
| const char* params2[] = {"5", "8"}; |
| EXPECT_EQ("is in range (5, 8)", |
| FormatMatcherDescription(false, "IsInRange", |
| Strings(params2, params2 + 2))); |
| } |
| |
| // Tests PolymorphicMatcher::mutable_impl(). |
| TEST(PolymorphicMatcherTest, CanAccessMutableImpl) { |
| PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); |
| DivisibleByImpl& impl = m.mutable_impl(); |
| EXPECT_EQ(42, impl.divider()); |
| |
| impl.set_divider(0); |
| EXPECT_EQ(0, m.mutable_impl().divider()); |
| } |
| |
| // Tests PolymorphicMatcher::impl(). |
| TEST(PolymorphicMatcherTest, CanAccessImpl) { |
| const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); |
| const DivisibleByImpl& impl = m.impl(); |
| EXPECT_EQ(42, impl.divider()); |
| } |
| |
| TEST(MatcherTupleTest, ExplainsMatchFailure) { |
| stringstream ss1; |
| ExplainMatchFailureTupleTo( |
| std::make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)), |
| std::make_tuple('a', 10), &ss1); |
| EXPECT_EQ("", ss1.str()); // Successful match. |
| |
| stringstream ss2; |
| ExplainMatchFailureTupleTo( |
| std::make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), |
| std::make_tuple(2, 'b'), &ss2); |
| EXPECT_EQ(" Expected arg #0: is > 5\n" |
| " Actual: 2, which is 3 less than 5\n" |
| " Expected arg #1: is equal to 'a' (97, 0x61)\n" |
| " Actual: 'b' (98, 0x62)\n", |
| ss2.str()); // Failed match where both arguments need explanation. |
| |
| stringstream ss3; |
| ExplainMatchFailureTupleTo( |
| std::make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), |
| std::make_tuple(2, 'a'), &ss3); |
| EXPECT_EQ(" Expected arg #0: is > 5\n" |
| " Actual: 2, which is 3 less than 5\n", |
| ss3.str()); // Failed match where only one argument needs |
| // explanation. |
| } |
| |
| // Tests Each(). |
| |
| TEST(EachTest, ExplainsMatchResultCorrectly) { |
| set<int> a; // empty |
| |
| Matcher<set<int> > m = Each(2); |
| EXPECT_EQ("", Explain(m, a)); |
| |
| Matcher<const int(&)[1]> n = Each(1); // NOLINT |
| |
| const int b[1] = {1}; |
| EXPECT_EQ("", Explain(n, b)); |
| |
| n = Each(3); |
| EXPECT_EQ("whose element #0 doesn't match", Explain(n, b)); |
| |
| a.insert(1); |
| a.insert(2); |
| a.insert(3); |
| m = Each(GreaterThan(0)); |
| EXPECT_EQ("", Explain(m, a)); |
| |
| m = Each(GreaterThan(10)); |
| EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10", |
| Explain(m, a)); |
| } |
| |
| TEST(EachTest, DescribesItselfCorrectly) { |
| Matcher<vector<int> > m = Each(1); |
| EXPECT_EQ("only contains elements that is equal to 1", Describe(m)); |
| |
| Matcher<vector<int> > m2 = Not(m); |
| EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2)); |
| } |
| |
| TEST(EachTest, MatchesVectorWhenAllElementsMatch) { |
| vector<int> some_vector; |
| EXPECT_THAT(some_vector, Each(1)); |
| some_vector.push_back(3); |
| EXPECT_THAT(some_vector, Not(Each(1))); |
| EXPECT_THAT(some_vector, Each(3)); |
| some_vector.push_back(1); |
| some_vector.push_back(2); |
| EXPECT_THAT(some_vector, Not(Each(3))); |
| EXPECT_THAT(some_vector, Each(Lt(3.5))); |
| |
| vector<std::string> another_vector; |
| another_vector.push_back("fee"); |
| EXPECT_THAT(another_vector, Each(std::string("fee"))); |
| another_vector.push_back("fie"); |
| another_vector.push_back("foe"); |
| another_vector.push_back("fum"); |
| EXPECT_THAT(another_vector, Not(Each(std::string("fee")))); |
| } |
| |
| TEST(EachTest, MatchesMapWhenAllElementsMatch) { |
| map<const char*, int> my_map; |
| const char* bar = "a string"; |
| my_map[bar] = 2; |
| EXPECT_THAT(my_map, Each(make_pair(bar, 2))); |
| |
| map<std::string, int> another_map; |
| EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); |
| another_map["fee"] = 1; |
| EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); |
| another_map["fie"] = 2; |
| another_map["foe"] = 3; |
| another_map["fum"] = 4; |
| EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fee"), 1)))); |
| EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fum"), 1)))); |
| EXPECT_THAT(another_map, Each(Pair(_, Gt(0)))); |
| } |
| |
| TEST(EachTest, AcceptsMatcher) { |
| const int a[] = {1, 2, 3}; |
| EXPECT_THAT(a, Each(Gt(0))); |
| EXPECT_THAT(a, Not(Each(Gt(1)))); |
| } |
| |
| TEST(EachTest, WorksForNativeArrayAsTuple) { |
| const int a[] = {1, 2}; |
| const int* const pointer = a; |
| EXPECT_THAT(std::make_tuple(pointer, 2), Each(Gt(0))); |
| EXPECT_THAT(std::make_tuple(pointer, 2), Not(Each(Gt(1)))); |
| } |
| |
| TEST(EachTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(Each(Pointee(Gt(0))))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| } |
| |
| // For testing Pointwise(). |
| class IsHalfOfMatcher { |
| public: |
| template <typename T1, typename T2> |
| bool MatchAndExplain(const std::tuple<T1, T2>& a_pair, |
| MatchResultListener* listener) const { |
| if (std::get<0>(a_pair) == std::get<1>(a_pair) / 2) { |
| *listener << "where the second is " << std::get<1>(a_pair); |
| return true; |
| } else { |
| *listener << "where the second/2 is " << std::get<1>(a_pair) / 2; |
| return false; |
| } |
| } |
| |
| void DescribeTo(ostream* os) const { |
| *os << "are a pair where the first is half of the second"; |
| } |
| |
| void DescribeNegationTo(ostream* os) const { |
| *os << "are a pair where the first isn't half of the second"; |
| } |
| }; |
| |
| PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() { |
| return MakePolymorphicMatcher(IsHalfOfMatcher()); |
| } |
| |
| TEST(PointwiseTest, DescribesSelf) { |
| vector<int> rhs; |
| rhs.push_back(1); |
| rhs.push_back(2); |
| rhs.push_back(3); |
| const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs); |
| EXPECT_EQ("contains 3 values, where each value and its corresponding value " |
| "in { 1, 2, 3 } are a pair where the first is half of the second", |
| Describe(m)); |
| EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some " |
| "index i where x and the i-th value of { 1, 2, 3 } are a pair " |
| "where the first isn't half of the second", |
| DescribeNegation(m)); |
| } |
| |
| TEST(PointwiseTest, MakesCopyOfRhs) { |
| list<signed char> rhs; |
| rhs.push_back(2); |
| rhs.push_back(4); |
| |
| int lhs[] = {1, 2}; |
| const Matcher<const int (&)[2]> m = Pointwise(IsHalfOf(), rhs); |
| EXPECT_THAT(lhs, m); |
| |
| // Changing rhs now shouldn't affect m, which made a copy of rhs. |
| rhs.push_back(6); |
| EXPECT_THAT(lhs, m); |
| } |
| |
| TEST(PointwiseTest, WorksForLhsNativeArray) { |
| const int lhs[] = {1, 2, 3}; |
| vector<int> rhs; |
| rhs.push_back(2); |
| rhs.push_back(4); |
| rhs.push_back(6); |
| EXPECT_THAT(lhs, Pointwise(Lt(), rhs)); |
| EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); |
| } |
| |
| TEST(PointwiseTest, WorksForRhsNativeArray) { |
| const int rhs[] = {1, 2, 3}; |
| vector<int> lhs; |
| lhs.push_back(2); |
| lhs.push_back(4); |
| lhs.push_back(6); |
| EXPECT_THAT(lhs, Pointwise(Gt(), rhs)); |
| EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs))); |
| } |
| |
| // Test is effective only with sanitizers. |
| TEST(PointwiseTest, WorksForVectorOfBool) { |
| vector<bool> rhs(3, false); |
| rhs[1] = true; |
| vector<bool> lhs = rhs; |
| EXPECT_THAT(lhs, Pointwise(Eq(), rhs)); |
| rhs[0] = true; |
| EXPECT_THAT(lhs, Not(Pointwise(Eq(), rhs))); |
| } |
| |
| |
| TEST(PointwiseTest, WorksForRhsInitializerList) { |
| const vector<int> lhs{2, 4, 6}; |
| EXPECT_THAT(lhs, Pointwise(Gt(), {1, 2, 3})); |
| EXPECT_THAT(lhs, Not(Pointwise(Lt(), {3, 3, 7}))); |
| } |
| |
| |
| TEST(PointwiseTest, RejectsWrongSize) { |
| const double lhs[2] = {1, 2}; |
| const int rhs[1] = {0}; |
| EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); |
| EXPECT_EQ("which contains 2 values", |
| Explain(Pointwise(Gt(), rhs), lhs)); |
| |
| const int rhs2[3] = {0, 1, 2}; |
| EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2))); |
| } |
| |
| TEST(PointwiseTest, RejectsWrongContent) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 6, 4}; |
| EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs))); |
| EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, " |
| "where the second/2 is 3", |
| Explain(Pointwise(IsHalfOf(), rhs), lhs)); |
| } |
| |
| TEST(PointwiseTest, AcceptsCorrectContent) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 4, 6}; |
| EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs)); |
| EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs)); |
| } |
| |
| TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 4, 6}; |
| const Matcher<std::tuple<const double&, const int&>> m1 = IsHalfOf(); |
| EXPECT_THAT(lhs, Pointwise(m1, rhs)); |
| EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs)); |
| |
| // This type works as a std::tuple<const double&, const int&> can be |
| // implicitly cast to std::tuple<double, int>. |
| const Matcher<std::tuple<double, int>> m2 = IsHalfOf(); |
| EXPECT_THAT(lhs, Pointwise(m2, rhs)); |
| EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs)); |
| } |
| |
| MATCHER(PointeeEquals, "Points to an equal value") { |
| return ExplainMatchResult(::testing::Pointee(::testing::get<1>(arg)), |
| ::testing::get<0>(arg), result_listener); |
| } |
| |
| TEST(PointwiseTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(Pointwise(PointeeEquals(), std::vector<int>{1, 2}))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| } |
| |
| TEST(UnorderedPointwiseTest, DescribesSelf) { |
| vector<int> rhs; |
| rhs.push_back(1); |
| rhs.push_back(2); |
| rhs.push_back(3); |
| const Matcher<const vector<int>&> m = UnorderedPointwise(IsHalfOf(), rhs); |
| EXPECT_EQ( |
| "has 3 elements and there exists some permutation of elements such " |
| "that:\n" |
| " - element #0 and 1 are a pair where the first is half of the second, " |
| "and\n" |
| " - element #1 and 2 are a pair where the first is half of the second, " |
| "and\n" |
| " - element #2 and 3 are a pair where the first is half of the second", |
| Describe(m)); |
| EXPECT_EQ( |
| "doesn't have 3 elements, or there exists no permutation of elements " |
| "such that:\n" |
| " - element #0 and 1 are a pair where the first is half of the second, " |
| "and\n" |
| " - element #1 and 2 are a pair where the first is half of the second, " |
| "and\n" |
| " - element #2 and 3 are a pair where the first is half of the second", |
| DescribeNegation(m)); |
| } |
| |
| TEST(UnorderedPointwiseTest, MakesCopyOfRhs) { |
| list<signed char> rhs; |
| rhs.push_back(2); |
| rhs.push_back(4); |
| |
| int lhs[] = {2, 1}; |
| const Matcher<const int (&)[2]> m = UnorderedPointwise(IsHalfOf(), rhs); |
| EXPECT_THAT(lhs, m); |
| |
| // Changing rhs now shouldn't affect m, which made a copy of rhs. |
| rhs.push_back(6); |
| EXPECT_THAT(lhs, m); |
| } |
| |
| TEST(UnorderedPointwiseTest, WorksForLhsNativeArray) { |
| const int lhs[] = {1, 2, 3}; |
| vector<int> rhs; |
| rhs.push_back(4); |
| rhs.push_back(6); |
| rhs.push_back(2); |
| EXPECT_THAT(lhs, UnorderedPointwise(Lt(), rhs)); |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); |
| } |
| |
| TEST(UnorderedPointwiseTest, WorksForRhsNativeArray) { |
| const int rhs[] = {1, 2, 3}; |
| vector<int> lhs; |
| lhs.push_back(4); |
| lhs.push_back(2); |
| lhs.push_back(6); |
| EXPECT_THAT(lhs, UnorderedPointwise(Gt(), rhs)); |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), rhs))); |
| } |
| |
| |
| TEST(UnorderedPointwiseTest, WorksForRhsInitializerList) { |
| const vector<int> lhs{2, 4, 6}; |
| EXPECT_THAT(lhs, UnorderedPointwise(Gt(), {5, 1, 3})); |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), {1, 1, 7}))); |
| } |
| |
| |
| TEST(UnorderedPointwiseTest, RejectsWrongSize) { |
| const double lhs[2] = {1, 2}; |
| const int rhs[1] = {0}; |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); |
| EXPECT_EQ("which has 2 elements", |
| Explain(UnorderedPointwise(Gt(), rhs), lhs)); |
| |
| const int rhs2[3] = {0, 1, 2}; |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs2))); |
| } |
| |
| TEST(UnorderedPointwiseTest, RejectsWrongContent) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 6, 6}; |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(IsHalfOf(), rhs))); |
| EXPECT_EQ("where the following elements don't match any matchers:\n" |
| "element #1: 2", |
| Explain(UnorderedPointwise(IsHalfOf(), rhs), lhs)); |
| } |
| |
| TEST(UnorderedPointwiseTest, AcceptsCorrectContentInSameOrder) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 4, 6}; |
| EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); |
| } |
| |
| TEST(UnorderedPointwiseTest, AcceptsCorrectContentInDifferentOrder) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {6, 4, 2}; |
| EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); |
| } |
| |
| TEST(UnorderedPointwiseTest, AllowsMonomorphicInnerMatcher) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {4, 6, 2}; |
| const Matcher<std::tuple<const double&, const int&>> m1 = IsHalfOf(); |
| EXPECT_THAT(lhs, UnorderedPointwise(m1, rhs)); |
| |
| // This type works as a std::tuple<const double&, const int&> can be |
| // implicitly cast to std::tuple<double, int>. |
| const Matcher<std::tuple<double, int>> m2 = IsHalfOf(); |
| EXPECT_THAT(lhs, UnorderedPointwise(m2, rhs)); |
| } |
| |
| TEST(UnorderedPointwiseTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(UnorderedPointwise(PointeeEquals(), |
| std::vector<int>{1, 2}))); |
| helper.Call(MakeUniquePtrs({2, 1})); |
| } |
| |
| // Sample optional type implementation with minimal requirements for use with |
| // Optional matcher. |
| template <typename T> |
| class SampleOptional { |
| public: |
| using value_type = T; |
| explicit SampleOptional(T value) |
| : value_(std::move(value)), has_value_(true) {} |
| SampleOptional() : value_(), has_value_(false) {} |
| operator bool() const { return has_value_; } |
| const T& operator*() const { return value_; } |
| |
| private: |
| T value_; |
| bool has_value_; |
| }; |
| |
| TEST(OptionalTest, DescribesSelf) { |
| const Matcher<SampleOptional<int>> m = Optional(Eq(1)); |
| EXPECT_EQ("value is equal to 1", Describe(m)); |
| } |
| |
| TEST(OptionalTest, ExplainsSelf) { |
| const Matcher<SampleOptional<int>> m = Optional(Eq(1)); |
| EXPECT_EQ("whose value 1 matches", Explain(m, SampleOptional<int>(1))); |
| EXPECT_EQ("whose value 2 doesn't match", Explain(m, SampleOptional<int>(2))); |
| } |
| |
| TEST(OptionalTest, MatchesNonEmptyOptional) { |
| const Matcher<SampleOptional<int>> m1 = Optional(1); |
| const Matcher<SampleOptional<int>> m2 = Optional(Eq(2)); |
| const Matcher<SampleOptional<int>> m3 = Optional(Lt(3)); |
| SampleOptional<int> opt(1); |
| EXPECT_TRUE(m1.Matches(opt)); |
| EXPECT_FALSE(m2.Matches(opt)); |
| EXPECT_TRUE(m3.Matches(opt)); |
| } |
| |
| TEST(OptionalTest, DoesNotMatchNullopt) { |
| const Matcher<SampleOptional<int>> m = Optional(1); |
| SampleOptional<int> empty; |
| EXPECT_FALSE(m.Matches(empty)); |
| } |
| |
| TEST(OptionalTest, WorksWithMoveOnly) { |
| Matcher<SampleOptional<std::unique_ptr<int>>> m = Optional(Eq(nullptr)); |
| EXPECT_TRUE(m.Matches(SampleOptional<std::unique_ptr<int>>(nullptr))); |
| } |
| |
| class SampleVariantIntString { |
| public: |
| SampleVariantIntString(int i) : i_(i), has_int_(true) {} |
| SampleVariantIntString(const std::string& s) : s_(s), has_int_(false) {} |
| |
| template <typename T> |
| friend bool holds_alternative(const SampleVariantIntString& value) { |
| return value.has_int_ == std::is_same<T, int>::value; |
| } |
| |
| template <typename T> |
| friend const T& get(const SampleVariantIntString& value) { |
| return value.get_impl(static_cast<T*>(nullptr)); |
| } |
| |
| private: |
| const int& get_impl(int*) const { return i_; } |
| const std::string& get_impl(std::string*) const { return s_; } |
| |
| int i_; |
| std::string s_; |
| bool has_int_; |
| }; |
| |
| TEST(VariantTest, DescribesSelf) { |
| const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
| EXPECT_THAT(Describe(m), ContainsRegex("is a variant<> with value of type " |
| "'.*' and the value is equal to 1")); |
| } |
| |
| TEST(VariantTest, ExplainsSelf) { |
| const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
| EXPECT_THAT(Explain(m, SampleVariantIntString(1)), |
| ContainsRegex("whose value 1")); |
| EXPECT_THAT(Explain(m, SampleVariantIntString("A")), |
| HasSubstr("whose value is not of type '")); |
| EXPECT_THAT(Explain(m, SampleVariantIntString(2)), |
| "whose value 2 doesn't match"); |
| } |
| |
| TEST(VariantTest, FullMatch) { |
| Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
| EXPECT_TRUE(m.Matches(SampleVariantIntString(1))); |
| |
| m = VariantWith<std::string>(Eq("1")); |
| EXPECT_TRUE(m.Matches(SampleVariantIntString("1"))); |
| } |
| |
| TEST(VariantTest, TypeDoesNotMatch) { |
| Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
| EXPECT_FALSE(m.Matches(SampleVariantIntString("1"))); |
| |
| m = VariantWith<std::string>(Eq("1")); |
| EXPECT_FALSE(m.Matches(SampleVariantIntString(1))); |
| } |
| |
| TEST(VariantTest, InnerDoesNotMatch) { |
| Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
| EXPECT_FALSE(m.Matches(SampleVariantIntString(2))); |
| |
| m = VariantWith<std::string>(Eq("1")); |
| EXPECT_FALSE(m.Matches(SampleVariantIntString("2"))); |
| } |
| |
| class SampleAnyType { |
| public: |
| explicit SampleAnyType(int i) : index_(0), i_(i) {} |
| explicit SampleAnyType(const std::string& s) : index_(1), s_(s) {} |
| |
| template <typename T> |
| friend const T* any_cast(const SampleAnyType* any) { |
| return any->get_impl(static_cast<T*>(nullptr)); |
| } |
| |
| private: |
| int index_; |
| int i_; |
| std::string s_; |
| |
| const int* get_impl(int*) const { return index_ == 0 ? &i_ : nullptr; } |
| const std::string* get_impl(std::string*) const { |
| return index_ == 1 ? &s_ : nullptr; |
| } |
| }; |
| |
| TEST(AnyWithTest, FullMatch) { |
| Matcher<SampleAnyType> m = AnyWith<int>(Eq(1)); |
| EXPECT_TRUE(m.Matches(SampleAnyType(1))); |
| } |
| |
| TEST(AnyWithTest, TestBadCastType) { |
| Matcher<SampleAnyType> m = AnyWith<std::string>(Eq("fail")); |
| EXPECT_FALSE(m.Matches(SampleAnyType(1))); |
| } |
| |
| TEST(AnyWithTest, TestUseInContainers) { |
| std::vector<SampleAnyType> a; |
| a.emplace_back(1); |
| a.emplace_back(2); |
| a.emplace_back(3); |
| EXPECT_THAT( |
| a, ElementsAreArray({AnyWith<int>(1), AnyWith<int>(2), AnyWith<int>(3)})); |
| |
| std::vector<SampleAnyType> b; |
| b.emplace_back("hello"); |
| b.emplace_back("merhaba"); |
| b.emplace_back("salut"); |
| EXPECT_THAT(b, ElementsAreArray({AnyWith<std::string>("hello"), |
| AnyWith<std::string>("merhaba"), |
| AnyWith<std::string>("salut")})); |
| } |
| TEST(AnyWithTest, TestCompare) { |
| EXPECT_THAT(SampleAnyType(1), AnyWith<int>(Gt(0))); |
| } |
| |
| TEST(AnyWithTest, DescribesSelf) { |
| const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1)); |
| EXPECT_THAT(Describe(m), ContainsRegex("is an 'any' type with value of type " |
| "'.*' and the value is equal to 1")); |
| } |
| |
| TEST(AnyWithTest, ExplainsSelf) { |
| const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1)); |
| |
| EXPECT_THAT(Explain(m, SampleAnyType(1)), ContainsRegex("whose value 1")); |
| EXPECT_THAT(Explain(m, SampleAnyType("A")), |
| HasSubstr("whose value is not of type '")); |
| EXPECT_THAT(Explain(m, SampleAnyType(2)), "whose value 2 doesn't match"); |
| } |
| |
| TEST(PointeeTest, WorksOnMoveOnlyType) { |
| std::unique_ptr<int> p(new int(3)); |
| EXPECT_THAT(p, Pointee(Eq(3))); |
| EXPECT_THAT(p, Not(Pointee(Eq(2)))); |
| } |
| |
| TEST(NotTest, WorksOnMoveOnlyType) { |
| std::unique_ptr<int> p(new int(3)); |
| EXPECT_THAT(p, Pointee(Eq(3))); |
| EXPECT_THAT(p, Not(Pointee(Eq(2)))); |
| } |
| |
| // Tests Args<k0, ..., kn>(m). |
| |
| TEST(ArgsTest, AcceptsZeroTemplateArg) { |
| const std::tuple<int, bool> t(5, true); |
| EXPECT_THAT(t, Args<>(Eq(std::tuple<>()))); |
| EXPECT_THAT(t, Not(Args<>(Ne(std::tuple<>())))); |
| } |
| |
| TEST(ArgsTest, AcceptsOneTemplateArg) { |
| const std::tuple<int, bool> t(5, true); |
| EXPECT_THAT(t, Args<0>(Eq(std::make_tuple(5)))); |
| EXPECT_THAT(t, Args<1>(Eq(std::make_tuple(true)))); |
| EXPECT_THAT(t, Not(Args<1>(Eq(std::make_tuple(false))))); |
| } |
| |
| TEST(ArgsTest, AcceptsTwoTemplateArgs) { |
| const std::tuple<short, int, long> t(4, 5, 6L); // NOLINT |
| |
| EXPECT_THAT(t, (Args<0, 1>(Lt()))); |
| EXPECT_THAT(t, (Args<1, 2>(Lt()))); |
| EXPECT_THAT(t, Not(Args<0, 2>(Gt()))); |
| } |
| |
| TEST(ArgsTest, AcceptsRepeatedTemplateArgs) { |
| const std::tuple<short, int, long> t(4, 5, 6L); // NOLINT |
| EXPECT_THAT(t, (Args<0, 0>(Eq()))); |
| EXPECT_THAT(t, Not(Args<1, 1>(Ne()))); |
| } |
| |
| TEST(ArgsTest, AcceptsDecreasingTemplateArgs) { |
| const std::tuple<short, int, long> t(4, 5, 6L); // NOLINT |
| EXPECT_THAT(t, (Args<2, 0>(Gt()))); |
| EXPECT_THAT(t, Not(Args<2, 1>(Lt()))); |
| } |
| |
| MATCHER(SumIsZero, "") { |
| return std::get<0>(arg) + std::get<1>(arg) + std::get<2>(arg) == 0; |
| } |
| |
| TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) { |
| EXPECT_THAT(std::make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero()))); |
| EXPECT_THAT(std::make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero()))); |
| } |
| |
| TEST(ArgsTest, CanBeNested) { |
| const std::tuple<short, int, long, int> t(4, 5, 6L, 6); // NOLINT |
| EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq())))); |
| EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt())))); |
| } |
| |
| TEST(ArgsTest, CanMatchTupleByValue) { |
| typedef std::tuple<char, int, int> Tuple3; |
| const Matcher<Tuple3> m = Args<1, 2>(Lt()); |
| EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2))); |
| EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2))); |
| } |
| |
| TEST(ArgsTest, CanMatchTupleByReference) { |
| typedef std::tuple<char, char, int> Tuple3; |
| const Matcher<const Tuple3&> m = Args<0, 1>(Lt()); |
| EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2))); |
| EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2))); |
| } |
| |
| // Validates that arg is printed as str. |
| MATCHER_P(PrintsAs, str, "") { |
| return testing::PrintToString(arg) == str; |
| } |
| |
| TEST(ArgsTest, AcceptsTenTemplateArgs) { |
| EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), |
| (Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( |
| PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); |
| EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), |
| Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( |
| PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); |
| } |
| |
| TEST(ArgsTest, DescirbesSelfCorrectly) { |
| const Matcher<std::tuple<int, bool, char> > m = Args<2, 0>(Lt()); |
| EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where " |
| "the first < the second", |
| Describe(m)); |
| } |
| |
| TEST(ArgsTest, DescirbesNestedArgsCorrectly) { |
| const Matcher<const std::tuple<int, bool, char, int>&> m = |
| Args<0, 2, 3>(Args<2, 0>(Lt())); |
| EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple " |
| "whose fields (#2, #0) are a pair where the first < the second", |
| Describe(m)); |
| } |
| |
| TEST(ArgsTest, DescribesNegationCorrectly) { |
| const Matcher<std::tuple<int, char> > m = Args<1, 0>(Gt()); |
| EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair " |
| "where the first > the second", |
| DescribeNegation(m)); |
| } |
| |
| TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) { |
| const Matcher<std::tuple<bool, int, int> > m = Args<1, 2>(Eq()); |
| EXPECT_EQ("whose fields (#1, #2) are (42, 42)", |
| Explain(m, std::make_tuple(false, 42, 42))); |
| EXPECT_EQ("whose fields (#1, #2) are (42, 43)", |
| Explain(m, std::make_tuple(false, 42, 43))); |
| } |
| |
| // For testing Args<>'s explanation. |
| class LessThanMatcher : public MatcherInterface<std::tuple<char, int> > { |
| public: |
| void DescribeTo(::std::ostream* /*os*/) const override {} |
| |
| bool MatchAndExplain(std::tuple<char, int> value, |
| MatchResultListener* listener) const override { |
| const int diff = std::get<0>(value) - std::get<1>(value); |
| if (diff > 0) { |
| *listener << "where the first value is " << diff |
| << " more than the second"; |
| } |
| return diff < 0; |
| } |
| }; |
| |
| Matcher<std::tuple<char, int> > LessThan() { |
| return MakeMatcher(new LessThanMatcher); |
| } |
| |
| TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) { |
| const Matcher<std::tuple<char, int, int> > m = Args<0, 2>(LessThan()); |
| EXPECT_EQ( |
| "whose fields (#0, #2) are ('a' (97, 0x61), 42), " |
| "where the first value is 55 more than the second", |
| Explain(m, std::make_tuple('a', 42, 42))); |
| EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)", |
| Explain(m, std::make_tuple('\0', 42, 43))); |
| } |
| |
| class PredicateFormatterFromMatcherTest : public ::testing::Test { |
| protected: |
| enum Behavior { kInitialSuccess, kAlwaysFail, kFlaky }; |
| |
| // A matcher that can return different results when used multiple times on the |
| // same input. No real matcher should do this; but this lets us test that we |
| // detect such behavior and fail appropriately. |
| class MockMatcher : public MatcherInterface<Behavior> { |
| public: |
| bool MatchAndExplain(Behavior behavior, |
| MatchResultListener* listener) const override { |
| *listener << "[MatchAndExplain]"; |
| switch (behavior) { |
| case kInitialSuccess: |
| // The first call to MatchAndExplain should use a "not interested" |
| // listener; so this is expected to return |true|. There should be no |
| // subsequent calls. |
| return !listener->IsInterested(); |
| |
| case kAlwaysFail: |
| return false; |
| |
| case kFlaky: |
| // The first call to MatchAndExplain should use a "not interested" |
| // listener; so this will return |false|. Subsequent calls should have |
| // an "interested" listener; so this will return |true|, thus |
| // simulating a flaky matcher. |
| return listener->IsInterested(); |
| } |
| |
| GTEST_LOG_(FATAL) << "This should never be reached"; |
| return false; |
| } |
| |
| void DescribeTo(ostream* os) const override { *os << "[DescribeTo]"; } |
| |
| void DescribeNegationTo(ostream* os) const override { |
| *os << "[DescribeNegationTo]"; |
| } |
| }; |
| |
| AssertionResult RunPredicateFormatter(Behavior behavior) { |
| auto matcher = MakeMatcher(new MockMatcher); |
| PredicateFormatterFromMatcher<Matcher<Behavior>> predicate_formatter( |
| matcher); |
| return predicate_formatter("dummy-name", behavior); |
| } |
| }; |
| |
| TEST_F(PredicateFormatterFromMatcherTest, ShortCircuitOnSuccess) { |
| AssertionResult result = RunPredicateFormatter(kInitialSuccess); |
| EXPECT_TRUE(result); // Implicit cast to bool. |
| std::string expect; |
| EXPECT_EQ(expect, result.message()); |
| } |
| |
| TEST_F(PredicateFormatterFromMatcherTest, NoShortCircuitOnFailure) { |
| AssertionResult result = RunPredicateFormatter(kAlwaysFail); |
| EXPECT_FALSE(result); // Implicit cast to bool. |
| std::string expect = |
| "Value of: dummy-name\nExpected: [DescribeTo]\n" |
| " Actual: 1" + |
| OfType(internal::GetTypeName<Behavior>()) + ", [MatchAndExplain]"; |
| EXPECT_EQ(expect, result.message()); |
| } |
| |
| TEST_F(PredicateFormatterFromMatcherTest, DetectsFlakyShortCircuit) { |
| AssertionResult result = RunPredicateFormatter(kFlaky); |
| EXPECT_FALSE(result); // Implicit cast to bool. |
| std::string expect = |
| "Value of: dummy-name\nExpected: [DescribeTo]\n" |
| " The matcher failed on the initial attempt; but passed when rerun to " |
| "generate the explanation.\n" |
| " Actual: 2" + |
| OfType(internal::GetTypeName<Behavior>()) + ", [MatchAndExplain]"; |
| EXPECT_EQ(expect, result.message()); |
| } |
| |
| // Tests for ElementsAre(). |
| |
| TEST(ElementsAreTest, CanDescribeExpectingNoElement) { |
| Matcher<const vector<int>&> m = ElementsAre(); |
| EXPECT_EQ("is empty", Describe(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeExpectingOneElement) { |
| Matcher<vector<int>> m = ElementsAre(Gt(5)); |
| EXPECT_EQ("has 1 element that is > 5", Describe(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeExpectingManyElements) { |
| Matcher<list<std::string>> m = ElementsAre(StrEq("one"), "two"); |
| EXPECT_EQ( |
| "has 2 elements where\n" |
| "element #0 is equal to \"one\",\n" |
| "element #1 is equal to \"two\"", |
| Describe(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeNegationOfExpectingNoElement) { |
| Matcher<vector<int>> m = ElementsAre(); |
| EXPECT_EQ("isn't empty", DescribeNegation(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeNegationOfExpectingOneElment) { |
| Matcher<const list<int>&> m = ElementsAre(Gt(5)); |
| EXPECT_EQ( |
| "doesn't have 1 element, or\n" |
| "element #0 isn't > 5", |
| DescribeNegation(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeNegationOfExpectingManyElements) { |
| Matcher<const list<std::string>&> m = ElementsAre("one", "two"); |
| EXPECT_EQ( |
| "doesn't have 2 elements, or\n" |
| "element #0 isn't equal to \"one\", or\n" |
| "element #1 isn't equal to \"two\"", |
| DescribeNegation(m)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotExplainTrivialMatch) { |
| Matcher<const list<int>&> m = ElementsAre(1, Ne(2)); |
| |
| list<int> test_list; |
| test_list.push_back(1); |
| test_list.push_back(3); |
| EXPECT_EQ("", Explain(m, test_list)); // No need to explain anything. |
| } |
| |
| TEST(ElementsAreTest, ExplainsNonTrivialMatch) { |
| Matcher<const vector<int>&> m = |
| ElementsAre(GreaterThan(1), 0, GreaterThan(2)); |
| |
| const int a[] = {10, 0, 100}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| EXPECT_EQ( |
| "whose element #0 matches, which is 9 more than 1,\n" |
| "and whose element #2 matches, which is 98 more than 2", |
| Explain(m, test_vector)); |
| } |
| |
| TEST(ElementsAreTest, CanExplainMismatchWrongSize) { |
| Matcher<const list<int>&> m = ElementsAre(1, 3); |
| |
| list<int> test_list; |
| // No need to explain when the container is empty. |
| EXPECT_EQ("", Explain(m, test_list)); |
| |
| test_list.push_back(1); |
| EXPECT_EQ("which has 1 element", Explain(m, test_list)); |
| } |
| |
| TEST(ElementsAreTest, CanExplainMismatchRightSize) { |
| Matcher<const vector<int>&> m = ElementsAre(1, GreaterThan(5)); |
| |
| vector<int> v; |
| v.push_back(2); |
| v.push_back(1); |
| EXPECT_EQ("whose element #0 doesn't match", Explain(m, v)); |
| |
| v[0] = 1; |
| EXPECT_EQ("whose element #1 doesn't match, which is 4 less than 5", |
| Explain(m, v)); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementVector) { |
| vector<std::string> test_vector; |
| test_vector.push_back("test string"); |
| |
| EXPECT_THAT(test_vector, ElementsAre(StrEq("test string"))); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementList) { |
| list<std::string> test_list; |
| test_list.push_back("test string"); |
| |
| EXPECT_THAT(test_list, ElementsAre("test string")); |
| } |
| |
| TEST(ElementsAreTest, MatchesThreeElementVector) { |
| vector<std::string> test_vector; |
| test_vector.push_back("one"); |
| test_vector.push_back("two"); |
| test_vector.push_back("three"); |
| |
| EXPECT_THAT(test_vector, ElementsAre("one", StrEq("two"), _)); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementEqMatcher) { |
| vector<int> test_vector; |
| test_vector.push_back(4); |
| |
| EXPECT_THAT(test_vector, ElementsAre(Eq(4))); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementAnyMatcher) { |
| vector<int> test_vector; |
| test_vector.push_back(4); |
| |
| EXPECT_THAT(test_vector, ElementsAre(_)); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementValue) { |
| vector<int> test_vector; |
| test_vector.push_back(4); |
| |
| EXPECT_THAT(test_vector, ElementsAre(4)); |
| } |
| |
| TEST(ElementsAreTest, MatchesThreeElementsMixedMatchers) { |
| vector<int> test_vector; |
| test_vector.push_back(1); |
| test_vector.push_back(2); |
| test_vector.push_back(3); |
| |
| EXPECT_THAT(test_vector, ElementsAre(1, Eq(2), _)); |
| } |
| |
| TEST(ElementsAreTest, MatchesTenElementVector) { |
| const int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| |
| EXPECT_THAT(test_vector, |
| // The element list can contain values and/or matchers |
| // of different types. |
| ElementsAre(0, Ge(0), _, 3, 4, Ne(2), Eq(6), 7, 8, _)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotMatchWrongSize) { |
| vector<std::string> test_vector; |
| test_vector.push_back("test string"); |
| test_vector.push_back("test string"); |
| |
| Matcher<vector<std::string>> m = ElementsAre(StrEq("test string")); |
| EXPECT_FALSE(m.Matches(test_vector)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotMatchWrongValue) { |
| vector<std::string> test_vector; |
| test_vector.push_back("other string"); |
| |
| Matcher<vector<std::string>> m = ElementsAre(StrEq("test string")); |
| EXPECT_FALSE(m.Matches(test_vector)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotMatchWrongOrder) { |
| vector<std::string> test_vector; |
| test_vector.push_back("one"); |
| test_vector.push_back("three"); |
| test_vector.push_back("two"); |
| |
| Matcher<vector<std::string>> m = |
| ElementsAre(StrEq("one"), StrEq("two"), StrEq("three")); |
| EXPECT_FALSE(m.Matches(test_vector)); |
| } |
| |
| TEST(ElementsAreTest, WorksForNestedContainer) { |
| constexpr std::array<const char*, 2> strings = {{"Hi", "world"}}; |
| |
| vector<list<char>> nested; |
| for (const auto& s : strings) { |
| nested.emplace_back(s, s + strlen(s)); |
| } |
| |
| EXPECT_THAT(nested, ElementsAre(ElementsAre('H', Ne('e')), |
| ElementsAre('w', 'o', _, _, 'd'))); |
| EXPECT_THAT(nested, Not(ElementsAre(ElementsAre('H', 'e'), |
| ElementsAre('w', 'o', _, _, 'd')))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithByRefElementMatchers) { |
| int a[] = {0, 1, 2}; |
| vector<int> v(std::begin(a), std::end(a)); |
| |
| EXPECT_THAT(v, ElementsAre(Ref(v[0]), Ref(v[1]), Ref(v[2]))); |
| EXPECT_THAT(v, Not(ElementsAre(Ref(v[0]), Ref(v[1]), Ref(a[2])))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithContainerPointerUsingPointee) { |
| int a[] = {0, 1, 2}; |
| vector<int> v(std::begin(a), std::end(a)); |
| |
| EXPECT_THAT(&v, Pointee(ElementsAre(0, 1, _))); |
| EXPECT_THAT(&v, Not(Pointee(ElementsAre(0, _, 3)))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithNativeArrayPassedByReference) { |
| int array[] = {0, 1, 2}; |
| EXPECT_THAT(array, ElementsAre(0, 1, _)); |
| EXPECT_THAT(array, Not(ElementsAre(1, _, _))); |
| EXPECT_THAT(array, Not(ElementsAre(0, _))); |
| } |
| |
| class NativeArrayPassedAsPointerAndSize { |
| public: |
| NativeArrayPassedAsPointerAndSize() {} |
| |
| MOCK_METHOD(void, Helper, (int* array, int size)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(NativeArrayPassedAsPointerAndSize); |
| }; |
| |
| TEST(ElementsAreTest, WorksWithNativeArrayPassedAsPointerAndSize) { |
| int array[] = {0, 1}; |
| ::std::tuple<int*, size_t> array_as_tuple(array, 2); |
| EXPECT_THAT(array_as_tuple, ElementsAre(0, 1)); |
| EXPECT_THAT(array_as_tuple, Not(ElementsAre(0))); |
| |
| NativeArrayPassedAsPointerAndSize helper; |
| EXPECT_CALL(helper, Helper(_, _)).With(ElementsAre(0, 1)); |
| helper.Helper(array, 2); |
| } |
| |
| TEST(ElementsAreTest, WorksWithTwoDimensionalNativeArray) { |
| const char a2[][3] = {"hi", "lo"}; |
| EXPECT_THAT(a2, ElementsAre(ElementsAre('h', 'i', '\0'), |
| ElementsAre('l', 'o', '\0'))); |
| EXPECT_THAT(a2, ElementsAre(StrEq("hi"), StrEq("lo"))); |
| EXPECT_THAT(a2, ElementsAre(Not(ElementsAre('h', 'o', '\0')), |
| ElementsAre('l', 'o', '\0'))); |
| } |
| |
| TEST(ElementsAreTest, AcceptsStringLiteral) { |
| std::string array[] = {"hi", "one", "two"}; |
| EXPECT_THAT(array, ElementsAre("hi", "one", "two")); |
| EXPECT_THAT(array, Not(ElementsAre("hi", "one", "too"))); |
| } |
| |
| // Declared here with the size unknown. Defined AFTER the following test. |
| extern const char kHi[]; |
| |
| TEST(ElementsAreTest, AcceptsArrayWithUnknownSize) { |
| // The size of kHi is not known in this test, but ElementsAre() should |
| // still accept it. |
| |
| std::string array1[] = {"hi"}; |
| EXPECT_THAT(array1, ElementsAre(kHi)); |
| |
| std::string array2[] = {"ho"}; |
| EXPECT_THAT(array2, Not(ElementsAre(kHi))); |
| } |
| |
| const char kHi[] = "hi"; |
| |
| TEST(ElementsAreTest, MakesCopyOfArguments) { |
| int x = 1; |
| int y = 2; |
| // This should make a copy of x and y. |
| ::testing::internal::ElementsAreMatcher<std::tuple<int, int>> |
| polymorphic_matcher = ElementsAre(x, y); |
| // Changing x and y now shouldn't affect the meaning of the above matcher. |
| x = y = 0; |
| const int array1[] = {1, 2}; |
| EXPECT_THAT(array1, polymorphic_matcher); |
| const int array2[] = {0, 0}; |
| EXPECT_THAT(array2, Not(polymorphic_matcher)); |
| } |
| |
| // Tests for ElementsAreArray(). Since ElementsAreArray() shares most |
| // of the implementation with ElementsAre(), we don't test it as |
| // thoroughly here. |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithValueArray) { |
| const int a[] = {1, 2, 3}; |
| |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(a)); |
| |
| test_vector[2] = 0; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithArraySize) { |
| std::array<const char*, 3> a = {{"one", "two", "three"}}; |
| |
| vector<std::string> test_vector(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(a.data(), a.size())); |
| |
| const char** p = a.data(); |
| test_vector[0] = "1"; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(p, a.size()))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithoutArraySize) { |
| const char* a[] = {"one", "two", "three"}; |
| |
| vector<std::string> test_vector(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(a)); |
| |
| test_vector[0] = "1"; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherArray) { |
| const Matcher<std::string> kMatcherArray[] = {StrEq("one"), StrEq("two"), |
| StrEq("three")}; |
| |
| vector<std::string> test_vector; |
| test_vector.push_back("one"); |
| test_vector.push_back("two"); |
| test_vector.push_back("three"); |
| EXPECT_THAT(test_vector, ElementsAreArray(kMatcherArray)); |
| |
| test_vector.push_back("three"); |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(kMatcherArray))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithVector) { |
| const int a[] = {1, 2, 3}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| const vector<int> expected(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(expected)); |
| test_vector.push_back(4); |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(expected))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerList) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| EXPECT_THAT(a, ElementsAreArray({1, 2, 3, 4, 5})); |
| EXPECT_THAT(a, Not(ElementsAreArray({1, 2, 3, 5, 4}))); |
| EXPECT_THAT(a, Not(ElementsAreArray({1, 2, 3, 4, 6}))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerListOfCStrings) { |
| const std::string a[5] = {"a", "b", "c", "d", "e"}; |
| EXPECT_THAT(a, ElementsAreArray({"a", "b", "c", "d", "e"})); |
| EXPECT_THAT(a, Not(ElementsAreArray({"a", "b", "c", "e", "d"}))); |
| EXPECT_THAT(a, Not(ElementsAreArray({"a", "b", "c", "d", "ef"}))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| EXPECT_THAT(a, ElementsAreArray({Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)})); |
| EXPECT_THAT(a, Not(ElementsAreArray({Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)}))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerListOfDifferentTypedMatchers) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| // The compiler cannot infer the type of the initializer list if its |
| // elements have different types. We must explicitly specify the |
| // unified element type in this case. |
| EXPECT_THAT( |
| a, ElementsAreArray<Matcher<int>>({Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)})); |
| EXPECT_THAT(a, Not(ElementsAreArray<Matcher<int>>( |
| {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)}))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherVector) { |
| const int a[] = {1, 2, 3}; |
| const Matcher<int> kMatchers[] = {Eq(1), Eq(2), Eq(3)}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| const vector<Matcher<int>> expected(std::begin(kMatchers), |
| std::end(kMatchers)); |
| EXPECT_THAT(test_vector, ElementsAreArray(expected)); |
| test_vector.push_back(4); |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(expected))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithIteratorRange) { |
| const int a[] = {1, 2, 3}; |
| const vector<int> test_vector(std::begin(a), std::end(a)); |
| const vector<int> expected(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(expected.begin(), expected.end())); |
| // Pointers are iterators, too. |
| EXPECT_THAT(test_vector, ElementsAreArray(std::begin(a), std::end(a))); |
| // The empty range of NULL pointers should also be okay. |
| int* const null_int = nullptr; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(null_int, null_int))); |
| EXPECT_THAT((vector<int>()), ElementsAreArray(null_int, null_int)); |
| } |
| |
| // Since ElementsAre() and ElementsAreArray() share much of the |
| // implementation, we only do a sanity test for native arrays here. |
| TEST(ElementsAreArrayTest, WorksWithNativeArray) { |
| ::std::string a[] = {"hi", "ho"}; |
| ::std::string b[] = {"hi", "ho"}; |
| |
| EXPECT_THAT(a, ElementsAreArray(b)); |
| EXPECT_THAT(a, ElementsAreArray(b, 2)); |
| EXPECT_THAT(a, Not(ElementsAreArray(b, 1))); |
| } |
| |
| TEST(ElementsAreArrayTest, SourceLifeSpan) { |
| const int a[] = {1, 2, 3}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| vector<int> expect(std::begin(a), std::end(a)); |
| ElementsAreArrayMatcher<int> matcher_maker = |
| ElementsAreArray(expect.begin(), expect.end()); |
| EXPECT_THAT(test_vector, matcher_maker); |
| // Changing in place the values that initialized matcher_maker should not |
| // affect matcher_maker anymore. It should have made its own copy of them. |
| for (int& i : expect) { |
| i += 10; |
| } |
| EXPECT_THAT(test_vector, matcher_maker); |
| test_vector.push_back(3); |
| EXPECT_THAT(test_vector, Not(matcher_maker)); |
| } |
| |
| // Tests for the MATCHER*() macro family. |
| |
| // Tests that a simple MATCHER() definition works. |
| |
| MATCHER(IsEven, "") { return (arg % 2) == 0; } |
| |
| TEST(MatcherMacroTest, Works) { |
| const Matcher<int> m = IsEven(); |
| EXPECT_TRUE(m.Matches(6)); |
| EXPECT_FALSE(m.Matches(7)); |
| |
| EXPECT_EQ("is even", Describe(m)); |
| EXPECT_EQ("not (is even)", DescribeNegation(m)); |
| EXPECT_EQ("", Explain(m, 6)); |
| EXPECT_EQ("", Explain(m, 7)); |
| } |
| |
| // This also tests that the description string can reference 'negation'. |
| MATCHER(IsEven2, negation ? "is odd" : "is even") { |
| if ((arg % 2) == 0) { |
| // Verifies that we can stream to result_listener, a listener |
| // supplied by the MATCHER macro implicitly. |
| *result_listener << "OK"; |
| return true; |
| } else { |
| *result_listener << "% 2 == " << (arg % 2); |
| return false; |
| } |
| } |
| |
| // This also tests that the description string can reference matcher |
| // parameters. |
| MATCHER_P2(EqSumOf, x, y, |
| std::string(negation ? "doesn't equal" : "equals") + " the sum of " + |
| PrintToString(x) + " and " + PrintToString(y)) { |
| if (arg == (x + y)) { |
| *result_listener << "OK"; |
| return true; |
| } else { |
| // Verifies that we can stream to the underlying stream of |
| // result_listener. |
| if (result_listener->stream() != nullptr) { |
| *result_listener->stream() << "diff == " << (x + y - arg); |
| } |
| return false; |
| } |
| } |
| |
| // Tests that the matcher description can reference 'negation' and the |
| // matcher parameters. |
| TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) { |
| const Matcher<int> m1 = IsEven2(); |
| EXPECT_EQ("is even", Describe(m1)); |
| EXPECT_EQ("is odd", DescribeNegation(m1)); |
| |
| const Matcher<int> m2 = EqSumOf(5, 9); |
| EXPECT_EQ("equals the sum of 5 and 9", Describe(m2)); |
| EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2)); |
| } |
| |
| // Tests explaining match result in a MATCHER* macro. |
| TEST(MatcherMacroTest, CanExplainMatchResult) { |
| const Matcher<int> m1 = IsEven2(); |
| EXPECT_EQ("OK", Explain(m1, 4)); |
| EXPECT_EQ("% 2 == 1", Explain(m1, 5)); |
| |
| const Matcher<int> m2 = EqSumOf(1, 2); |
| EXPECT_EQ("OK", Explain(m2, 3)); |
| EXPECT_EQ("diff == -1", Explain(m2, 4)); |
| } |
| |
| // Tests that the body of MATCHER() can reference the type of the |
| // value being matched. |
| |
| MATCHER(IsEmptyString, "") { |
| StaticAssertTypeEq<::std::string, arg_type>(); |
| return arg.empty(); |
| } |
| |
| MATCHER(IsEmptyStringByRef, "") { |
| StaticAssertTypeEq<const ::std::string&, arg_type>(); |
| return arg.empty(); |
| } |
| |
| TEST(MatcherMacroTest, CanReferenceArgType) { |
| const Matcher<::std::string> m1 = IsEmptyString(); |
| EXPECT_TRUE(m1.Matches("")); |
| |
| const Matcher<const ::std::string&> m2 = IsEmptyStringByRef(); |
| EXPECT_TRUE(m2.Matches("")); |
| } |
| |
| // Tests that MATCHER() can be used in a namespace. |
| |
| namespace matcher_test { |
| MATCHER(IsOdd, "") { return (arg % 2) != 0; } |
| } // namespace matcher_test |
| |
| TEST(MatcherMacroTest, WorksInNamespace) { |
| Matcher<int> m = matcher_test::IsOdd(); |
| EXPECT_FALSE(m.Matches(4)); |
| EXPECT_TRUE(m.Matches(5)); |
| } |
| |
| // Tests that Value() can be used to compose matchers. |
| MATCHER(IsPositiveOdd, "") { |
| return Value(arg, matcher_test::IsOdd()) && arg > 0; |
| } |
| |
| TEST(MatcherMacroTest, CanBeComposedUsingValue) { |
| EXPECT_THAT(3, IsPositiveOdd()); |
| EXPECT_THAT(4, Not(IsPositiveOdd())); |
| EXPECT_THAT(-1, Not(IsPositiveOdd())); |
| } |
| |
| // Tests that a simple MATCHER_P() definition works. |
| |
| MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; } |
| |
| TEST(MatcherPMacroTest, Works) { |
| const Matcher<int> m = IsGreaterThan32And(5); |
| EXPECT_TRUE(m.Matches(36)); |
| EXPECT_FALSE(m.Matches(5)); |
| |
| EXPECT_EQ("is greater than 32 and 5", Describe(m)); |
| EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m)); |
| EXPECT_EQ("", Explain(m, 36)); |
| EXPECT_EQ("", Explain(m, 5)); |
| } |
| |
| // Tests that the description is calculated correctly from the matcher name. |
| MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; } |
| |
| TEST(MatcherPMacroTest, GeneratesCorrectDescription) { |
| const Matcher<int> m = _is_Greater_Than32and_(5); |
| |
| EXPECT_EQ("is greater than 32 and 5", Describe(m)); |
| EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m)); |
| EXPECT_EQ("", Explain(m, 36)); |
| EXPECT_EQ("", Explain(m, 5)); |
| } |
| |
| // Tests that a MATCHER_P matcher can be explicitly instantiated with |
| // a reference parameter type. |
| |
| class UncopyableFoo { |
| public: |
| explicit UncopyableFoo(char value) : value_(value) { (void)value_; } |
| |
| UncopyableFoo(const UncopyableFoo&) = delete; |
| void operator=(const UncopyableFoo&) = delete; |
| |
| private: |
| char value_; |
| }; |
| |
| MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; } |
| |
| TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) { |
| UncopyableFoo foo1('1'), foo2('2'); |
| const Matcher<const UncopyableFoo&> m = |
| ReferencesUncopyable<const UncopyableFoo&>(foo1); |
| |
| EXPECT_TRUE(m.Matches(foo1)); |
| EXPECT_FALSE(m.Matches(foo2)); |
| |
| // We don't want the address of the parameter printed, as most |
| // likely it will just annoy the user. If the address is |
| // interesting, the user should consider passing the parameter by |
| // pointer instead. |
| EXPECT_EQ("references uncopyable 1-byte object <31>", Describe(m)); |
| } |
| |
| // Tests that the body of MATCHER_Pn() can reference the parameter |
| // types. |
| |
| MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") { |
| StaticAssertTypeEq<int, foo_type>(); |
| StaticAssertTypeEq<long, bar_type>(); // NOLINT |
| StaticAssertTypeEq<char, baz_type>(); |
| return arg == 0; |
| } |
| |
| TEST(MatcherPnMacroTest, CanReferenceParamTypes) { |
| EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a')); |
| } |
| |
| // Tests that a MATCHER_Pn matcher can be explicitly instantiated with |
| // reference parameter types. |
| |
| MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") { |
| return &arg == &variable1 || &arg == &variable2; |
| } |
| |
| TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) { |
| UncopyableFoo foo1('1'), foo2('2'), foo3('3'); |
| const Matcher<const UncopyableFoo&> const_m = |
| ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2); |
| |
| EXPECT_TRUE(const_m.Matches(foo1)); |
| EXPECT_TRUE(const_m.Matches(foo2)); |
| EXPECT_FALSE(const_m.Matches(foo3)); |
| |
| const Matcher<UncopyableFoo&> m = |
| ReferencesAnyOf<UncopyableFoo&, UncopyableFoo&>(foo1, foo2); |
| |
| EXPECT_TRUE(m.Matches(foo1)); |
| EXPECT_TRUE(m.Matches(foo2)); |
| EXPECT_FALSE(m.Matches(foo3)); |
| } |
| |
| TEST(MatcherPnMacroTest, |
| GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) { |
| UncopyableFoo foo1('1'), foo2('2'); |
| const Matcher<const UncopyableFoo&> m = |
| ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2); |
| |
| // We don't want the addresses of the parameters printed, as most |
| // likely they will just annoy the user. If the addresses are |
| // interesting, the user should consider passing the parameters by |
| // pointers instead. |
| EXPECT_EQ("references any of (1-byte object <31>, 1-byte object <32>)", |
| Describe(m)); |
| } |
| |
| // Tests that a simple MATCHER_P2() definition works. |
| |
| MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; } |
| |
| TEST(MatcherPnMacroTest, Works) { |
| const Matcher<const long&> m = IsNotInClosedRange(10, 20); // NOLINT |
| EXPECT_TRUE(m.Matches(36L)); |
| EXPECT_FALSE(m.Matches(15L)); |
| |
| EXPECT_EQ("is not in closed range (10, 20)", Describe(m)); |
| EXPECT_EQ("not (is not in closed range (10, 20))", DescribeNegation(m)); |
| EXPECT_EQ("", Explain(m, 36L)); |
| EXPECT_EQ("", Explain(m, 15L)); |
| } |
| |
| // Tests that MATCHER*() definitions can be overloaded on the number |
| // of parameters; also tests MATCHER_Pn() where n >= 3. |
| |
| MATCHER(EqualsSumOf, "") { return arg == 0; } |
| MATCHER_P(EqualsSumOf, a, "") { return arg == a; } |
| MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; } |
| MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; } |
| MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; } |
| MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; } |
| MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") { |
| return arg == a + b + c + d + e + f; |
| } |
| MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") { |
| return arg == a + b + c + d + e + f + g; |
| } |
| MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") { |
| return arg == a + b + c + d + e + f + g + h; |
| } |
| MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") { |
| return arg == a + b + c + d + e + f + g + h + i; |
| } |
| MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") { |
| return arg == a + b + c + d + e + f + g + h + i + j; |
| } |
| |
| TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) { |
| EXPECT_THAT(0, EqualsSumOf()); |
| EXPECT_THAT(1, EqualsSumOf(1)); |
| EXPECT_THAT(12, EqualsSumOf(10, 2)); |
| EXPECT_THAT(123, EqualsSumOf(100, 20, 3)); |
| EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4)); |
| EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5)); |
| EXPECT_THAT("abcdef", |
| EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')); |
| EXPECT_THAT("abcdefg", |
| EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g')); |
| EXPECT_THAT("abcdefgh", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", |
| 'f', 'g', "h")); |
| EXPECT_THAT("abcdefghi", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", |
| 'f', 'g', "h", 'i')); |
| EXPECT_THAT("abcdefghij", |
| EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", |
| 'i', ::std::string("j"))); |
| |
| EXPECT_THAT(1, Not(EqualsSumOf())); |
| EXPECT_THAT(-1, Not(EqualsSumOf(1))); |
| EXPECT_THAT(-12, Not(EqualsSumOf(10, 2))); |
| EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3))); |
| EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4))); |
| EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5))); |
| EXPECT_THAT("abcdef ", |
| Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'))); |
| EXPECT_THAT("abcdefg ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", |
| "e", 'f', 'g'))); |
| EXPECT_THAT("abcdefgh ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", |
| "e", 'f', 'g', "h"))); |
| EXPECT_THAT("abcdefghi ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", |
| "e", 'f', 'g', "h", 'i'))); |
| EXPECT_THAT("abcdefghij ", |
| Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', |
| "h", 'i', ::std::string("j")))); |
| } |
| |
| // Tests that a MATCHER_Pn() definition can be instantiated with any |
| // compatible parameter types. |
| TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) { |
| EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast<char>(3))); |
| EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d")); |
| |
| EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast<char>(3)))); |
| EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d"))); |
| } |
| |
| // Tests that the matcher body can promote the parameter types. |
| |
| MATCHER_P2(EqConcat, prefix, suffix, "") { |
| // The following lines promote the two parameters to desired types. |
| std::string prefix_str(prefix); |
| char suffix_char = static_cast<char>(suffix); |
| return arg == prefix_str + suffix_char; |
| } |
| |
| TEST(MatcherPnMacroTest, SimpleTypePromotion) { |
| Matcher<std::string> no_promo = EqConcat(std::string("foo"), 't'); |
| Matcher<const std::string&> promo = EqConcat("foo", static_cast<int>('t')); |
| EXPECT_FALSE(no_promo.Matches("fool")); |
| EXPECT_FALSE(promo.Matches("fool")); |
| EXPECT_TRUE(no_promo.Matches("foot")); |
| EXPECT_TRUE(promo.Matches("foot")); |
| } |
| |
| // Verifies the type of a MATCHER*. |
| |
| TEST(MatcherPnMacroTest, TypesAreCorrect) { |
| // EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable. |
| EqualsSumOfMatcher a0 = EqualsSumOf(); |
| |
| // EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable. |
| EqualsSumOfMatcherP<int> a1 = EqualsSumOf(1); |
| |
| // EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk |
| // variable, and so on. |
| EqualsSumOfMatcherP2<int, char> a2 = EqualsSumOf(1, '2'); |
| EqualsSumOfMatcherP3<int, int, char> a3 = EqualsSumOf(1, 2, '3'); |
| EqualsSumOfMatcherP4<int, int, int, char> a4 = EqualsSumOf(1, 2, 3, '4'); |
| EqualsSumOfMatcherP5<int, int, int, int, char> a5 = |
| EqualsSumOf(1, 2, 3, 4, '5'); |
| EqualsSumOfMatcherP6<int, int, int, int, int, char> a6 = |
| EqualsSumOf(1, 2, 3, 4, 5, '6'); |
| EqualsSumOfMatcherP7<int, int, int, int, int, int, char> a7 = |
| EqualsSumOf(1, 2, 3, 4, 5, 6, '7'); |
| EqualsSumOfMatcherP8<int, int, int, int, int, int, int, char> a8 = |
| EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8'); |
| EqualsSumOfMatcherP9<int, int, int, int, int, int, int, int, char> a9 = |
| EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9'); |
| EqualsSumOfMatcherP10<int, int, int, int, int, int, int, int, int, char> a10 = |
| EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); |
| |
| // Avoid "unused variable" warnings. |
| (void)a0; |
| (void)a1; |
| (void)a2; |
| (void)a3; |
| (void)a4; |
| (void)a5; |
| (void)a6; |
| (void)a7; |
| (void)a8; |
| (void)a9; |
| (void)a10; |
| } |
| |
| // Tests that matcher-typed parameters can be used in Value() inside a |
| // MATCHER_Pn definition. |
| |
| // Succeeds if arg matches exactly 2 of the 3 matchers. |
| MATCHER_P3(TwoOf, m1, m2, m3, "") { |
| const int count = static_cast<int>(Value(arg, m1)) + |
| static_cast<int>(Value(arg, m2)) + |
| static_cast<int>(Value(arg, m3)); |
| return count == 2; |
| } |
| |
| TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) { |
| EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10))); |
| EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0)))); |
| } |
| |
| // Tests Contains(). |
| |
| TEST(ContainsTest, ListMatchesWhenElementIsInContainer) { |
| list<int> some_list; |
| some_list.push_back(3); |
| some_list.push_back(1); |
| some_list.push_back(2); |
| some_list.push_back(3); |
| EXPECT_THAT(some_list, Contains(1)); |
| EXPECT_THAT(some_list, Contains(Gt(2.5))); |
| EXPECT_THAT(some_list, Contains(Eq(2.0f))); |
| |
| list<std::string> another_list; |
| another_list.push_back("fee"); |
| another_list.push_back("fie"); |
| another_list.push_back("foe"); |
| another_list.push_back("fum"); |
| EXPECT_THAT(another_list, Contains(std::string("fee"))); |
| } |
| |
| TEST(ContainsTest, ListDoesNotMatchWhenElementIsNotInContainer) { |
| list<int> some_list; |
| some_list.push_back(3); |
| some_list.push_back(1); |
| EXPECT_THAT(some_list, Not(Contains(4))); |
| } |
| |
| TEST(ContainsTest, SetMatchesWhenElementIsInContainer) { |
| set<int> some_set; |
| some_set.insert(3); |
| some_set.insert(1); |
| some_set.insert(2); |
| EXPECT_THAT(some_set, Contains(Eq(1.0))); |
| EXPECT_THAT(some_set, Contains(Eq(3.0f))); |
| EXPECT_THAT(some_set, Contains(2)); |
| |
| set<std::string> another_set; |
| another_set.insert("fee"); |
| another_set.insert("fie"); |
| another_set.insert("foe"); |
| another_set.insert("fum"); |
| EXPECT_THAT(another_set, Contains(Eq(std::string("fum")))); |
| } |
| |
| TEST(ContainsTest, SetDoesNotMatchWhenElementIsNotInContainer) { |
| set<int> some_set; |
| some_set.insert(3); |
| some_set.insert(1); |
| EXPECT_THAT(some_set, Not(Contains(4))); |
| |
| set<std::string> c_string_set; |
| c_string_set.insert("hello"); |
| EXPECT_THAT(c_string_set, Not(Contains(std::string("goodbye")))); |
| } |
| |
| TEST(ContainsTest, ExplainsMatchResultCorrectly) { |
| const int a[2] = {1, 2}; |
| Matcher<const int(&)[2]> m = Contains(2); |
| EXPECT_EQ("whose element #1 matches", Explain(m, a)); |
| |
| m = Contains(3); |
| EXPECT_EQ("", Explain(m, a)); |
| |
| m = Contains(GreaterThan(0)); |
| EXPECT_EQ("whose element #0 matches, which is 1 more than 0", Explain(m, a)); |
| |
| m = Contains(GreaterThan(10)); |
| EXPECT_EQ("", Explain(m, a)); |
| } |
| |
| TEST(ContainsTest, DescribesItselfCorrectly) { |
| Matcher<vector<int>> m = Contains(1); |
| EXPECT_EQ("contains at least one element that is equal to 1", Describe(m)); |
| |
| Matcher<vector<int>> m2 = Not(m); |
| EXPECT_EQ("doesn't contain any element that is equal to 1", Describe(m2)); |
| } |
| |
| TEST(ContainsTest, MapMatchesWhenElementIsInContainer) { |
| map<std::string, int> my_map; |
| const char* bar = "a string"; |
| my_map[bar] = 2; |
| EXPECT_THAT(my_map, Contains(pair<const char* const, int>(bar, 2))); |
| |
| map<std::string, int> another_map; |
| another_map["fee"] = 1; |
| another_map["fie"] = 2; |
| another_map["foe"] = 3; |
| another_map["fum"] = 4; |
| EXPECT_THAT(another_map, |
| Contains(pair<const std::string, int>(std::string("fee"), 1))); |
| EXPECT_THAT(another_map, Contains(pair<const std::string, int>("fie", 2))); |
| } |
| |
| TEST(ContainsTest, MapDoesNotMatchWhenElementIsNotInContainer) { |
| map<int, int> some_map; |
| some_map[1] = 11; |
| some_map[2] = 22; |
| EXPECT_THAT(some_map, Not(Contains(pair<const int, int>(2, 23)))); |
| } |
| |
| TEST(ContainsTest, ArrayMatchesWhenElementIsInContainer) { |
| const char* string_array[] = {"fee", "fie", "foe", "fum"}; |
| EXPECT_THAT(string_array, Contains(Eq(std::string("fum")))); |
| } |
| |
| TEST(ContainsTest, ArrayDoesNotMatchWhenElementIsNotInContainer) { |
| int int_array[] = {1, 2, 3, 4}; |
| EXPECT_THAT(int_array, Not(Contains(5))); |
| } |
| |
| TEST(ContainsTest, AcceptsMatcher) { |
| const int a[] = {1, 2, 3}; |
| EXPECT_THAT(a, Contains(Gt(2))); |
| EXPECT_THAT(a, Not(Contains(Gt(4)))); |
| } |
| |
| TEST(ContainsTest, WorksForNativeArrayAsTuple) { |
| const int a[] = {1, 2}; |
| const int* const pointer = a; |
| EXPECT_THAT(std::make_tuple(pointer, 2), Contains(1)); |
| EXPECT_THAT(std::make_tuple(pointer, 2), Not(Contains(Gt(3)))); |
| } |
| |
| TEST(ContainsTest, WorksForTwoDimensionalNativeArray) { |
| int a[][3] = {{1, 2, 3}, {4, 5, 6}}; |
| EXPECT_THAT(a, Contains(ElementsAre(4, 5, 6))); |
| EXPECT_THAT(a, Contains(Contains(5))); |
| EXPECT_THAT(a, Not(Contains(ElementsAre(3, 4, 5)))); |
| EXPECT_THAT(a, Contains(Not(Contains(5)))); |
| } |
| |
| // Tests Contains().Times(). |
| |
| TEST(ContainsTimes, ListMatchesWhenElementQuantityMatches) { |
| list<int> some_list; |
| some_list.push_back(3); |
| some_list.push_back(1); |
| some_list.push_back(2); |
| some_list.push_back(3); |
| EXPECT_THAT(some_list, Contains(3).Times(2)); |
| EXPECT_THAT(some_list, Contains(2).Times(1)); |
| EXPECT_THAT(some_list, Contains(Ge(2)).Times(3)); |
| EXPECT_THAT(some_list, Contains(Ge(2)).Times(Gt(2))); |
| EXPECT_THAT(some_list, Contains(4).Times(0)); |
| EXPECT_THAT(some_list, Contains(_).Times(4)); |
| EXPECT_THAT(some_list, Not(Contains(5).Times(1))); |
| EXPECT_THAT(some_list, Contains(5).Times(_)); // Times(_) always matches |
| EXPECT_THAT(some_list, Not(Contains(3).Times(1))); |
| EXPECT_THAT(some_list, Contains(3).Times(Not(1))); |
| EXPECT_THAT(list<int>{}, Not(Contains(_))); |
| } |
| |
| TEST(ContainsTimes, ExplainsMatchResultCorrectly) { |
| const int a[2] = {1, 2}; |
| Matcher<const int(&)[2]> m = Contains(2).Times(3); |
| EXPECT_EQ( |
| "whose element #1 matches but whose match quantity of 1 does not match", |
| Explain(m, a)); |
| |
| m = Contains(3).Times(0); |
| EXPECT_EQ("has no element that matches and whose match quantity of 0 matches", |
| Explain(m, a)); |
| |
| m = Contains(3).Times(4); |
| EXPECT_EQ( |
| "has no element that matches and whose match quantity of 0 does not " |
| "match", |
| Explain(m, a)); |
| |
| m = Contains(2).Times(4); |
| EXPECT_EQ( |
| "whose element #1 matches but whose match quantity of 1 does not " |
| "match", |
| Explain(m, a)); |
| |
| m = Contains(GreaterThan(0)).Times(2); |
| EXPECT_EQ("whose elements (0, 1) match and whose match quantity of 2 matches", |
| Explain(m, a)); |
| |
| m = Contains(GreaterThan(10)).Times(Gt(1)); |
| EXPECT_EQ( |
| "has no element that matches and whose match quantity of 0 does not " |
| "match", |
| Explain(m, a)); |
| |
| m = Contains(GreaterThan(0)).Times(GreaterThan<size_t>(5)); |
| EXPECT_EQ( |
| "whose elements (0, 1) match but whose match quantity of 2 does not " |
| "match, which is 3 less than 5", |
| Explain(m, a)); |
| } |
| |
| TEST(ContainsTimes, DescribesItselfCorrectly) { |
| Matcher<vector<int>> m = Contains(1).Times(2); |
| EXPECT_EQ("quantity of elements that match is equal to 1 is equal to 2", |
| Describe(m)); |
| |
| Matcher<vector<int>> m2 = Not(m); |
| EXPECT_EQ("quantity of elements that match is equal to 1 isn't equal to 2", |
| Describe(m2)); |
| } |
| |
| // Tests AllOfArray() |
| |
| TEST(AllOfArrayTest, BasicForms) { |
| // Iterator |
| std::vector<int> v0{}; |
| std::vector<int> v1{1}; |
| std::vector<int> v2{2, 3}; |
| std::vector<int> v3{4, 4, 4}; |
| EXPECT_THAT(0, AllOfArray(v0.begin(), v0.end())); |
| EXPECT_THAT(1, AllOfArray(v1.begin(), v1.end())); |
| EXPECT_THAT(2, Not(AllOfArray(v1.begin(), v1.end()))); |
| EXPECT_THAT(3, Not(AllOfArray(v2.begin(), v2.end()))); |
| EXPECT_THAT(4, AllOfArray(v3.begin(), v3.end())); |
| // Pointer + size |
| int ar[6] = {1, 2, 3, 4, 4, 4}; |
| EXPECT_THAT(0, AllOfArray(ar, 0)); |
| EXPECT_THAT(1, AllOfArray(ar, 1)); |
| EXPECT_THAT(2, Not(AllOfArray(ar, 1))); |
| EXPECT_THAT(3, Not(AllOfArray(ar + 1, 3))); |
| EXPECT_THAT(4, AllOfArray(ar + 3, 3)); |
| // Array |
| // int ar0[0]; Not usable |
| int ar1[1] = {1}; |
| int ar2[2] = {2, 3}; |
| int ar3[3] = {4, 4, 4}; |
| // EXPECT_THAT(0, Not(AllOfArray(ar0))); // Cannot work |
| EXPECT_THAT(1, AllOfArray(ar1)); |
| EXPECT_THAT(2, Not(AllOfArray(ar1))); |
| EXPECT_THAT(3, Not(AllOfArray(ar2))); |
| EXPECT_THAT(4, AllOfArray(ar3)); |
| // Container |
| EXPECT_THAT(0, AllOfArray(v0)); |
| EXPECT_THAT(1, AllOfArray(v1)); |
| EXPECT_THAT(2, Not(AllOfArray(v1))); |
| EXPECT_THAT(3, Not(AllOfArray(v2))); |
| EXPECT_THAT(4, AllOfArray(v3)); |
| // Initializer |
| EXPECT_THAT(0, AllOfArray<int>({})); // Requires template arg. |
| EXPECT_THAT(1, AllOfArray({1})); |
| EXPECT_THAT(2, Not(AllOfArray({1}))); |
| EXPECT_THAT(3, Not(AllOfArray({2, 3}))); |
| EXPECT_THAT(4, AllOfArray({4, 4, 4})); |
| } |
| |
| TEST(AllOfArrayTest, Matchers) { |
| // vector |
| std::vector<Matcher<int>> matchers{Ge(1), Lt(2)}; |
| EXPECT_THAT(0, Not(AllOfArray(matchers))); |
| EXPECT_THAT(1, AllOfArray(matchers)); |
| EXPECT_THAT(2, Not(AllOfArray(matchers))); |
| // initializer_list |
| EXPECT_THAT(0, Not(AllOfArray({Ge(0), Ge(1)}))); |
| EXPECT_THAT(1, AllOfArray({Ge(0), Ge(1)})); |
| } |
| |
| TEST(AnyOfArrayTest, BasicForms) { |
| // Iterator |
| std::vector<int> v0{}; |
| std::vector<int> v1{1}; |
| std::vector<int> v2{2, 3}; |
| EXPECT_THAT(0, Not(AnyOfArray(v0.begin(), v0.end()))); |
| EXPECT_THAT(1, AnyOfArray(v1.begin(), v1.end())); |
| EXPECT_THAT(2, Not(AnyOfArray(v1.begin(), v1.end()))); |
| EXPECT_THAT(3, AnyOfArray(v2.begin(), v2.end())); |
| EXPECT_THAT(4, Not(AnyOfArray(v2.begin(), v2.end()))); |
| // Pointer + size |
| int ar[3] = {1, 2, 3}; |
| EXPECT_THAT(0, Not(AnyOfArray(ar, 0))); |
| EXPECT_THAT(1, AnyOfArray(ar, 1)); |
| EXPECT_THAT(2, Not(AnyOfArray(ar, 1))); |
| EXPECT_THAT(3, AnyOfArray(ar + 1, 2)); |
| EXPECT_THAT(4, Not(AnyOfArray(ar + 1, 2))); |
| // Array |
| // int ar0[0]; Not usable |
| int ar1[1] = {1}; |
| int ar2[2] = {2, 3}; |
| // EXPECT_THAT(0, Not(AnyOfArray(ar0))); // Cannot work |
| EXPECT_THAT(1, AnyOfArray(ar1)); |
| EXPECT_THAT(2, Not(AnyOfArray(ar1))); |
| EXPECT_THAT(3, AnyOfArray(ar2)); |
| EXPECT_THAT(4, Not(AnyOfArray(ar2))); |
| // Container |
| EXPECT_THAT(0, Not(AnyOfArray(v0))); |
| EXPECT_THAT(1, AnyOfArray(v1)); |
| EXPECT_THAT(2, Not(AnyOfArray(v1))); |
| EXPECT_THAT(3, AnyOfArray(v2)); |
| EXPECT_THAT(4, Not(AnyOfArray(v2))); |
| // Initializer |
| EXPECT_THAT(0, Not(AnyOfArray<int>({}))); // Requires template arg. |
| EXPECT_THAT(1, AnyOfArray({1})); |
| EXPECT_THAT(2, Not(AnyOfArray({1}))); |
| EXPECT_THAT(3, AnyOfArray({2, 3})); |
| EXPECT_THAT(4, Not(AnyOfArray({2, 3}))); |
| } |
| |
| TEST(AnyOfArrayTest, Matchers) { |
| // We negate test AllOfArrayTest.Matchers. |
| // vector |
| std::vector<Matcher<int>> matchers{Lt(1), Ge(2)}; |
| EXPECT_THAT(0, AnyOfArray(matchers)); |
| EXPECT_THAT(1, Not(AnyOfArray(matchers))); |
| EXPECT_THAT(2, AnyOfArray(matchers)); |
| // initializer_list |
| EXPECT_THAT(0, AnyOfArray({Lt(0), Lt(1)})); |
| EXPECT_THAT(1, Not(AllOfArray({Lt(0), Lt(1)}))); |
| } |
| |
| TEST(AnyOfArrayTest, ExplainsMatchResultCorrectly) { |
| // AnyOfArray and AllOfArry use the same underlying template-template, |
| // thus it is sufficient to test one here. |
| const std::vector<int> v0{}; |
| const std::vector<int> v1{1}; |
| const std::vector<int> v2{2, 3}; |
| const Matcher<int> m0 = AnyOfArray(v0); |
| const Matcher<int> m1 = AnyOfArray(v1); |
| const Matcher<int> m2 = AnyOfArray(v2); |
| EXPECT_EQ("", Explain(m0, 0)); |
| EXPECT_EQ("", Explain(m1, 1)); |
| EXPECT_EQ("", Explain(m1, 2)); |
| EXPECT_EQ("", Explain(m2, 3)); |
| EXPECT_EQ("", Explain(m2, 4)); |
| EXPECT_EQ("()", Describe(m0)); |
| EXPECT_EQ("(is equal to 1)", Describe(m1)); |
| EXPECT_EQ("(is equal to 2) or (is equal to 3)", Describe(m2)); |
| EXPECT_EQ("()", DescribeNegation(m0)); |
| EXPECT_EQ("(isn't equal to 1)", DescribeNegation(m1)); |
| EXPECT_EQ("(isn't equal to 2) and (isn't equal to 3)", DescribeNegation(m2)); |
| // Explain with matchers |
| const Matcher<int> g1 = AnyOfArray({GreaterThan(1)}); |
| const Matcher<int> g2 = AnyOfArray({GreaterThan(1), GreaterThan(2)}); |
| // Explains the first positiv match and all prior negative matches... |
| EXPECT_EQ("which is 1 less than 1", Explain(g1, 0)); |
| EXPECT_EQ("which is the same as 1", Explain(g1, 1)); |
| EXPECT_EQ("which is 1 more than 1", Explain(g1, 2)); |
| EXPECT_EQ("which is 1 less than 1, and which is 2 less than 2", |
| Explain(g2, 0)); |
| EXPECT_EQ("which is the same as 1, and which is 1 less than 2", |
| Explain(g2, 1)); |
| EXPECT_EQ("which is 1 more than 1", // Only the first |
| Explain(g2, 2)); |
| } |
| |
| TEST(AllOfTest, HugeMatcher) { |
| // Verify that using AllOf with many arguments doesn't cause |
| // the compiler to exceed template instantiation depth limit. |
| EXPECT_THAT(0, testing::AllOf(_, _, _, _, _, _, _, _, _, |
| testing::AllOf(_, _, _, _, _, _, _, _, _, _))); |
| } |
| |
| TEST(AnyOfTest, HugeMatcher) { |
| // Verify that using AnyOf with many arguments doesn't cause |
| // the compiler to exceed template instantiation depth limit. |
| EXPECT_THAT(0, testing::AnyOf(_, _, _, _, _, _, _, _, _, |
| testing::AnyOf(_, _, _, _, _, _, _, _, _, _))); |
| } |
| |
| namespace adl_test { |
| |
| // Verifies that the implementation of ::testing::AllOf and ::testing::AnyOf |
| // don't issue unqualified recursive calls. If they do, the argument dependent |
| // name lookup will cause AllOf/AnyOf in the 'adl_test' namespace to be found |
| // as a candidate and the compilation will break due to an ambiguous overload. |
| |
| // The matcher must be in the same namespace as AllOf/AnyOf to make argument |
| // dependent lookup find those. |
| MATCHER(M, "") { |
| (void)arg; |
| return true; |
| } |
| |
| template <typename T1, typename T2> |
| bool AllOf(const T1& /*t1*/, const T2& /*t2*/) { |
| return true; |
| } |
| |
| TEST(AllOfTest, DoesNotCallAllOfUnqualified) { |
| EXPECT_THAT(42, |
| testing::AllOf(M(), M(), M(), M(), M(), M(), M(), M(), M(), M())); |
| } |
| |
| template <typename T1, typename T2> |
| bool AnyOf(const T1&, const T2&) { |
| return true; |
| } |
| |
| TEST(AnyOfTest, DoesNotCallAnyOfUnqualified) { |
| EXPECT_THAT(42, |
| testing::AnyOf(M(), M(), M(), M(), M(), M(), M(), M(), M(), M())); |
| } |
| |
| } // namespace adl_test |
| |
| TEST(AllOfTest, WorksOnMoveOnlyType) { |
| std::unique_ptr<int> p(new int(3)); |
| EXPECT_THAT(p, AllOf(Pointee(Eq(3)), Pointee(Gt(0)), Pointee(Lt(5)))); |
| EXPECT_THAT(p, Not(AllOf(Pointee(Eq(3)), Pointee(Gt(0)), Pointee(Lt(3))))); |
| } |
| |
| TEST(AnyOfTest, WorksOnMoveOnlyType) { |
| std::unique_ptr<int> p(new int(3)); |
| EXPECT_THAT(p, AnyOf(Pointee(Eq(5)), Pointee(Lt(0)), Pointee(Lt(5)))); |
| EXPECT_THAT(p, Not(AnyOf(Pointee(Eq(5)), Pointee(Lt(0)), Pointee(Gt(5))))); |
| } |
| |
| MATCHER(IsNotNull, "") { return arg != nullptr; } |
| |
| // Verifies that a matcher defined using MATCHER() can work on |
| // move-only types. |
| TEST(MatcherMacroTest, WorksOnMoveOnlyType) { |
| std::unique_ptr<int> p(new int(3)); |
| EXPECT_THAT(p, IsNotNull()); |
| EXPECT_THAT(std::unique_ptr<int>(), Not(IsNotNull())); |
| } |
| |
| MATCHER_P(UniquePointee, pointee, "") { return *arg == pointee; } |
| |
| // Verifies that a matcher defined using MATCHER_P*() can work on |
| // move-only types. |
| TEST(MatcherPMacroTest, WorksOnMoveOnlyType) { |
| std::unique_ptr<int> p(new int(3)); |
| EXPECT_THAT(p, UniquePointee(3)); |
| EXPECT_THAT(p, Not(UniquePointee(2))); |
| } |
| |
| #if GTEST_HAS_EXCEPTIONS |
| |
| // std::function<void()> is used below for compatibility with older copies of |
| // GCC. Normally, a raw lambda is all that is needed. |
| |
| // Test that examples from documentation compile |
| TEST(ThrowsTest, Examples) { |
| EXPECT_THAT( |
| std::function<void()>([]() { throw std::runtime_error("message"); }), |
| Throws<std::runtime_error>()); |
| |
| EXPECT_THAT( |
| std::function<void()>([]() { throw std::runtime_error("message"); }), |
| ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
| } |
| |
| TEST(ThrowsTest, DoesNotGenerateDuplicateCatchClauseWarning) { |
| EXPECT_THAT(std::function<void()>([]() { throw std::exception(); }), |
| Throws<std::exception>()); |
| } |
| |
| TEST(ThrowsTest, CallableExecutedExactlyOnce) { |
| size_t a = 0; |
| |
| EXPECT_THAT(std::function<void()>([&a]() { |
| a++; |
| throw 10; |
| }), |
| Throws<int>()); |
| EXPECT_EQ(a, 1u); |
| |
| EXPECT_THAT(std::function<void()>([&a]() { |
| a++; |
| throw std::runtime_error("message"); |
| }), |
| Throws<std::runtime_error>()); |
| EXPECT_EQ(a, 2u); |
| |
| EXPECT_THAT(std::function<void()>([&a]() { |
| a++; |
| throw std::runtime_error("message"); |
| }), |
| ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
| EXPECT_EQ(a, 3u); |
| |
| EXPECT_THAT(std::function<void()>([&a]() { |
| a++; |
| throw std::runtime_error("message"); |
| }), |
| Throws<std::runtime_error>( |
| Property(&std::runtime_error::what, HasSubstr("message")))); |
| EXPECT_EQ(a, 4u); |
| } |
| |
| TEST(ThrowsTest, Describe) { |
| Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
| std::stringstream ss; |
| matcher.DescribeTo(&ss); |
| auto explanation = ss.str(); |
| EXPECT_THAT(explanation, HasSubstr("std::runtime_error")); |
| } |
| |
| TEST(ThrowsTest, Success) { |
| Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
| StringMatchResultListener listener; |
| EXPECT_TRUE(matcher.MatchAndExplain( |
| []() { throw std::runtime_error("error message"); }, &listener)); |
| EXPECT_THAT(listener.str(), HasSubstr("std::runtime_error")); |
| } |
| |
| TEST(ThrowsTest, FailWrongType) { |
| Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(matcher.MatchAndExplain( |
| []() { throw std::logic_error("error message"); }, &listener)); |
| EXPECT_THAT(listener.str(), HasSubstr("std::logic_error")); |
| EXPECT_THAT(listener.str(), HasSubstr("\"error message\"")); |
| } |
| |
| TEST(ThrowsTest, FailWrongTypeNonStd) { |
| Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(matcher.MatchAndExplain([]() { throw 10; }, &listener)); |
| EXPECT_THAT(listener.str(), |
| HasSubstr("throws an exception of an unknown type")); |
| } |
| |
| TEST(ThrowsTest, FailNoThrow) { |
| Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(matcher.MatchAndExplain([]() { (void)0; }, &listener)); |
| EXPECT_THAT(listener.str(), HasSubstr("does not throw any exception")); |
| } |
| |
| class ThrowsPredicateTest |
| : public TestWithParam<Matcher<std::function<void()>>> {}; |
| |
| TEST_P(ThrowsPredicateTest, Describe) { |
| Matcher<std::function<void()>> matcher = GetParam(); |
| std::stringstream ss; |
| matcher.DescribeTo(&ss); |
| auto explanation = ss.str(); |
| EXPECT_THAT(explanation, HasSubstr("std::runtime_error")); |
| EXPECT_THAT(explanation, HasSubstr("error message")); |
| } |
| |
| TEST_P(ThrowsPredicateTest, Success) { |
| Matcher<std::function<void()>> matcher = GetParam(); |
| StringMatchResultListener listener; |
| EXPECT_TRUE(matcher.MatchAndExplain( |
| []() { throw std::runtime_error("error message"); }, &listener)); |
| EXPECT_THAT(listener.str(), HasSubstr("std::runtime_error")); |
| } |
| |
| TEST_P(ThrowsPredicateTest, FailWrongType) { |
| Matcher<std::function<void()>> matcher = GetParam(); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(matcher.MatchAndExplain( |
| []() { throw std::logic_error("error message"); }, &listener)); |
| EXPECT_THAT(listener.str(), HasSubstr("std::logic_error")); |
| EXPECT_THAT(listener.str(), HasSubstr("\"error message\"")); |
| } |
| |
| TEST_P(ThrowsPredicateTest, FailWrongTypeNonStd) { |
| Matcher<std::function<void()>> matcher = GetParam(); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(matcher.MatchAndExplain([]() { throw 10; }, &listener)); |
| EXPECT_THAT(listener.str(), |
| HasSubstr("throws an exception of an unknown type")); |
| } |
| |
| TEST_P(ThrowsPredicateTest, FailWrongMessage) { |
| Matcher<std::function<void()>> matcher = GetParam(); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(matcher.MatchAndExplain( |
| []() { throw std::runtime_error("wrong message"); }, &listener)); |
| EXPECT_THAT(listener.str(), HasSubstr("std::runtime_error")); |
| EXPECT_THAT(listener.str(), Not(HasSubstr("wrong message"))); |
| } |
| |
| TEST_P(ThrowsPredicateTest, FailNoThrow) { |
| Matcher<std::function<void()>> matcher = GetParam(); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(matcher.MatchAndExplain([]() {}, &listener)); |
| EXPECT_THAT(listener.str(), HasSubstr("does not throw any exception")); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| AllMessagePredicates, ThrowsPredicateTest, |
| Values(Matcher<std::function<void()>>( |
| ThrowsMessage<std::runtime_error>(HasSubstr("error message"))))); |
| |
| // Tests that Throws<E1>(Matcher<E2>{}) compiles even when E2 != const E1&. |
| TEST(ThrowsPredicateCompilesTest, ExceptionMatcherAcceptsBroadType) { |
| { |
| Matcher<std::function<void()>> matcher = |
| ThrowsMessage<std::runtime_error>(HasSubstr("error message")); |
| EXPECT_TRUE( |
| matcher.Matches([]() { throw std::runtime_error("error message"); })); |
| EXPECT_FALSE( |
| matcher.Matches([]() { throw std::runtime_error("wrong message"); })); |
| } |
| |
| { |
| Matcher<uint64_t> inner = Eq(10); |
| Matcher<std::function<void()>> matcher = Throws<uint32_t>(inner); |
| EXPECT_TRUE(matcher.Matches([]() { throw(uint32_t) 10; })); |
| EXPECT_FALSE(matcher.Matches([]() { throw(uint32_t) 11; })); |
| } |
| } |
| |
| // Tests that ThrowsMessage("message") is equivalent |
| // to ThrowsMessage(Eq<std::string>("message")). |
| TEST(ThrowsPredicateCompilesTest, MessageMatcherAcceptsNonMatcher) { |
| Matcher<std::function<void()>> matcher = |
| ThrowsMessage<std::runtime_error>("error message"); |
| EXPECT_TRUE( |
| matcher.Matches([]() { throw std::runtime_error("error message"); })); |
| EXPECT_FALSE(matcher.Matches( |
| []() { throw std::runtime_error("wrong error message"); })); |
| } |
| |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| } // namespace |
| } // namespace gmock_matchers_test |
| } // namespace testing |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |