| # Copyright (c) 2014, 2016, 2018-2019 ARM Limited |
| # All rights reserved |
| # |
| # The license below extends only to copyright in the software and shall |
| # not be construed as granting a license to any other intellectual |
| # property including but not limited to intellectual property relating |
| # to a hardware implementation of the functionality of the software |
| # licensed hereunder. You may use the software subject to the license |
| # terms below provided that you ensure that this notice is replicated |
| # unmodified and in its entirety in all distributions of the software, |
| # modified or unmodified, in source code or in binary form. |
| # |
| # Copyright (c) 2003-2005 The Regents of The University of Michigan |
| # Copyright (c) 2013,2015 Advanced Micro Devices, Inc. |
| # All rights reserved. |
| # |
| # Redistribution and use in source and binary forms, with or without |
| # modification, are permitted provided that the following conditions are |
| # met: redistributions of source code must retain the above copyright |
| # notice, this list of conditions and the following disclaimer; |
| # redistributions in binary form must reproduce the above copyright |
| # notice, this list of conditions and the following disclaimer in the |
| # documentation and/or other materials provided with the distribution; |
| # neither the name of the copyright holders nor the names of its |
| # contributors may be used to endorse or promote products derived from |
| # this software without specific prior written permission. |
| # |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| import os |
| import re |
| import sys |
| import traceback |
| # get type names |
| from types import * |
| |
| from m5.util.grammar import Grammar |
| from .operand_list import * |
| from .operand_types import * |
| from .util import * |
| |
| debug=False |
| |
| #################### |
| # Template objects. |
| # |
| # Template objects are format strings that allow substitution from |
| # the attribute spaces of other objects (e.g. InstObjParams instances). |
| |
| labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]') |
| |
| class Template(object): |
| def __init__(self, parser, t): |
| self.parser = parser |
| self.template = t |
| |
| def subst(self, d): |
| myDict = None |
| |
| # Protect non-Python-dict substitutions (e.g. if there's a printf |
| # in the templated C++ code) |
| template = protectNonSubstPercents(self.template) |
| |
| # Build a dict ('myDict') to use for the template substitution. |
| # Start with the template namespace. Make a copy since we're |
| # going to modify it. |
| myDict = self.parser.templateMap.copy() |
| |
| if isinstance(d, InstObjParams): |
| # If we're dealing with an InstObjParams object, we need |
| # to be a little more sophisticated. The instruction-wide |
| # parameters are already formed, but the parameters which |
| # are only function wide still need to be generated. |
| compositeCode = '' |
| |
| myDict.update(d.__dict__) |
| # The "operands" and "snippets" attributes of the InstObjParams |
| # objects are for internal use and not substitution. |
| del myDict['operands'] |
| del myDict['snippets'] |
| |
| snippetLabels = [l for l in labelRE.findall(template) |
| if l in d.snippets] |
| |
| snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s])) |
| for s in snippetLabels]) |
| |
| myDict.update(snippets) |
| |
| compositeCode = ' '.join(list(map(str, snippets.values()))) |
| |
| # Add in template itself in case it references any |
| # operands explicitly (like Mem) |
| compositeCode += ' ' + template |
| |
| operands = SubOperandList(self.parser, compositeCode, d.operands) |
| |
| myDict['reg_idx_arr_decl'] = \ |
| 'RegId srcRegIdxArr[%d]; RegId destRegIdxArr[%d]' % \ |
| (d.operands.numSrcRegs + d.srcRegIdxPadding, |
| d.operands.numDestRegs + d.destRegIdxPadding) |
| |
| # The reinterpret casts are largely because an array with a known |
| # size cannot be passed as an argument which is an array with an |
| # unknown size in C++. |
| myDict['set_reg_idx_arr'] = ''' |
| setRegIdxArrays( |
| reinterpret_cast<RegIdArrayPtr>( |
| &std::remove_pointer_t<decltype(this)>::srcRegIdxArr), |
| reinterpret_cast<RegIdArrayPtr>( |
| &std::remove_pointer_t<decltype(this)>::destRegIdxArr)); |
| ''' |
| |
| myDict['op_decl'] = operands.concatAttrStrings('op_decl') |
| if operands.readPC or operands.setPC: |
| myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n' |
| |
| # In case there are predicated register reads and write, declare |
| # the variables for register indicies. It is being assumed that |
| # all the operands in the OperandList are also in the |
| # SubOperandList and in the same order. Otherwise, it is |
| # expected that predication would not be used for the operands. |
| if operands.predRead: |
| myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n' |
| if operands.predWrite: |
| myDict['op_decl'] += 'M5_VAR_USED uint8_t _destIndex = 0;\n' |
| |
| is_src = lambda op: op.is_src |
| is_dest = lambda op: op.is_dest |
| |
| myDict['op_src_decl'] = \ |
| operands.concatSomeAttrStrings(is_src, 'op_src_decl') |
| myDict['op_dest_decl'] = \ |
| operands.concatSomeAttrStrings(is_dest, 'op_dest_decl') |
| if operands.readPC: |
| myDict['op_src_decl'] += \ |
| 'TheISA::PCState __parserAutoPCState;\n' |
| if operands.setPC: |
| myDict['op_dest_decl'] += \ |
| 'TheISA::PCState __parserAutoPCState;\n' |
| |
| myDict['op_rd'] = operands.concatAttrStrings('op_rd') |
| if operands.readPC: |
| myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \ |
| myDict['op_rd'] |
| |
| # Compose the op_wb string. If we're going to write back the |
| # PC state because we changed some of its elements, we'll need to |
| # do that as early as possible. That allows later uncoordinated |
| # modifications to the PC to layer appropriately. |
| reordered = list(operands.items) |
| reordered.reverse() |
| op_wb_str = '' |
| pcWbStr = 'xc->pcState(__parserAutoPCState);\n' |
| for op_desc in reordered: |
| if op_desc.isPCPart() and op_desc.is_dest: |
| op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str |
| pcWbStr = '' |
| else: |
| op_wb_str = op_desc.op_wb + op_wb_str |
| myDict['op_wb'] = op_wb_str |
| |
| elif isinstance(d, dict): |
| # if the argument is a dictionary, we just use it. |
| myDict.update(d) |
| elif hasattr(d, '__dict__'): |
| # if the argument is an object, we use its attribute map. |
| myDict.update(d.__dict__) |
| else: |
| raise TypeError("Template.subst() arg must be or have dictionary") |
| return template % myDict |
| |
| # Convert to string. |
| def __str__(self): |
| return self.template |
| |
| ################ |
| # Format object. |
| # |
| # A format object encapsulates an instruction format. It must provide |
| # a defineInst() method that generates the code for an instruction |
| # definition. |
| |
| class Format(object): |
| def __init__(self, id, params, code): |
| self.id = id |
| self.params = params |
| label = 'def format ' + id |
| self.user_code = compile(fixPythonIndentation(code), label, 'exec') |
| param_list = ", ".join(params) |
| f = '''def defInst(_code, _context, %s): |
| my_locals = vars().copy() |
| exec(_code, _context, my_locals) |
| return my_locals\n''' % param_list |
| c = compile(f, label + ' wrapper', 'exec') |
| exec(c, globals()) |
| self.func = defInst |
| |
| def defineInst(self, parser, name, args, lineno): |
| parser.updateExportContext() |
| context = parser.exportContext.copy() |
| if len(name): |
| Name = name[0].upper() |
| if len(name) > 1: |
| Name += name[1:] |
| context.update({ 'name' : name, 'Name' : Name }) |
| try: |
| vars = self.func(self.user_code, context, *args[0], **args[1]) |
| except Exception as exc: |
| if debug: |
| raise |
| error(lineno, 'error defining "%s": %s.' % (name, exc)) |
| for k in list(vars.keys()): |
| if k not in ('header_output', 'decoder_output', |
| 'exec_output', 'decode_block'): |
| del vars[k] |
| return GenCode(parser, **vars) |
| |
| # Special null format to catch an implicit-format instruction |
| # definition outside of any format block. |
| class NoFormat(object): |
| def __init__(self): |
| self.defaultInst = '' |
| |
| def defineInst(self, parser, name, args, lineno): |
| error(lineno, |
| 'instruction definition "%s" with no active format!' % name) |
| |
| ############### |
| # GenCode class |
| # |
| # The GenCode class encapsulates generated code destined for various |
| # output files. The header_output and decoder_output attributes are |
| # strings containing code destined for decoder.hh and decoder.cc |
| # respectively. The decode_block attribute contains code to be |
| # incorporated in the decode function itself (that will also end up in |
| # decoder.cc). The exec_output attribute is the string of code for the |
| # exec.cc file. The has_decode_default attribute is used in the decode block |
| # to allow explicit default clauses to override default default clauses. |
| |
| class GenCode(object): |
| # Constructor. |
| def __init__(self, parser, |
| header_output = '', decoder_output = '', exec_output = '', |
| decode_block = '', has_decode_default = False): |
| self.parser = parser |
| self.header_output = header_output |
| self.decoder_output = decoder_output |
| self.exec_output = exec_output |
| self.decode_block = decode_block |
| self.has_decode_default = has_decode_default |
| |
| # Write these code chunks out to the filesystem. They will be properly |
| # interwoven by the write_top_level_files(). |
| def emit(self): |
| if self.header_output: |
| self.parser.get_file('header').write(self.header_output) |
| if self.decoder_output: |
| self.parser.get_file('decoder').write(self.decoder_output) |
| if self.exec_output: |
| self.parser.get_file('exec').write(self.exec_output) |
| if self.decode_block: |
| self.parser.get_file('decode_block').write(self.decode_block) |
| |
| # Override '+' operator: generate a new GenCode object that |
| # concatenates all the individual strings in the operands. |
| def __add__(self, other): |
| return GenCode(self.parser, |
| self.header_output + other.header_output, |
| self.decoder_output + other.decoder_output, |
| self.exec_output + other.exec_output, |
| self.decode_block + other.decode_block, |
| self.has_decode_default or other.has_decode_default) |
| |
| # Prepend a string (typically a comment) to all the strings. |
| def prepend_all(self, pre): |
| self.header_output = pre + self.header_output |
| self.decoder_output = pre + self.decoder_output |
| self.decode_block = pre + self.decode_block |
| self.exec_output = pre + self.exec_output |
| |
| # Wrap the decode block in a pair of strings (e.g., 'case foo:' |
| # and 'break;'). Used to build the big nested switch statement. |
| def wrap_decode_block(self, pre, post = ''): |
| self.decode_block = pre + indent(self.decode_block) + post |
| |
| ##################################################################### |
| # |
| # Bitfield Operator Support |
| # |
| ##################################################################### |
| |
| bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>') |
| |
| bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>') |
| bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>') |
| |
| def substBitOps(code): |
| # first convert single-bit selectors to two-index form |
| # i.e., <n> --> <n:n> |
| code = bitOp1ArgRE.sub(r'<\1:\1>', code) |
| # simple case: selector applied to ID (name) |
| # i.e., foo<a:b> --> bits(foo, a, b) |
| code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code) |
| # if selector is applied to expression (ending in ')'), |
| # we need to search backward for matching '(' |
| match = bitOpExprRE.search(code) |
| while match: |
| exprEnd = match.start() |
| here = exprEnd - 1 |
| nestLevel = 1 |
| while nestLevel > 0: |
| if code[here] == '(': |
| nestLevel -= 1 |
| elif code[here] == ')': |
| nestLevel += 1 |
| here -= 1 |
| if here < 0: |
| sys.exit("Didn't find '('!") |
| exprStart = here+1 |
| newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1], |
| match.group(1), match.group(2)) |
| code = code[:exprStart] + newExpr + code[match.end():] |
| match = bitOpExprRE.search(code) |
| return code |
| |
| |
| ##################################################################### |
| # |
| # Code Parser |
| # |
| # The remaining code is the support for automatically extracting |
| # instruction characteristics from pseudocode. |
| # |
| ##################################################################### |
| |
| # Force the argument to be a list. Useful for flags, where a caller |
| # can specify a singleton flag or a list of flags. Also usful for |
| # converting tuples to lists so they can be modified. |
| def makeList(arg): |
| if isinstance(arg, list): |
| return arg |
| elif isinstance(arg, tuple): |
| return list(arg) |
| elif not arg: |
| return [] |
| else: |
| return [ arg ] |
| |
| def makeFlagConstructor(flag_list): |
| if len(flag_list) == 0: |
| return '' |
| # filter out repeated flags |
| flag_list.sort() |
| i = 1 |
| while i < len(flag_list): |
| if flag_list[i] == flag_list[i-1]: |
| del flag_list[i] |
| else: |
| i += 1 |
| pre = '\n\tflags[' |
| post = '] = true;' |
| code = pre + (post + pre).join(flag_list) + post |
| return code |
| |
| # Assume all instruction flags are of the form 'IsFoo' |
| instFlagRE = re.compile(r'Is.*') |
| |
| # OpClass constants end in 'Op' except No_OpClass |
| opClassRE = re.compile(r'.*Op|No_OpClass') |
| |
| class InstObjParams(object): |
| def __init__(self, parser, mnem, class_name, base_class = '', |
| snippets = {}, opt_args = []): |
| self.mnemonic = mnem |
| self.class_name = class_name |
| self.base_class = base_class |
| if not isinstance(snippets, dict): |
| snippets = {'code' : snippets} |
| compositeCode = ' '.join(list(map(str, snippets.values()))) |
| self.snippets = snippets |
| |
| self.operands = OperandList(parser, compositeCode) |
| |
| self.srcRegIdxPadding = 0 |
| self.destRegIdxPadding = 0 |
| |
| # The header of the constructor declares the variables to be used |
| # in the body of the constructor. |
| header = '' |
| header += '\n\t_numSrcRegs = 0;' |
| header += '\n\t_numDestRegs = 0;' |
| header += '\n\t_numFPDestRegs = 0;' |
| header += '\n\t_numVecDestRegs = 0;' |
| header += '\n\t_numVecElemDestRegs = 0;' |
| header += '\n\t_numVecPredDestRegs = 0;' |
| header += '\n\t_numIntDestRegs = 0;' |
| header += '\n\t_numCCDestRegs = 0;' |
| |
| self.constructor = header + \ |
| self.operands.concatAttrStrings('constructor') |
| |
| self.flags = self.operands.concatAttrLists('flags') |
| |
| self.op_class = None |
| |
| # Optional arguments are assumed to be either StaticInst flags |
| # or an OpClass value. To avoid having to import a complete |
| # list of these values to match against, we do it ad-hoc |
| # with regexps. |
| for oa in opt_args: |
| if instFlagRE.match(oa): |
| self.flags.append(oa) |
| elif opClassRE.match(oa): |
| self.op_class = oa |
| else: |
| error('InstObjParams: optional arg "%s" not recognized ' |
| 'as StaticInst::Flag or OpClass.' % oa) |
| |
| # Make a basic guess on the operand class if not set. |
| # These are good enough for most cases. |
| if not self.op_class: |
| if 'IsStore' in self.flags: |
| # The order matters here: 'IsFloating' and 'IsInteger' are |
| # usually set in FP instructions because of the base |
| # register |
| if 'IsFloating' in self.flags: |
| self.op_class = 'FloatMemWriteOp' |
| else: |
| self.op_class = 'MemWriteOp' |
| elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags: |
| # The order matters here: 'IsFloating' and 'IsInteger' are |
| # usually set in FP instructions because of the base |
| # register |
| if 'IsFloating' in self.flags: |
| self.op_class = 'FloatMemReadOp' |
| else: |
| self.op_class = 'MemReadOp' |
| elif 'IsFloating' in self.flags: |
| self.op_class = 'FloatAddOp' |
| elif 'IsVector' in self.flags: |
| self.op_class = 'SimdAddOp' |
| else: |
| self.op_class = 'IntAluOp' |
| |
| # add flag initialization to contructor here to include |
| # any flags added via opt_args |
| self.constructor += makeFlagConstructor(self.flags) |
| |
| # if 'IsFloating' is set, add call to the FP enable check |
| # function (which should be provided by isa_desc via a declare) |
| # if 'IsVector' is set, add call to the Vector enable check |
| # function (which should be provided by isa_desc via a declare) |
| if 'IsFloating' in self.flags: |
| self.fp_enable_check = 'fault = checkFpEnableFault(xc);' |
| elif 'IsVector' in self.flags: |
| self.fp_enable_check = 'fault = checkVecEnableFault(xc);' |
| else: |
| self.fp_enable_check = '' |
| |
| def padSrcRegIdx(self, padding): |
| self.srcRegIdxPadding = padding |
| |
| def padDestRegIdx(self, padding): |
| self.destRegIdxPadding = padding |
| |
| |
| ####################### |
| # |
| # ISA Parser |
| # parses ISA DSL and emits C++ headers and source |
| # |
| |
| class ISAParser(Grammar): |
| def __init__(self, output_dir): |
| super(ISAParser, self).__init__() |
| self.output_dir = output_dir |
| |
| self.filename = None # for output file watermarking/scaremongering |
| |
| # variable to hold templates |
| self.templateMap = {} |
| |
| # variable to hold operands |
| self.operandNameMap = {} |
| |
| # Regular expressions for working with operands |
| self._operandsRE = None |
| self._operandsWithExtRE = None |
| |
| # This dictionary maps format name strings to Format objects. |
| self.formatMap = {} |
| |
| # Track open files and, if applicable, how many chunks it has been |
| # split into so far. |
| self.files = {} |
| self.splits = {} |
| |
| # isa_name / namespace identifier from namespace declaration. |
| # before the namespace declaration, None. |
| self.isa_name = None |
| self.namespace = None |
| |
| # The format stack. |
| self.formatStack = Stack(NoFormat()) |
| |
| # The default case stack. |
| self.defaultStack = Stack(None) |
| |
| # Stack that tracks current file and line number. Each |
| # element is a tuple (filename, lineno) that records the |
| # *current* filename and the line number in the *previous* |
| # file where it was included. |
| self.fileNameStack = Stack() |
| |
| symbols = ('makeList', 're') |
| self.exportContext = dict([(s, eval(s)) for s in symbols]) |
| |
| self.maxMiscDestRegs = 0 |
| |
| def operandsRE(self): |
| if not self._operandsRE: |
| self.buildOperandREs() |
| return self._operandsRE |
| |
| def operandsWithExtRE(self): |
| if not self._operandsWithExtRE: |
| self.buildOperandREs() |
| return self._operandsWithExtRE |
| |
| def __getitem__(self, i): # Allow object (self) to be |
| return getattr(self, i) # passed to %-substitutions |
| |
| # Change the file suffix of a base filename: |
| # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs |
| def suffixize(self, s, sec): |
| extn = re.compile('(\.[^\.]+)$') # isolate extension |
| if self.namespace: |
| return extn.sub(r'-ns\1.inc', s) # insert some text on either side |
| else: |
| return extn.sub(r'-g\1.inc', s) |
| |
| # Get the file object for emitting code into the specified section |
| # (header, decoder, exec, decode_block). |
| def get_file(self, section): |
| if section == 'decode_block': |
| filename = 'decode-method.cc.inc' |
| else: |
| if section == 'header': |
| file = 'decoder.hh' |
| else: |
| file = '%s.cc' % section |
| filename = self.suffixize(file, section) |
| try: |
| return self.files[filename] |
| except KeyError: pass |
| |
| f = self.open(filename) |
| self.files[filename] = f |
| |
| # The splittable files are the ones with many independent |
| # per-instruction functions - the decoder's instruction constructors |
| # and the instruction execution (execute()) methods. These both have |
| # the suffix -ns.cc.inc, meaning they are within the namespace part |
| # of the ISA, contain object-emitting C++ source, and are included |
| # into other top-level files. These are the files that need special |
| # #define's to allow parts of them to be compiled separately. Rather |
| # than splitting the emissions into separate files, the monolithic |
| # output of the ISA parser is maintained, but the value (or lack |
| # thereof) of the __SPLIT definition during C preprocessing will |
| # select the different chunks. If no 'split' directives are used, |
| # the cpp emissions have no effect. |
| if re.search('-ns.cc.inc$', filename): |
| print('#if !defined(__SPLIT) || (__SPLIT == 1)', file=f) |
| self.splits[f] = 1 |
| # ensure requisite #include's |
| elif filename == 'decoder-g.hh.inc': |
| print('#include "base/bitfield.hh"', file=f) |
| |
| return f |
| |
| # Weave together the parts of the different output sections by |
| # #include'ing them into some very short top-level .cc/.hh files. |
| # These small files make it much clearer how this tool works, since |
| # you directly see the chunks emitted as files that are #include'd. |
| def write_top_level_files(self): |
| # decoder header - everything depends on this |
| file = 'decoder.hh' |
| with self.open(file) as f: |
| f.write('#ifndef __ARCH_%(isa)s_GENERATED_DECODER_HH__\n' |
| '#define __ARCH_%(isa)s_GENERATED_DECODER_HH__\n\n' % |
| {'isa': self.isa_name.upper()}) |
| fn = 'decoder-g.hh.inc' |
| assert(fn in self.files) |
| f.write('#include "%s"\n' % fn) |
| |
| fn = 'decoder-ns.hh.inc' |
| assert(fn in self.files) |
| f.write('namespace %s {\n#include "%s"\n}\n' |
| % (self.namespace, fn)) |
| f.write('\n#endif // __ARCH_%s_GENERATED_DECODER_HH__\n' % |
| self.isa_name.upper()) |
| |
| # decoder method - cannot be split |
| file = 'decoder.cc' |
| with self.open(file) as f: |
| fn = 'base/compiler.hh' |
| f.write('#include "%s"\n' % fn) |
| |
| fn = 'decoder-g.cc.inc' |
| assert(fn in self.files) |
| f.write('#include "%s"\n' % fn) |
| |
| fn = 'decoder.hh' |
| f.write('#include "%s"\n' % fn) |
| |
| fn = 'decode-method.cc.inc' |
| # is guaranteed to have been written for parse to complete |
| f.write('#include "%s"\n' % fn) |
| |
| extn = re.compile('(\.[^\.]+)$') |
| |
| # instruction constructors |
| splits = self.splits[self.get_file('decoder')] |
| file_ = 'inst-constrs.cc' |
| for i in range(1, splits+1): |
| if splits > 1: |
| file = extn.sub(r'-%d\1' % i, file_) |
| else: |
| file = file_ |
| with self.open(file) as f: |
| fn = 'decoder-g.cc.inc' |
| assert(fn in self.files) |
| f.write('#include "%s"\n' % fn) |
| |
| fn = 'decoder.hh' |
| f.write('#include "%s"\n' % fn) |
| |
| fn = 'decoder-ns.cc.inc' |
| assert(fn in self.files) |
| print('namespace %s {' % self.namespace, file=f) |
| if splits > 1: |
| print('#define __SPLIT %u' % i, file=f) |
| print('#include "%s"' % fn, file=f) |
| print('}', file=f) |
| |
| # instruction execution |
| splits = self.splits[self.get_file('exec')] |
| for i in range(1, splits+1): |
| file = 'generic_cpu_exec.cc' |
| if splits > 1: |
| file = extn.sub(r'_%d\1' % i, file) |
| with self.open(file) as f: |
| fn = 'exec-g.cc.inc' |
| assert(fn in self.files) |
| f.write('#include "%s"\n' % fn) |
| f.write('#include "cpu/exec_context.hh"\n') |
| f.write('#include "decoder.hh"\n') |
| |
| fn = 'exec-ns.cc.inc' |
| assert(fn in self.files) |
| print('namespace %s {' % self.namespace, file=f) |
| if splits > 1: |
| print('#define __SPLIT %u' % i, file=f) |
| print('#include "%s"' % fn, file=f) |
| print('}', file=f) |
| |
| scaremonger_template ='''// DO NOT EDIT |
| // This file was automatically generated from an ISA description: |
| // %(filename)s |
| |
| '''; |
| |
| ##################################################################### |
| # |
| # Lexer |
| # |
| # The PLY lexer module takes two things as input: |
| # - A list of token names (the string list 'tokens') |
| # - A regular expression describing a match for each token. The |
| # regexp for token FOO can be provided in two ways: |
| # - as a string variable named t_FOO |
| # - as the doc string for a function named t_FOO. In this case, |
| # the function is also executed, allowing an action to be |
| # associated with each token match. |
| # |
| ##################################################################### |
| |
| # Reserved words. These are listed separately as they are matched |
| # using the same regexp as generic IDs, but distinguished in the |
| # t_ID() function. The PLY documentation suggests this approach. |
| reserved = ( |
| 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT', |
| 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS', |
| 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE' |
| ) |
| |
| # List of tokens. The lex module requires this. |
| tokens = reserved + ( |
| # identifier |
| 'ID', |
| |
| # integer literal |
| 'INTLIT', |
| |
| # string literal |
| 'STRLIT', |
| |
| # code literal |
| 'CODELIT', |
| |
| # ( ) [ ] { } < > , ; . : :: * |
| 'LPAREN', 'RPAREN', |
| 'LBRACKET', 'RBRACKET', |
| 'LBRACE', 'RBRACE', |
| 'LESS', 'GREATER', 'EQUALS', |
| 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON', |
| 'ASTERISK', |
| |
| # C preprocessor directives |
| 'CPPDIRECTIVE' |
| |
| # The following are matched but never returned. commented out to |
| # suppress PLY warning |
| # newfile directive |
| # 'NEWFILE', |
| |
| # endfile directive |
| # 'ENDFILE' |
| ) |
| |
| # Regular expressions for token matching |
| t_LPAREN = r'\(' |
| t_RPAREN = r'\)' |
| t_LBRACKET = r'\[' |
| t_RBRACKET = r'\]' |
| t_LBRACE = r'\{' |
| t_RBRACE = r'\}' |
| t_LESS = r'\<' |
| t_GREATER = r'\>' |
| t_EQUALS = r'=' |
| t_COMMA = r',' |
| t_SEMI = r';' |
| t_DOT = r'\.' |
| t_COLON = r':' |
| t_DBLCOLON = r'::' |
| t_ASTERISK = r'\*' |
| |
| # Identifiers and reserved words |
| reserved_map = { } |
| for r in reserved: |
| reserved_map[r.lower()] = r |
| |
| def t_ID(self, t): |
| r'[A-Za-z_]\w*' |
| t.type = self.reserved_map.get(t.value, 'ID') |
| return t |
| |
| # Integer literal |
| def t_INTLIT(self, t): |
| r'-?(0x[\da-fA-F]+)|\d+' |
| try: |
| t.value = int(t.value,0) |
| except ValueError: |
| error(t.lexer.lineno, 'Integer value "%s" too large' % t.value) |
| t.value = 0 |
| return t |
| |
| # String literal. Note that these use only single quotes, and |
| # can span multiple lines. |
| def t_STRLIT(self, t): |
| r"(?m)'([^'])+'" |
| # strip off quotes |
| t.value = t.value[1:-1] |
| t.lexer.lineno += t.value.count('\n') |
| return t |
| |
| |
| # "Code literal"... like a string literal, but delimiters are |
| # '{{' and '}}' so they get formatted nicely under emacs c-mode |
| def t_CODELIT(self, t): |
| r"(?m)\{\{([^\}]|}(?!\}))+\}\}" |
| # strip off {{ & }} |
| t.value = t.value[2:-2] |
| t.lexer.lineno += t.value.count('\n') |
| return t |
| |
| def t_CPPDIRECTIVE(self, t): |
| r'^\#[^\#].*\n' |
| t.lexer.lineno += t.value.count('\n') |
| return t |
| |
| def t_NEWFILE(self, t): |
| r'^\#\#newfile\s+"[^"]*"\n' |
| self.fileNameStack.push(t.lexer.lineno) |
| t.lexer.lineno = LineTracker(t.value[11:-2]) |
| |
| def t_ENDFILE(self, t): |
| r'^\#\#endfile\n' |
| t.lexer.lineno = self.fileNameStack.pop() |
| |
| # |
| # The functions t_NEWLINE, t_ignore, and t_error are |
| # special for the lex module. |
| # |
| |
| # Newlines |
| def t_NEWLINE(self, t): |
| r'\n+' |
| t.lexer.lineno += t.value.count('\n') |
| |
| # Comments |
| def t_comment(self, t): |
| r'//.*' |
| |
| # Completely ignored characters |
| t_ignore = ' \t\x0c' |
| |
| # Error handler |
| def t_error(self, t): |
| error(t.lexer.lineno, "illegal character '%s'" % t.value[0]) |
| t.skip(1) |
| |
| ##################################################################### |
| # |
| # Parser |
| # |
| # Every function whose name starts with 'p_' defines a grammar |
| # rule. The rule is encoded in the function's doc string, while |
| # the function body provides the action taken when the rule is |
| # matched. The argument to each function is a list of the values |
| # of the rule's symbols: t[0] for the LHS, and t[1..n] for the |
| # symbols on the RHS. For tokens, the value is copied from the |
| # t.value attribute provided by the lexer. For non-terminals, the |
| # value is assigned by the producing rule; i.e., the job of the |
| # grammar rule function is to set the value for the non-terminal |
| # on the LHS (by assigning to t[0]). |
| ##################################################################### |
| |
| # The LHS of the first grammar rule is used as the start symbol |
| # (in this case, 'specification'). Note that this rule enforces |
| # that there will be exactly one namespace declaration, with 0 or |
| # more global defs/decls before and after it. The defs & decls |
| # before the namespace decl will be outside the namespace; those |
| # after will be inside. The decoder function is always inside the |
| # namespace. |
| def p_specification(self, t): |
| 'specification : opt_defs_and_outputs top_level_decode_block' |
| |
| for f in self.splits.keys(): |
| f.write('\n#endif\n') |
| |
| for f in self.files.values(): # close ALL the files; |
| f.close() # not doing so can cause compilation to fail |
| |
| self.write_top_level_files() |
| |
| t[0] = True |
| |
| # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or |
| # output statements. Its productions do the hard work of eventually |
| # instantiating a GenCode, which are generally emitted (written to disk) |
| # as soon as possible, except for the decode_block, which has to be |
| # accumulated into one large function of nested switch/case blocks. |
| def p_opt_defs_and_outputs_0(self, t): |
| 'opt_defs_and_outputs : empty' |
| |
| def p_opt_defs_and_outputs_1(self, t): |
| 'opt_defs_and_outputs : defs_and_outputs' |
| |
| def p_defs_and_outputs_0(self, t): |
| 'defs_and_outputs : def_or_output' |
| |
| def p_defs_and_outputs_1(self, t): |
| 'defs_and_outputs : defs_and_outputs def_or_output' |
| |
| # The list of possible definition/output statements. |
| # They are all processed as they are seen. |
| def p_def_or_output(self, t): |
| '''def_or_output : name_decl |
| | def_format |
| | def_bitfield |
| | def_bitfield_struct |
| | def_template |
| | def_operand_types |
| | def_operands |
| | output |
| | global_let |
| | split''' |
| |
| # Utility function used by both invocations of splitting - explicit |
| # 'split' keyword and split() function inside "let {{ }};" blocks. |
| def split(self, sec, write=False): |
| assert(sec != 'header' and "header cannot be split") |
| |
| f = self.get_file(sec) |
| self.splits[f] += 1 |
| s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f] |
| if write: |
| f.write(s) |
| else: |
| return s |
| |
| # split output file to reduce compilation time |
| def p_split(self, t): |
| 'split : SPLIT output_type SEMI' |
| assert(self.isa_name and "'split' not allowed before namespace decl") |
| |
| self.split(t[2], True) |
| |
| def p_output_type(self, t): |
| '''output_type : DECODER |
| | HEADER |
| | EXEC''' |
| t[0] = t[1] |
| |
| # ISA name declaration looks like "namespace <foo>;" |
| def p_name_decl(self, t): |
| 'name_decl : NAMESPACE ID SEMI' |
| assert(self.isa_name == None and "Only 1 namespace decl permitted") |
| self.isa_name = t[2] |
| self.namespace = t[2] + 'Inst' |
| |
| # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied |
| # directly to the appropriate output section. |
| |
| # Massage output block by substituting in template definitions and |
| # bit operators. We handle '%'s embedded in the string that don't |
| # indicate template substitutions by doubling them first so that the |
| # format operation will reduce them back to single '%'s. |
| def process_output(self, s): |
| s = protectNonSubstPercents(s) |
| return substBitOps(s % self.templateMap) |
| |
| def p_output(self, t): |
| 'output : OUTPUT output_type CODELIT SEMI' |
| kwargs = { t[2]+'_output' : self.process_output(t[3]) } |
| GenCode(self, **kwargs).emit() |
| |
| def make_split(self): |
| def _split(sec): |
| return self.split(sec) |
| return _split |
| |
| # global let blocks 'let {{...}}' (Python code blocks) are |
| # executed directly when seen. Note that these execute in a |
| # special variable context 'exportContext' to prevent the code |
| # from polluting this script's namespace. |
| def p_global_let(self, t): |
| 'global_let : LET CODELIT SEMI' |
| self.updateExportContext() |
| self.exportContext["header_output"] = '' |
| self.exportContext["decoder_output"] = '' |
| self.exportContext["exec_output"] = '' |
| self.exportContext["decode_block"] = '' |
| self.exportContext["split"] = self.make_split() |
| split_setup = ''' |
| def wrap(func): |
| def split(sec): |
| globals()[sec + '_output'] += func(sec) |
| return split |
| split = wrap(split) |
| del wrap |
| ''' |
| # This tricky setup (immediately above) allows us to just write |
| # (e.g.) "split('exec')" in the Python code and the split #ifdef's |
| # will automatically be added to the exec_output variable. The inner |
| # Python execution environment doesn't know about the split points, |
| # so we carefully inject and wrap a closure that can retrieve the |
| # next split's #define from the parser and add it to the current |
| # emission-in-progress. |
| try: |
| exec(split_setup+fixPythonIndentation(t[2]), self.exportContext) |
| except Exception as exc: |
| traceback.print_exc(file=sys.stdout) |
| if debug: |
| raise |
| error(t.lineno(1), 'In global let block: %s' % exc) |
| GenCode(self, |
| header_output=self.exportContext["header_output"], |
| decoder_output=self.exportContext["decoder_output"], |
| exec_output=self.exportContext["exec_output"], |
| decode_block=self.exportContext["decode_block"]).emit() |
| |
| # Define the mapping from operand type extensions to C++ types and |
| # bit widths (stored in operandTypeMap). |
| def p_def_operand_types(self, t): |
| 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI' |
| try: |
| self.operandTypeMap = eval('{' + t[3] + '}') |
| except Exception as exc: |
| if debug: |
| raise |
| error(t.lineno(1), |
| 'In def operand_types: %s' % exc) |
| |
| # Define the mapping from operand names to operand classes and |
| # other traits. Stored in operandNameMap. |
| def p_def_operands(self, t): |
| 'def_operands : DEF OPERANDS CODELIT SEMI' |
| if not hasattr(self, 'operandTypeMap'): |
| error(t.lineno(1), |
| 'error: operand types must be defined before operands') |
| try: |
| user_dict = eval('{' + t[3] + '}', self.exportContext) |
| except Exception as exc: |
| if debug: |
| raise |
| error(t.lineno(1), 'In def operands: %s' % exc) |
| self.buildOperandNameMap(user_dict, t.lexer.lineno) |
| |
| # A bitfield definition looks like: |
| # 'def [signed] bitfield <ID> [<first>:<last>]' |
| # This generates a preprocessor macro in the output file. |
| def p_def_bitfield_0(self, t): |
| 'def_bitfield : DEF opt_signed ' \ |
| 'BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI' |
| expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8]) |
| if (t[2] == 'signed'): |
| expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr) |
| hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) |
| GenCode(self, header_output=hash_define).emit() |
| |
| # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]' |
| def p_def_bitfield_1(self, t): |
| 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI' |
| expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6]) |
| if (t[2] == 'signed'): |
| expr = 'sext<%d>(%s)' % (1, expr) |
| hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) |
| GenCode(self, header_output=hash_define).emit() |
| |
| # alternate form for structure member: 'def bitfield <ID> <ID>' |
| def p_def_bitfield_struct(self, t): |
| 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI' |
| if (t[2] != ''): |
| error(t.lineno(1), |
| 'error: structure bitfields are always unsigned.') |
| expr = 'machInst.%s' % t[5] |
| hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) |
| GenCode(self, header_output=hash_define).emit() |
| |
| def p_id_with_dot_0(self, t): |
| 'id_with_dot : ID' |
| t[0] = t[1] |
| |
| def p_id_with_dot_1(self, t): |
| 'id_with_dot : ID DOT id_with_dot' |
| t[0] = t[1] + t[2] + t[3] |
| |
| def p_opt_signed_0(self, t): |
| 'opt_signed : SIGNED' |
| t[0] = t[1] |
| |
| def p_opt_signed_1(self, t): |
| 'opt_signed : empty' |
| t[0] = '' |
| |
| def p_def_template(self, t): |
| 'def_template : DEF TEMPLATE ID CODELIT SEMI' |
| if t[3] in self.templateMap: |
| print("warning: template %s already defined" % t[3]) |
| self.templateMap[t[3]] = Template(self, t[4]) |
| |
| # An instruction format definition looks like |
| # "def format <fmt>(<params>) {{...}};" |
| def p_def_format(self, t): |
| 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI' |
| (id, params, code) = (t[3], t[5], t[7]) |
| self.defFormat(id, params, code, t.lexer.lineno) |
| |
| # The formal parameter list for an instruction format is a |
| # possibly empty list of comma-separated parameters. Positional |
| # (standard, non-keyword) parameters must come first, followed by |
| # keyword parameters, followed by a '*foo' parameter that gets |
| # excess positional arguments (as in Python). Each of these three |
| # parameter categories is optional. |
| # |
| # Note that we do not support the '**foo' parameter for collecting |
| # otherwise undefined keyword args. Otherwise the parameter list |
| # is (I believe) identical to what is supported in Python. |
| # |
| # The param list generates a tuple, where the first element is a |
| # list of the positional params and the second element is a dict |
| # containing the keyword params. |
| def p_param_list_0(self, t): |
| 'param_list : positional_param_list COMMA nonpositional_param_list' |
| t[0] = t[1] + t[3] |
| |
| def p_param_list_1(self, t): |
| '''param_list : positional_param_list |
| | nonpositional_param_list''' |
| t[0] = t[1] |
| |
| def p_positional_param_list_0(self, t): |
| 'positional_param_list : empty' |
| t[0] = [] |
| |
| def p_positional_param_list_1(self, t): |
| 'positional_param_list : ID' |
| t[0] = [t[1]] |
| |
| def p_positional_param_list_2(self, t): |
| 'positional_param_list : positional_param_list COMMA ID' |
| t[0] = t[1] + [t[3]] |
| |
| def p_nonpositional_param_list_0(self, t): |
| 'nonpositional_param_list : keyword_param_list COMMA excess_args_param' |
| t[0] = t[1] + t[3] |
| |
| def p_nonpositional_param_list_1(self, t): |
| '''nonpositional_param_list : keyword_param_list |
| | excess_args_param''' |
| t[0] = t[1] |
| |
| def p_keyword_param_list_0(self, t): |
| 'keyword_param_list : keyword_param' |
| t[0] = [t[1]] |
| |
| def p_keyword_param_list_1(self, t): |
| 'keyword_param_list : keyword_param_list COMMA keyword_param' |
| t[0] = t[1] + [t[3]] |
| |
| def p_keyword_param(self, t): |
| 'keyword_param : ID EQUALS expr' |
| t[0] = t[1] + ' = ' + t[3].__repr__() |
| |
| def p_excess_args_param(self, t): |
| 'excess_args_param : ASTERISK ID' |
| # Just concatenate them: '*ID'. Wrap in list to be consistent |
| # with positional_param_list and keyword_param_list. |
| t[0] = [t[1] + t[2]] |
| |
| # End of format definition-related rules. |
| ############## |
| |
| # |
| # A decode block looks like: |
| # decode <field1> [, <field2>]* [default <inst>] { ... } |
| # |
| def p_top_level_decode_block(self, t): |
| 'top_level_decode_block : decode_block' |
| codeObj = t[1] |
| codeObj.wrap_decode_block(''' |
| StaticInstPtr |
| %(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst) |
| { |
| using namespace %(namespace)s; |
| ''' % self, '}') |
| |
| codeObj.emit() |
| |
| def p_decode_block(self, t): |
| 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE' |
| default_defaults = self.defaultStack.pop() |
| codeObj = t[5] |
| # use the "default defaults" only if there was no explicit |
| # default statement in decode_stmt_list |
| if not codeObj.has_decode_default: |
| codeObj += default_defaults |
| codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n') |
| t[0] = codeObj |
| |
| # The opt_default statement serves only to push the "default |
| # defaults" onto defaultStack. This value will be used by nested |
| # decode blocks, and used and popped off when the current |
| # decode_block is processed (in p_decode_block() above). |
| def p_opt_default_0(self, t): |
| 'opt_default : empty' |
| # no default specified: reuse the one currently at the top of |
| # the stack |
| self.defaultStack.push(self.defaultStack.top()) |
| # no meaningful value returned |
| t[0] = None |
| |
| def p_opt_default_1(self, t): |
| 'opt_default : DEFAULT inst' |
| # push the new default |
| codeObj = t[2] |
| codeObj.wrap_decode_block('\ndefault:\n', 'break;\n') |
| self.defaultStack.push(codeObj) |
| # no meaningful value returned |
| t[0] = None |
| |
| def p_decode_stmt_list_0(self, t): |
| 'decode_stmt_list : decode_stmt' |
| t[0] = t[1] |
| |
| def p_decode_stmt_list_1(self, t): |
| 'decode_stmt_list : decode_stmt decode_stmt_list' |
| if (t[1].has_decode_default and t[2].has_decode_default): |
| error(t.lineno(1), 'Two default cases in decode block') |
| t[0] = t[1] + t[2] |
| |
| # |
| # Decode statement rules |
| # |
| # There are four types of statements allowed in a decode block: |
| # 1. Format blocks 'format <foo> { ... }' |
| # 2. Nested decode blocks |
| # 3. Instruction definitions. |
| # 4. C preprocessor directives. |
| |
| |
| # Preprocessor directives found in a decode statement list are |
| # passed through to the output, replicated to all of the output |
| # code streams. This works well for ifdefs, so we can ifdef out |
| # both the declarations and the decode cases generated by an |
| # instruction definition. Handling them as part of the grammar |
| # makes it easy to keep them in the right place with respect to |
| # the code generated by the other statements. |
| def p_decode_stmt_cpp(self, t): |
| 'decode_stmt : CPPDIRECTIVE' |
| t[0] = GenCode(self, t[1], t[1], t[1], t[1]) |
| |
| # A format block 'format <foo> { ... }' sets the default |
| # instruction format used to handle instruction definitions inside |
| # the block. This format can be overridden by using an explicit |
| # format on the instruction definition or with a nested format |
| # block. |
| def p_decode_stmt_format(self, t): |
| 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE' |
| # The format will be pushed on the stack when 'push_format_id' |
| # is processed (see below). Once the parser has recognized |
| # the full production (though the right brace), we're done |
| # with the format, so now we can pop it. |
| self.formatStack.pop() |
| t[0] = t[4] |
| |
| # This rule exists so we can set the current format (& push the |
| # stack) when we recognize the format name part of the format |
| # block. |
| def p_push_format_id(self, t): |
| 'push_format_id : ID' |
| try: |
| self.formatStack.push(self.formatMap[t[1]]) |
| t[0] = ('', '// format %s' % t[1]) |
| except KeyError: |
| error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) |
| |
| # Nested decode block: if the value of the current field matches |
| # the specified constant(s), do a nested decode on some other field. |
| def p_decode_stmt_decode(self, t): |
| 'decode_stmt : case_list COLON decode_block' |
| case_list = t[1] |
| codeObj = t[3] |
| # just wrap the decoding code from the block as a case in the |
| # outer switch statement. |
| codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list), |
| 'M5_UNREACHABLE;\n') |
| codeObj.has_decode_default = (case_list == ['default:']) |
| t[0] = codeObj |
| |
| # Instruction definition (finally!). |
| def p_decode_stmt_inst(self, t): |
| 'decode_stmt : case_list COLON inst SEMI' |
| case_list = t[1] |
| codeObj = t[3] |
| codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n') |
| codeObj.has_decode_default = (case_list == ['default:']) |
| t[0] = codeObj |
| |
| # The constant list for a decode case label must be non-empty, and must |
| # either be the keyword 'default', or made up of one or more |
| # comma-separated integer literals or strings which evaluate to |
| # constants when compiled as C++. |
| def p_case_list_0(self, t): |
| 'case_list : DEFAULT' |
| t[0] = ['default:'] |
| |
| def prep_int_lit_case_label(self, lit): |
| if lit >= 2**32: |
| return 'case ULL(%#x): ' % lit |
| else: |
| return 'case %#x: ' % lit |
| |
| def prep_str_lit_case_label(self, lit): |
| return 'case %s: ' % lit |
| |
| def p_case_list_1(self, t): |
| 'case_list : INTLIT' |
| t[0] = [self.prep_int_lit_case_label(t[1])] |
| |
| def p_case_list_2(self, t): |
| 'case_list : STRLIT' |
| t[0] = [self.prep_str_lit_case_label(t[1])] |
| |
| def p_case_list_3(self, t): |
| 'case_list : case_list COMMA INTLIT' |
| t[0] = t[1] |
| t[0].append(self.prep_int_lit_case_label(t[3])) |
| |
| def p_case_list_4(self, t): |
| 'case_list : case_list COMMA STRLIT' |
| t[0] = t[1] |
| t[0].append(self.prep_str_lit_case_label(t[3])) |
| |
| # Define an instruction using the current instruction format |
| # (specified by an enclosing format block). |
| # "<mnemonic>(<args>)" |
| def p_inst_0(self, t): |
| 'inst : ID LPAREN arg_list RPAREN' |
| # Pass the ID and arg list to the current format class to deal with. |
| currentFormat = self.formatStack.top() |
| codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno) |
| args = ','.join(list(map(str, t[3]))) |
| args = re.sub('(?m)^', '//', args) |
| args = re.sub('^//', '', args) |
| comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args) |
| codeObj.prepend_all(comment) |
| t[0] = codeObj |
| |
| # Define an instruction using an explicitly specified format: |
| # "<fmt>::<mnemonic>(<args>)" |
| def p_inst_1(self, t): |
| 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN' |
| try: |
| format = self.formatMap[t[1]] |
| except KeyError: |
| error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) |
| |
| codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno) |
| comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5]) |
| codeObj.prepend_all(comment) |
| t[0] = codeObj |
| |
| # The arg list generates a tuple, where the first element is a |
| # list of the positional args and the second element is a dict |
| # containing the keyword args. |
| def p_arg_list_0(self, t): |
| 'arg_list : positional_arg_list COMMA keyword_arg_list' |
| t[0] = ( t[1], t[3] ) |
| |
| def p_arg_list_1(self, t): |
| 'arg_list : positional_arg_list' |
| t[0] = ( t[1], {} ) |
| |
| def p_arg_list_2(self, t): |
| 'arg_list : keyword_arg_list' |
| t[0] = ( [], t[1] ) |
| |
| def p_positional_arg_list_0(self, t): |
| 'positional_arg_list : empty' |
| t[0] = [] |
| |
| def p_positional_arg_list_1(self, t): |
| 'positional_arg_list : expr' |
| t[0] = [t[1]] |
| |
| def p_positional_arg_list_2(self, t): |
| 'positional_arg_list : positional_arg_list COMMA expr' |
| t[0] = t[1] + [t[3]] |
| |
| def p_keyword_arg_list_0(self, t): |
| 'keyword_arg_list : keyword_arg' |
| t[0] = t[1] |
| |
| def p_keyword_arg_list_1(self, t): |
| 'keyword_arg_list : keyword_arg_list COMMA keyword_arg' |
| t[0] = t[1] |
| t[0].update(t[3]) |
| |
| def p_keyword_arg(self, t): |
| 'keyword_arg : ID EQUALS expr' |
| t[0] = { t[1] : t[3] } |
| |
| # |
| # Basic expressions. These constitute the argument values of |
| # "function calls" (i.e. instruction definitions in the decode |
| # block) and default values for formal parameters of format |
| # functions. |
| # |
| # Right now, these are either strings, integers, or (recursively) |
| # lists of exprs (using Python square-bracket list syntax). Note |
| # that bare identifiers are trated as string constants here (since |
| # there isn't really a variable namespace to refer to). |
| # |
| def p_expr_0(self, t): |
| '''expr : ID |
| | INTLIT |
| | STRLIT |
| | CODELIT''' |
| t[0] = t[1] |
| |
| def p_expr_1(self, t): |
| '''expr : LBRACKET list_expr RBRACKET''' |
| t[0] = t[2] |
| |
| def p_list_expr_0(self, t): |
| 'list_expr : expr' |
| t[0] = [t[1]] |
| |
| def p_list_expr_1(self, t): |
| 'list_expr : list_expr COMMA expr' |
| t[0] = t[1] + [t[3]] |
| |
| def p_list_expr_2(self, t): |
| 'list_expr : empty' |
| t[0] = [] |
| |
| # |
| # Empty production... use in other rules for readability. |
| # |
| def p_empty(self, t): |
| 'empty :' |
| pass |
| |
| # Parse error handler. Note that the argument here is the |
| # offending *token*, not a grammar symbol (hence the need to use |
| # t.value) |
| def p_error(self, t): |
| if t: |
| error(t.lexer.lineno, "syntax error at '%s'" % t.value) |
| else: |
| error("unknown syntax error") |
| |
| # END OF GRAMMAR RULES |
| |
| def updateExportContext(self): |
| # Create a wrapper class that allows us to grab the current parser. |
| class InstObjParamsWrapper(InstObjParams): |
| def __init__(iop, *args, **kwargs): |
| super(InstObjParamsWrapper, iop).__init__( |
| self, *args, **kwargs) |
| self.exportContext['InstObjParams'] = InstObjParamsWrapper |
| self.exportContext.update(self.templateMap) |
| |
| def defFormat(self, id, params, code, lineno): |
| '''Define a new format''' |
| |
| # make sure we haven't already defined this one |
| if id in self.formatMap: |
| error(lineno, 'format %s redefined.' % id) |
| |
| # create new object and store in global map |
| self.formatMap[id] = Format(id, params, code) |
| |
| def buildOperandNameMap(self, user_dict, lineno): |
| operand_name = {} |
| for op_name, val in user_dict.items(): |
| |
| # Check if extra attributes have been specified. |
| if len(val) > 9: |
| error(lineno, 'error: too many attributes for operand "%s"' % |
| base_cls_name) |
| |
| # Pad val with None in case optional args are missing |
| val += (None, None, None, None) |
| base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \ |
| read_code, write_code, read_predicate, write_predicate = val[:9] |
| |
| # Canonical flag structure is a triple of lists, where each list |
| # indicates the set of flags implied by this operand always, when |
| # used as a source, and when used as a dest, respectively. |
| # For simplicity this can be initialized using a variety of fairly |
| # obvious shortcuts; we convert these to canonical form here. |
| if not flags: |
| # no flags specified (e.g., 'None') |
| flags = ( [], [], [] ) |
| elif isinstance(flags, str): |
| # a single flag: assumed to be unconditional |
| flags = ( [ flags ], [], [] ) |
| elif isinstance(flags, list): |
| # a list of flags: also assumed to be unconditional |
| flags = ( flags, [], [] ) |
| elif isinstance(flags, tuple): |
| # it's a tuple: it should be a triple, |
| # but each item could be a single string or a list |
| (uncond_flags, src_flags, dest_flags) = flags |
| flags = (makeList(uncond_flags), |
| makeList(src_flags), makeList(dest_flags)) |
| |
| # Accumulate attributes of new operand class in tmp_dict |
| tmp_dict = {} |
| attrList = ['reg_spec', 'flags', 'sort_pri', |
| 'read_code', 'write_code', |
| 'read_predicate', 'write_predicate'] |
| if dflt_ext: |
| dflt_ctype = self.operandTypeMap[dflt_ext] |
| attrList.extend(['dflt_ctype', 'dflt_ext']) |
| # reg_spec is either just a string or a dictionary |
| # (for elems of vector) |
| if isinstance(reg_spec, tuple): |
| (reg_spec, elem_spec) = reg_spec |
| if isinstance(elem_spec, str): |
| attrList.append('elem_spec') |
| else: |
| assert(isinstance(elem_spec, dict)) |
| elems = elem_spec |
| attrList.append('elems') |
| for attr in attrList: |
| tmp_dict[attr] = eval(attr) |
| tmp_dict['base_name'] = op_name |
| |
| # New class name will be e.g. "IntReg_Ra" |
| cls_name = base_cls_name + '_' + op_name |
| # Evaluate string arg to get class object. Note that the |
| # actual base class for "IntReg" is "IntRegOperand", i.e. we |
| # have to append "Operand". |
| try: |
| base_cls = eval(base_cls_name + 'Operand') |
| except NameError: |
| error(lineno, |
| 'error: unknown operand base class "%s"' % base_cls_name) |
| # The following statement creates a new class called |
| # <cls_name> as a subclass of <base_cls> with the attributes |
| # in tmp_dict, just as if we evaluated a class declaration. |
| operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict) |
| |
| self.operandNameMap.update(operand_name) |
| |
| def buildOperandREs(self): |
| # Define operand variables. |
| operands = list(self.operandNameMap.keys()) |
| # Add the elems defined in the vector operands and |
| # build a map elem -> vector (used in OperandList) |
| elem_to_vec = {} |
| for op_name, op in self.operandNameMap.items(): |
| if hasattr(op, 'elems'): |
| for elem in op.elems.keys(): |
| operands.append(elem) |
| elem_to_vec[elem] = op_name |
| self.elemToVector = elem_to_vec |
| extensions = self.operandTypeMap.keys() |
| |
| operandsREString = r''' |
| (?<!\w) # neg. lookbehind assertion: prevent partial matches |
| ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix |
| (?!\w) # neg. lookahead assertion: prevent partial matches |
| ''' % ('|'.join(operands), '|'.join(extensions)) |
| |
| self._operandsRE = re.compile(operandsREString, |
| re.MULTILINE | re.VERBOSE) |
| |
| # Same as operandsREString, but extension is mandatory, and only two |
| # groups are returned (base and ext, not full name as above). |
| # Used for subtituting '_' for '.' to make C++ identifiers. |
| operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \ |
| % ('|'.join(operands), '|'.join(extensions)) |
| |
| self._operandsWithExtRE = \ |
| re.compile(operandsWithExtREString, re.MULTILINE) |
| |
| def substMungedOpNames(self, code): |
| '''Munge operand names in code string to make legal C++ |
| variable names. This means getting rid of the type extension |
| if any. Will match base_name attribute of Operand object.)''' |
| return self.operandsWithExtRE().sub(r'\1', code) |
| |
| def mungeSnippet(self, s): |
| '''Fix up code snippets for final substitution in templates.''' |
| if isinstance(s, str): |
| return self.substMungedOpNames(substBitOps(s)) |
| else: |
| return s |
| |
| def open(self, name, bare=False): |
| '''Open the output file for writing and include scary warning.''' |
| filename = os.path.join(self.output_dir, name) |
| f = open(filename, 'w') |
| if f: |
| if not bare: |
| f.write(ISAParser.scaremonger_template % self) |
| return f |
| |
| def update(self, file, contents): |
| '''Update the output file only. Scons should handle the case when |
| the new contents are unchanged using its built-in hash feature.''' |
| f = self.open(file) |
| f.write(contents) |
| f.close() |
| |
| # This regular expression matches '##include' directives |
| includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$', |
| re.MULTILINE) |
| |
| def replace_include(self, matchobj, dirname): |
| """Function to replace a matched '##include' directive with the |
| contents of the specified file (with nested ##includes |
| replaced recursively). 'matchobj' is an re match object |
| (from a match of includeRE) and 'dirname' is the directory |
| relative to which the file path should be resolved.""" |
| |
| fname = matchobj.group('filename') |
| full_fname = os.path.normpath(os.path.join(dirname, fname)) |
| contents = '##newfile "%s"\n%s\n##endfile\n' % \ |
| (full_fname, self.read_and_flatten(full_fname)) |
| return contents |
| |
| def read_and_flatten(self, filename): |
| """Read a file and recursively flatten nested '##include' files.""" |
| |
| current_dir = os.path.dirname(filename) |
| try: |
| contents = open(filename).read() |
| except IOError: |
| error('Error including file "%s"' % filename) |
| |
| self.fileNameStack.push(LineTracker(filename)) |
| |
| # Find any includes and include them |
| def replace(matchobj): |
| return self.replace_include(matchobj, current_dir) |
| contents = self.includeRE.sub(replace, contents) |
| |
| self.fileNameStack.pop() |
| return contents |
| |
| AlreadyGenerated = {} |
| |
| def _parse_isa_desc(self, isa_desc_file): |
| '''Read in and parse the ISA description.''' |
| |
| # The build system can end up running the ISA parser twice: once to |
| # finalize the build dependencies, and then to actually generate |
| # the files it expects (in src/arch/$ARCH/generated). This code |
| # doesn't do anything different either time, however; the SCons |
| # invocations just expect different things. Since this code runs |
| # within SCons, we can just remember that we've already run and |
| # not perform a completely unnecessary run, since the ISA parser's |
| # effect is idempotent. |
| if isa_desc_file in ISAParser.AlreadyGenerated: |
| return |
| |
| # grab the last three path components of isa_desc_file |
| self.filename = '/'.join(isa_desc_file.split('/')[-3:]) |
| |
| # Read file and (recursively) all included files into a string. |
| # PLY requires that the input be in a single string so we have to |
| # do this up front. |
| isa_desc = self.read_and_flatten(isa_desc_file) |
| |
| # Initialize lineno tracker |
| self.lex.lineno = LineTracker(isa_desc_file) |
| |
| # Parse. |
| self.parse_string(isa_desc) |
| |
| ISAParser.AlreadyGenerated[isa_desc_file] = None |
| |
| def parse_isa_desc(self, *args, **kwargs): |
| try: |
| self._parse_isa_desc(*args, **kwargs) |
| except ISAParserError as e: |
| print(backtrace(self.fileNameStack)) |
| print("At %s:" % e.lineno) |
| print(e) |
| sys.exit(1) |
| |
| # Called as script: get args from command line. |
| # Args are: <isa desc file> <output dir> |
| if __name__ == '__main__': |
| ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1]) |