blob: 4d70f3088e8e67918c2fc0826947777e229e25e1 [file] [log] [blame]
/*
* Copyright (c) 2019-2021 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Unordered buffer of messages that can be inserted such
* that they can be dequeued after a given delta time has expired.
*/
#ifndef __MEM_RUBY_NETWORK_MESSAGEBUFFER_HH__
#define __MEM_RUBY_NETWORK_MESSAGEBUFFER_HH__
#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
#include "base/trace.hh"
#include "debug/RubyQueue.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/common/Consumer.hh"
#include "mem/ruby/network/dummy_port.hh"
#include "mem/ruby/slicc_interface/Message.hh"
#include "params/MessageBuffer.hh"
#include "sim/sim_object.hh"
class MessageBuffer : public SimObject
{
public:
typedef MessageBufferParams Params;
MessageBuffer(const Params &p);
void reanalyzeMessages(Addr addr, Tick current_time);
void reanalyzeAllMessages(Tick current_time);
void stallMessage(Addr addr, Tick current_time);
// return true if the stall map has a message of this address
bool hasStalledMsg(Addr addr) const;
// TRUE if head of queue timestamp <= SystemTime
bool isReady(Tick current_time) const;
void
delayHead(Tick current_time, Tick delta)
{
MsgPtr m = m_prio_heap.front();
std::pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
std::greater<MsgPtr>());
m_prio_heap.pop_back();
enqueue(m, current_time, delta);
}
bool areNSlotsAvailable(unsigned int n, Tick curTime);
int getPriority() { return m_priority_rank; }
void setPriority(int rank) { m_priority_rank = rank; }
void setConsumer(Consumer* consumer)
{
DPRINTF(RubyQueue, "Setting consumer: %s\n", *consumer);
if (m_consumer != NULL) {
fatal("Trying to connect %s to MessageBuffer %s. \
\n%s already connected. Check the cntrl_id's.\n",
*consumer, *this, *m_consumer);
}
m_consumer = consumer;
}
Consumer* getConsumer() { return m_consumer; }
bool getOrdered() { return m_strict_fifo; }
//! Function for extracting the message at the head of the
//! message queue. The function assumes that the queue is nonempty.
const Message* peek() const;
const MsgPtr &peekMsgPtr() const { return m_prio_heap.front(); }
void enqueue(MsgPtr message, Tick curTime, Tick delta);
// Defer enqueueing a message to a later cycle by putting it aside and not
// enqueueing it in this cycle
// The corresponding controller will need to explicitly enqueue the
// deferred message into the message buffer. Otherwise, the message will
// be lost.
void deferEnqueueingMessage(Addr addr, MsgPtr message);
// enqueue all previously deferred messages that are associated with the
// input address
void enqueueDeferredMessages(Addr addr, Tick curTime, Tick delay);
bool isDeferredMsgMapEmpty(Addr addr) const;
//! Updates the delay cycles of the message at the head of the queue,
//! removes it from the queue and returns its total delay.
Tick dequeue(Tick current_time, bool decrement_messages = true);
void registerDequeueCallback(std::function<void()> callback);
void unregisterDequeueCallback();
void recycle(Tick current_time, Tick recycle_latency);
bool isEmpty() const { return m_prio_heap.size() == 0; }
bool isStallMapEmpty() { return m_stall_msg_map.size() == 0; }
unsigned int getStallMapSize() { return m_stall_msg_map.size(); }
unsigned int getSize(Tick curTime);
void clear();
void print(std::ostream& out) const;
void clearStats() { m_not_avail_count = 0; m_msg_counter = 0; }
void setIncomingLink(int link_id) { m_input_link_id = link_id; }
void setVnet(int net) { m_vnet_id = net; }
Port &
getPort(const std::string &, PortID idx=InvalidPortID) override
{
return RubyDummyPort::instance();
}
// Function for figuring out if any of the messages in the buffer need
// to be updated with the data from the packet.
// Return value indicates the number of messages that were updated.
uint32_t functionalWrite(Packet *pkt)
{
return functionalAccess(pkt, false, nullptr);
}
// Function for figuring if message in the buffer has valid data for
// the packet.
// Returns true only if a message was found with valid data and the
// read was performed.
bool functionalRead(Packet *pkt)
{
return functionalAccess(pkt, true, nullptr) == 1;
}
// Functional read with mask
bool functionalRead(Packet *pkt, WriteMask &mask)
{
return functionalAccess(pkt, true, &mask) == 1;
}
private:
void reanalyzeList(std::list<MsgPtr> &, Tick);
uint32_t functionalAccess(Packet *pkt, bool is_read, WriteMask *mask);
private:
// Data Members (m_ prefix)
//! Consumer to signal a wakeup(), can be NULL
Consumer* m_consumer;
std::vector<MsgPtr> m_prio_heap;
std::function<void()> m_dequeue_callback;
// use a std::map for the stalled messages as this container is
// sorted and ensures a well-defined iteration order
typedef std::map<Addr, std::list<MsgPtr> > StallMsgMapType;
/**
* A map from line addresses to lists of stalled messages for that line.
* If this buffer allows the receiver to stall messages, on a stall
* request, the stalled message is removed from the m_prio_heap and placed
* in the m_stall_msg_map. Messages are held there until the receiver
* requests they be reanalyzed, at which point they are moved back to
* m_prio_heap.
*
* NOTE: The stall map holds messages in the order in which they were
* initially received, and when a line is unblocked, the messages are
* moved back to the m_prio_heap in the same order. This prevents starving
* older requests with younger ones.
*/
StallMsgMapType m_stall_msg_map;
/**
* A map from line addresses to corresponding vectors of messages that
* are deferred for enqueueing. Messages in this map are waiting to be
* enqueued into the message buffer.
*/
typedef std::unordered_map<Addr, std::vector<MsgPtr>> DeferredMsgMapType;
DeferredMsgMapType m_deferred_msg_map;
/**
* Current size of the stall map.
* Track the number of messages held in stall map lists. This is used to
* ensure that if the buffer is finite-sized, it blocks further requests
* when the m_prio_heap and m_stall_msg_map contain m_max_size messages.
*/
int m_stall_map_size;
/**
* The maximum capacity. For finite-sized buffers, m_max_size stores a
* number greater than 0 to indicate the maximum allowed number of messages
* in the buffer at any time. To get infinitely-sized buffers, set buffer
* size: m_max_size = 0
*/
const unsigned int m_max_size;
Tick m_time_last_time_size_checked;
unsigned int m_size_last_time_size_checked;
// variables used so enqueues appear to happen immediately, while
// pop happen the next cycle
Tick m_time_last_time_enqueue;
Tick m_time_last_time_pop;
Tick m_last_arrival_time;
unsigned int m_size_at_cycle_start;
unsigned int m_stalled_at_cycle_start;
unsigned int m_msgs_this_cycle;
uint64_t m_msg_counter;
int m_priority_rank;
const bool m_strict_fifo;
const MessageRandomization m_randomization;
const bool m_allow_zero_latency;
int m_input_link_id;
int m_vnet_id;
Stats::Scalar m_not_avail_count; // count the # of times I didn't have N
// slots available
Stats::Average m_buf_msgs;
Stats::Average m_stall_time;
Stats::Scalar m_stall_count;
Stats::Formula m_occupancy;
};
Tick random_time();
inline std::ostream&
operator<<(std::ostream& out, const MessageBuffer& obj)
{
obj.print(out);
out << std::flush;
return out;
}
#endif //__MEM_RUBY_NETWORK_MESSAGEBUFFER_HH__