blob: 52daea97a53f0350b0bd6cbe8beb2525dcffd91f [file] [log] [blame]
/*
* Copyright (c) 2011,2013,2017-2018, 2020 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu/checker/cpu.hh"
#include <list>
#include <string>
#include "arch/generic/tlb.hh"
#include "cpu/base.hh"
#include "cpu/simple_thread.hh"
#include "cpu/static_inst.hh"
#include "cpu/thread_context.hh"
#include "cpu/utils.hh"
#include "params/CheckerCPU.hh"
#include "sim/full_system.hh"
void
CheckerCPU::init()
{
requestorId = systemPtr->getRequestorId(this);
}
CheckerCPU::CheckerCPU(const Params &p)
: BaseCPU(p, true), systemPtr(NULL), icachePort(NULL), dcachePort(NULL),
tc(NULL), thread(NULL),
unverifiedReq(nullptr),
unverifiedMemData(nullptr)
{
curStaticInst = NULL;
curMacroStaticInst = NULL;
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
youngestSN = 0;
changedPC = willChangePC = false;
exitOnError = p.exitOnError;
warnOnlyOnLoadError = p.warnOnlyOnLoadError;
mmu = p.mmu;
workload = p.workload;
updateOnError = true;
}
CheckerCPU::~CheckerCPU()
{
}
void
CheckerCPU::setSystem(System *system)
{
const Params &p = params();
systemPtr = system;
if (FullSystem) {
thread = new SimpleThread(this, 0, systemPtr, mmu, p.isa[0]);
} else {
thread = new SimpleThread(this, 0, systemPtr,
workload.size() ? workload[0] : NULL,
mmu, p.isa[0]);
}
tc = thread->getTC();
threadContexts.push_back(tc);
// Thread should never be null after this
assert(thread != NULL);
}
void
CheckerCPU::setIcachePort(RequestPort *icache_port)
{
icachePort = icache_port;
}
void
CheckerCPU::setDcachePort(RequestPort *dcache_port)
{
dcachePort = dcache_port;
}
void
CheckerCPU::serialize(std::ostream &os) const
{
}
void
CheckerCPU::unserialize(CheckpointIn &cp)
{
}
RequestPtr
CheckerCPU::genMemFragmentRequest(Addr frag_addr, int size,
Request::Flags flags,
const std::vector<bool>& byte_enable,
int& frag_size, int& size_left) const
{
frag_size = std::min(
cacheLineSize() - addrBlockOffset(frag_addr, cacheLineSize()),
(Addr) size_left);
size_left -= frag_size;
RequestPtr mem_req;
// Set up byte-enable mask for the current fragment
auto it_start = byte_enable.cbegin() + (size - (frag_size +
size_left));
auto it_end = byte_enable.cbegin() + (size - size_left);
if (isAnyActiveElement(it_start, it_end)) {
mem_req = std::make_shared<Request>(frag_addr, frag_size,
flags, requestorId, thread->pcState().instAddr(),
tc->contextId());
mem_req->setByteEnable(std::vector<bool>(it_start, it_end));
}
return mem_req;
}
Fault
CheckerCPU::readMem(Addr addr, uint8_t *data, unsigned size,
Request::Flags flags,
const std::vector<bool>& byte_enable)
{
assert(byte_enable.size() == size);
Fault fault = NoFault;
bool checked_flags = false;
bool flags_match = true;
Addr pAddr = 0x0;
Addr frag_addr = addr;
int frag_size = 0;
int size_left = size;
bool predicate;
// Need to account for multiple accesses like the Atomic and TimingSimple
while (1) {
RequestPtr mem_req = genMemFragmentRequest(frag_addr, size, flags,
byte_enable, frag_size,
size_left);
predicate = (mem_req != nullptr);
// translate to physical address
if (predicate) {
fault = mmu->translateFunctional(mem_req, tc, BaseTLB::Read);
}
if (predicate && !checked_flags && fault == NoFault && unverifiedReq) {
flags_match = checkFlags(unverifiedReq, mem_req->getVaddr(),
mem_req->getPaddr(), mem_req->getFlags());
pAddr = mem_req->getPaddr();
checked_flags = true;
}
// Now do the access
if (predicate && fault == NoFault &&
!mem_req->getFlags().isSet(Request::NO_ACCESS)) {
PacketPtr pkt = Packet::createRead(mem_req);
pkt->dataStatic(data);
if (!(mem_req->isUncacheable() || mem_req->isLocalAccess())) {
// Access memory to see if we have the same data
dcachePort->sendFunctional(pkt);
} else {
// Assume the data is correct if it's an uncached access
memcpy(data, unverifiedMemData, frag_size);
}
delete pkt;
}
if (fault != NoFault) {
if (mem_req->isPrefetch()) {
fault = NoFault;
}
break;
}
//If we don't need to access a second cache line, stop now.
if (size_left == 0)
{
break;
}
// Setup for accessing next cache line
frag_addr += frag_size;
data += frag_size;
unverifiedMemData += frag_size;
}
if (!flags_match) {
warn("%lli: Flags do not match CPU:%#x %#x %#x Checker:%#x %#x %#x\n",
curTick(), unverifiedReq->getVaddr(), unverifiedReq->getPaddr(),
unverifiedReq->getFlags(), frag_addr, pAddr, flags);
handleError();
}
return fault;
}
Fault
CheckerCPU::writeMem(uint8_t *data, unsigned size,
Addr addr, Request::Flags flags, uint64_t *res,
const std::vector<bool>& byte_enable)
{
assert(byte_enable.size() == size);
Fault fault = NoFault;
bool checked_flags = false;
bool flags_match = true;
Addr pAddr = 0x0;
static uint8_t zero_data[64] = {};
Addr frag_addr = addr;
int frag_size = 0;
int size_left = size;
bool predicate;
// Need to account for a multiple access like Atomic and Timing CPUs
while (1) {
RequestPtr mem_req = genMemFragmentRequest(frag_addr, size, flags,
byte_enable, frag_size,
size_left);
predicate = (mem_req != nullptr);
if (predicate) {
fault = mmu->translateFunctional(mem_req, tc, BaseTLB::Write);
}
if (predicate && !checked_flags && fault == NoFault && unverifiedReq) {
flags_match = checkFlags(unverifiedReq, mem_req->getVaddr(),
mem_req->getPaddr(), mem_req->getFlags());
pAddr = mem_req->getPaddr();
checked_flags = true;
}
/*
* We don't actually check memory for the store because there
* is no guarantee it has left the lsq yet, and therefore we
* can't verify the memory on stores without lsq snooping
* enabled. This is left as future work for the Checker: LSQ snooping
* and memory validation after stores have committed.
*/
bool was_prefetch = mem_req->isPrefetch();
//If we don't need to access a second cache line, stop now.
if (fault != NoFault || size_left == 0)
{
if (fault != NoFault && was_prefetch) {
fault = NoFault;
}
break;
}
frag_addr += frag_size;
}
if (!flags_match) {
warn("%lli: Flags do not match CPU:%#x %#x Checker:%#x %#x %#x\n",
curTick(), unverifiedReq->getVaddr(), unverifiedReq->getPaddr(),
unverifiedReq->getFlags(), frag_addr, pAddr, flags);
handleError();
}
// Assume the result was the same as the one passed in. This checker
// doesn't check if the SC should succeed or fail, it just checks the
// value.
if (unverifiedReq && res && unverifiedReq->extraDataValid())
*res = unverifiedReq->getExtraData();
// Entire purpose here is to make sure we are getting the
// same data to send to the mem system as the CPU did.
// Cannot check this is actually what went to memory because
// there stores can be in ld/st queue or coherent operations
// overwriting values.
bool extraData = false;
if (unverifiedReq) {
extraData = unverifiedReq->extraDataValid() ?
unverifiedReq->getExtraData() : true;
}
// If the request is to ZERO a cache block, there is no data to check
// against, but it's all zero. We need something to compare to, so use a
// const set of zeros.
if (flags & Request::STORE_NO_DATA) {
assert(!data);
assert(sizeof(zero_data) <= size);
data = zero_data;
}
if (unverifiedReq && unverifiedMemData &&
memcmp(data, unverifiedMemData, size) && extraData) {
warn("%lli: Store value does not match value sent to memory! "
"data: %#x inst_data: %#x", curTick(), data,
unverifiedMemData);
handleError();
}
return fault;
}
/**
* Checks if the flags set by the Checker and Checkee match.
*/
bool
CheckerCPU::checkFlags(const RequestPtr &unverified_req, Addr vAddr,
Addr pAddr, int flags)
{
Addr unverifiedVAddr = unverified_req->getVaddr();
Addr unverifiedPAddr = unverified_req->getPaddr();
int unverifiedFlags = unverified_req->getFlags();
if (unverifiedVAddr != vAddr ||
unverifiedPAddr != pAddr ||
unverifiedFlags != flags) {
return false;
}
return true;
}
void
CheckerCPU::dumpAndExit()
{
warn("%lli: Checker PC:%s",
curTick(), thread->pcState());
panic("Checker found an error!");
}