| /* |
| * Copyright (c) 2015,2017-2018 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef __BASE_CIRCLEBUF_HH__ |
| #define __BASE_CIRCLEBUF_HH__ |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <vector> |
| |
| #include "base/logging.hh" |
| #include "sim/serialize.hh" |
| |
| /** |
| * Circular buffer backed by a vector. |
| * |
| * The data in the cricular buffer is stored in a standard vector. |
| */ |
| template<typename T> |
| class CircleBuf |
| { |
| private: |
| std::vector<T> buffer; |
| size_t start = 0; |
| size_t used = 0; |
| size_t maxSize; |
| |
| public: |
| using value_type = T; |
| |
| explicit CircleBuf(size_t size) : buffer(size), maxSize(size) {} |
| |
| bool empty() const { return used == 0; } |
| size_t size() const { return used; } |
| size_t capacity() const { return maxSize; } |
| |
| /** |
| * Throw away any data in the buffer. |
| */ |
| void |
| flush() |
| { |
| start = 0; |
| used = 0; |
| } |
| |
| /** |
| * Copy buffer contents without advancing the read pointer |
| * |
| * @param out Output iterator/pointer |
| * @param len Number of elements to copy |
| */ |
| template <class OutputIterator> |
| void |
| peek(OutputIterator out, size_t len) const |
| { |
| peek(out, 0, len); |
| } |
| |
| /** |
| * Copy buffer contents without advancing the read pointer |
| * |
| * @param out Output iterator/pointer |
| * @param offset Offset into the ring buffer |
| * @param len Number of elements to copy |
| */ |
| template <class OutputIterator> |
| void |
| peek(OutputIterator out, off_t offset, size_t len) const |
| { |
| panic_if(offset + len > used, |
| "Trying to read past end of circular buffer."); |
| |
| if (!len) |
| return; |
| |
| // The iterator for the next byte to copy out. |
| auto next_it = buffer.begin() + (start + offset) % maxSize; |
| // How much there is to copy from until the end of the buffer. |
| const size_t to_end = buffer.end() - next_it; |
| |
| // If the data to be copied wraps, take care of the first part. |
| if (to_end < len) { |
| // Copy it. |
| out = std::copy_n(next_it, to_end, out); |
| // Start copying again at the start of buffer. |
| next_it = buffer.begin(); |
| len -= to_end; |
| } |
| // Copy the remaining (or only) chunk of data. |
| std::copy_n(next_it, len, out); |
| } |
| |
| /** |
| * Copy buffer contents and advance the read pointer |
| * |
| * @param out Output iterator/pointer |
| * @param len Number of elements to read |
| */ |
| template <class OutputIterator> |
| void |
| read(OutputIterator out, size_t len) |
| { |
| peek(out, len); |
| used -= len; |
| start += len; |
| } |
| |
| /** |
| * Add elements to the end of the ring buffers and advance. Writes which |
| * would exceed the capacity of the queue fill the avaialble space, and |
| * then continue overwriting the head of the queue. The head advances as |
| * if that data had been read out. |
| * |
| * @param in Input iterator/pointer |
| * @param len Number of elements to read |
| */ |
| template <class InputIterator> |
| void |
| write(InputIterator in, size_t len) |
| { |
| if (!len) |
| return; |
| |
| // Writes that are larger than the buffer size are allowed, but only |
| // the last part of the date will be written since the rest will be |
| // overwritten and not remain in the buffer. |
| if (len > maxSize) { |
| in += len - maxSize; |
| flush(); |
| len = maxSize; |
| } |
| |
| // How much existing data will be overwritten? |
| const size_t total_bytes = used + len; |
| const size_t overflow = total_bytes > maxSize ? |
| total_bytes - maxSize : 0; |
| // The iterator of the next byte to add. |
| auto next_it = buffer.begin() + (start + used) % maxSize; |
| // How much there is to copy to the end of the buffer. |
| const size_t to_end = buffer.end() - next_it; |
| |
| // If this addition wraps, take care of the first part here. |
| if (to_end < len) { |
| // Copy it. |
| std::copy_n(in, to_end, next_it); |
| // Update state to reflect what's left. |
| next_it = buffer.begin(); |
| std::advance(in, to_end); |
| len -= to_end; |
| used += to_end; |
| } |
| // Copy the remaining (or only) chunk of data. |
| std::copy_n(in, len, next_it); |
| used += len; |
| |
| // Don't count data that was overwritten. |
| used -= overflow; |
| start += overflow; |
| } |
| }; |
| |
| /** |
| * Simple FIFO implementation backed by a circular buffer. |
| * |
| * This class provides the same basic functionallity as the circular |
| * buffer with the folling differences: |
| * <ul> |
| * <li>Writes are checked to ensure that overflows can't happen. |
| * <li>Unserialization ensures that the data in the checkpoint fits |
| * in the buffer. |
| * </ul> |
| */ |
| template<typename T> |
| class Fifo |
| { |
| public: |
| typedef T value_type; |
| |
| public: |
| Fifo(size_t size) : buf(size) {} |
| |
| bool empty() const { return buf.empty(); } |
| size_t size() const { return buf.size(); } |
| size_t capacity() const { return buf.capacity(); } |
| |
| void flush() { buf.flush(); } |
| |
| template <class OutputIterator> |
| void peek(OutputIterator out, size_t len) const { buf.peek(out, len); } |
| template <class OutputIterator> |
| void read(OutputIterator out, size_t len) { buf.read(out, len); } |
| |
| template <class InputIterator> |
| void |
| write(InputIterator in, size_t len) |
| { |
| panic_if(size() + len > capacity(), "Trying to overfill FIFO buffer."); |
| buf.write(in, len); |
| } |
| |
| private: |
| CircleBuf<value_type> buf; |
| }; |
| |
| |
| template <typename T> |
| void |
| arrayParamOut(CheckpointOut &cp, const std::string &name, |
| const CircleBuf<T> ¶m) |
| { |
| std::vector<T> temp(param.size()); |
| param.peek(temp.begin(), temp.size()); |
| arrayParamOut(cp, name, temp); |
| } |
| |
| template <typename T> |
| void |
| arrayParamIn(CheckpointIn &cp, const std::string &name, CircleBuf<T> ¶m) |
| { |
| std::vector<T> temp; |
| arrayParamIn(cp, name, temp); |
| |
| param.flush(); |
| param.write(temp.cbegin(), temp.size()); |
| } |
| |
| template <typename T> |
| void |
| arrayParamOut(CheckpointOut &cp, const std::string &name, const Fifo<T> ¶m) |
| { |
| std::vector<T> temp(param.size()); |
| param.peek(temp.begin(), temp.size()); |
| arrayParamOut(cp, name, temp); |
| } |
| |
| template <typename T> |
| void |
| arrayParamIn(CheckpointIn &cp, const std::string &name, Fifo<T> ¶m) |
| { |
| std::vector<T> temp; |
| arrayParamIn(cp, name, temp); |
| |
| fatal_if(param.capacity() < temp.size(), |
| "Trying to unserialize data into too small FIFO"); |
| |
| param.flush(); |
| param.write(temp.cbegin(), temp.size()); |
| } |
| |
| #endif // __BASE_CIRCLEBUF_HH__ |