| # Copyright (c) 2010-2013, 2016, 2019-2020 ARM Limited |
| # Copyright (c) 2020 Barkhausen Institut |
| # All rights reserved. |
| # |
| # The license below extends only to copyright in the software and shall |
| # not be construed as granting a license to any other intellectual |
| # property including but not limited to intellectual property relating |
| # to a hardware implementation of the functionality of the software |
| # licensed hereunder. You may use the software subject to the license |
| # terms below provided that you ensure that this notice is replicated |
| # unmodified and in its entirety in all distributions of the software, |
| # modified or unmodified, in source code or in binary form. |
| # |
| # Copyright (c) 2012-2014 Mark D. Hill and David A. Wood |
| # Copyright (c) 2009-2011 Advanced Micro Devices, Inc. |
| # Copyright (c) 2006-2007 The Regents of The University of Michigan |
| # All rights reserved. |
| # |
| # Redistribution and use in source and binary forms, with or without |
| # modification, are permitted provided that the following conditions are |
| # met: redistributions of source code must retain the above copyright |
| # notice, this list of conditions and the following disclaimer; |
| # redistributions in binary form must reproduce the above copyright |
| # notice, this list of conditions and the following disclaimer in the |
| # documentation and/or other materials provided with the distribution; |
| # neither the name of the copyright holders nor the names of its |
| # contributors may be used to endorse or promote products derived from |
| # this software without specific prior written permission. |
| # |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| import argparse |
| import sys |
| |
| import m5 |
| from m5.defines import buildEnv |
| from m5.objects import * |
| from m5.util import addToPath, fatal, warn |
| from m5.util.fdthelper import * |
| |
| addToPath('../') |
| |
| from ruby import Ruby |
| |
| from common.FSConfig import * |
| from common.SysPaths import * |
| from common.Benchmarks import * |
| from common import Simulation |
| from common import CacheConfig |
| from common import CpuConfig |
| from common import MemConfig |
| from common import ObjectList |
| from common.Caches import * |
| from common import Options |
| |
| def cmd_line_template(): |
| if args.command_line and args.command_line_file: |
| print("Error: --command-line and --command-line-file are " |
| "mutually exclusive") |
| sys.exit(1) |
| if args.command_line: |
| return args.command_line |
| if args.command_line_file: |
| return open(args.command_line_file).read().strip() |
| return None |
| |
| def build_test_system(np): |
| cmdline = cmd_line_template() |
| if buildEnv['TARGET_ISA'] == "mips": |
| test_sys = makeLinuxMipsSystem(test_mem_mode, bm[0], cmdline=cmdline) |
| elif buildEnv['TARGET_ISA'] == "sparc": |
| test_sys = makeSparcSystem(test_mem_mode, bm[0], cmdline=cmdline) |
| elif buildEnv['TARGET_ISA'] == "riscv": |
| test_sys = makeBareMetalRiscvSystem(test_mem_mode, bm[0], |
| cmdline=cmdline) |
| elif buildEnv['TARGET_ISA'] == "x86": |
| test_sys = makeLinuxX86System(test_mem_mode, np, bm[0], args.ruby, |
| cmdline=cmdline) |
| elif buildEnv['TARGET_ISA'] == "arm": |
| test_sys = makeArmSystem( |
| test_mem_mode, |
| args.machine_type, |
| np, |
| bm[0], |
| args.dtb_filename, |
| bare_metal=args.bare_metal, |
| cmdline=cmdline, |
| external_memory=args.external_memory_system, |
| ruby=args.ruby, |
| vio_9p=args.vio_9p, |
| bootloader=args.bootloader, |
| ) |
| if args.enable_context_switch_stats_dump: |
| test_sys.enable_context_switch_stats_dump = True |
| else: |
| fatal("Incapable of building %s full system!", buildEnv['TARGET_ISA']) |
| |
| # Set the cache line size for the entire system |
| test_sys.cache_line_size = args.cacheline_size |
| |
| # Create a top-level voltage domain |
| test_sys.voltage_domain = VoltageDomain(voltage = args.sys_voltage) |
| |
| # Create a source clock for the system and set the clock period |
| test_sys.clk_domain = SrcClockDomain(clock = args.sys_clock, |
| voltage_domain = test_sys.voltage_domain) |
| |
| # Create a CPU voltage domain |
| test_sys.cpu_voltage_domain = VoltageDomain() |
| |
| # Create a source clock for the CPUs and set the clock period |
| test_sys.cpu_clk_domain = SrcClockDomain(clock = args.cpu_clock, |
| voltage_domain = |
| test_sys.cpu_voltage_domain) |
| |
| if buildEnv['TARGET_ISA'] == 'riscv': |
| test_sys.workload.bootloader = args.kernel |
| elif args.kernel is not None: |
| test_sys.workload.object_file = binary(args.kernel) |
| |
| if args.script is not None: |
| test_sys.readfile = args.script |
| |
| test_sys.init_param = args.init_param |
| |
| # For now, assign all the CPUs to the same clock domain |
| test_sys.cpu = [TestCPUClass(clk_domain=test_sys.cpu_clk_domain, cpu_id=i) |
| for i in range(np)] |
| |
| if args.ruby: |
| bootmem = getattr(test_sys, '_bootmem', None) |
| Ruby.create_system(args, True, test_sys, test_sys.iobus, |
| test_sys._dma_ports, bootmem) |
| |
| # Create a seperate clock domain for Ruby |
| test_sys.ruby.clk_domain = SrcClockDomain(clock = args.ruby_clock, |
| voltage_domain = test_sys.voltage_domain) |
| |
| # Connect the ruby io port to the PIO bus, |
| # assuming that there is just one such port. |
| test_sys.iobus.mem_side_ports = test_sys.ruby._io_port.in_ports |
| |
| for (i, cpu) in enumerate(test_sys.cpu): |
| # |
| # Tie the cpu ports to the correct ruby system ports |
| # |
| cpu.clk_domain = test_sys.cpu_clk_domain |
| cpu.createThreads() |
| cpu.createInterruptController() |
| |
| test_sys.ruby._cpu_ports[i].connectCpuPorts(cpu) |
| |
| else: |
| if args.caches or args.l2cache: |
| # By default the IOCache runs at the system clock |
| test_sys.iocache = IOCache(addr_ranges = test_sys.mem_ranges) |
| test_sys.iocache.cpu_side = test_sys.iobus.mem_side_ports |
| test_sys.iocache.mem_side = test_sys.membus.cpu_side_ports |
| elif not args.external_memory_system: |
| test_sys.iobridge = Bridge(delay='50ns', ranges = test_sys.mem_ranges) |
| test_sys.iobridge.cpu_side_port = test_sys.iobus.mem_side_ports |
| test_sys.iobridge.mem_side_port = test_sys.membus.cpu_side_ports |
| |
| # Sanity check |
| if args.simpoint_profile: |
| if not ObjectList.is_noncaching_cpu(TestCPUClass): |
| fatal("SimPoint generation should be done with atomic cpu") |
| if np > 1: |
| fatal("SimPoint generation not supported with more than one CPUs") |
| |
| for i in range(np): |
| if args.simpoint_profile: |
| test_sys.cpu[i].addSimPointProbe(args.simpoint_interval) |
| if args.checker: |
| test_sys.cpu[i].addCheckerCpu() |
| if not ObjectList.is_kvm_cpu(TestCPUClass): |
| if args.bp_type: |
| bpClass = ObjectList.bp_list.get(args.bp_type) |
| test_sys.cpu[i].branchPred = bpClass() |
| if args.indirect_bp_type: |
| IndirectBPClass = ObjectList.indirect_bp_list.get( |
| args.indirect_bp_type) |
| test_sys.cpu[i].branchPred.indirectBranchPred = \ |
| IndirectBPClass() |
| test_sys.cpu[i].createThreads() |
| |
| # If elastic tracing is enabled when not restoring from checkpoint and |
| # when not fast forwarding using the atomic cpu, then check that the |
| # TestCPUClass is DerivO3CPU or inherits from DerivO3CPU. If the check |
| # passes then attach the elastic trace probe. |
| # If restoring from checkpoint or fast forwarding, the code that does this for |
| # FutureCPUClass is in the Simulation module. If the check passes then the |
| # elastic trace probe is attached to the switch CPUs. |
| if args.elastic_trace_en and args.checkpoint_restore == None and \ |
| not args.fast_forward: |
| CpuConfig.config_etrace(TestCPUClass, test_sys.cpu, args) |
| |
| CacheConfig.config_cache(args, test_sys) |
| |
| MemConfig.config_mem(args, test_sys) |
| |
| if ObjectList.is_kvm_cpu(TestCPUClass) or \ |
| ObjectList.is_kvm_cpu(FutureClass): |
| # Assign KVM CPUs to their own event queues / threads. This |
| # has to be done after creating caches and other child objects |
| # since these mustn't inherit the CPU event queue. |
| for i,cpu in enumerate(test_sys.cpu): |
| # Child objects usually inherit the parent's event |
| # queue. Override that and use the same event queue for |
| # all devices. |
| for obj in cpu.descendants(): |
| obj.eventq_index = 0 |
| cpu.eventq_index = i + 1 |
| test_sys.kvm_vm = KvmVM() |
| |
| return test_sys |
| |
| def build_drive_system(np): |
| # driver system CPU is always simple, so is the memory |
| # Note this is an assignment of a class, not an instance. |
| DriveCPUClass = AtomicSimpleCPU |
| drive_mem_mode = 'atomic' |
| DriveMemClass = SimpleMemory |
| |
| cmdline = cmd_line_template() |
| if buildEnv['TARGET_ISA'] == 'mips': |
| drive_sys = makeLinuxMipsSystem(drive_mem_mode, bm[1], cmdline=cmdline) |
| elif buildEnv['TARGET_ISA'] == 'sparc': |
| drive_sys = makeSparcSystem(drive_mem_mode, bm[1], cmdline=cmdline) |
| elif buildEnv['TARGET_ISA'] == 'x86': |
| drive_sys = makeLinuxX86System(drive_mem_mode, np, bm[1], |
| cmdline=cmdline) |
| elif buildEnv['TARGET_ISA'] == 'arm': |
| drive_sys = makeArmSystem(drive_mem_mode, args.machine_type, np, |
| bm[1], args.dtb_filename, cmdline=cmdline) |
| |
| # Create a top-level voltage domain |
| drive_sys.voltage_domain = VoltageDomain(voltage = args.sys_voltage) |
| |
| # Create a source clock for the system and set the clock period |
| drive_sys.clk_domain = SrcClockDomain(clock = args.sys_clock, |
| voltage_domain = drive_sys.voltage_domain) |
| |
| # Create a CPU voltage domain |
| drive_sys.cpu_voltage_domain = VoltageDomain() |
| |
| # Create a source clock for the CPUs and set the clock period |
| drive_sys.cpu_clk_domain = SrcClockDomain(clock = args.cpu_clock, |
| voltage_domain = |
| drive_sys.cpu_voltage_domain) |
| |
| drive_sys.cpu = DriveCPUClass(clk_domain=drive_sys.cpu_clk_domain, |
| cpu_id=0) |
| drive_sys.cpu.createThreads() |
| drive_sys.cpu.createInterruptController() |
| drive_sys.cpu.connectBus(drive_sys.membus) |
| if args.kernel is not None: |
| drive_sys.workload.object_file = binary(args.kernel) |
| |
| if ObjectList.is_kvm_cpu(DriveCPUClass): |
| drive_sys.kvm_vm = KvmVM() |
| |
| drive_sys.iobridge = Bridge(delay='50ns', |
| ranges = drive_sys.mem_ranges) |
| drive_sys.iobridge.cpu_side_port = drive_sys.iobus.mem_side_ports |
| drive_sys.iobridge.mem_side_port = drive_sys.membus.cpu_side_ports |
| |
| # Create the appropriate memory controllers and connect them to the |
| # memory bus |
| drive_sys.mem_ctrls = [DriveMemClass(range = r) |
| for r in drive_sys.mem_ranges] |
| for i in range(len(drive_sys.mem_ctrls)): |
| drive_sys.mem_ctrls[i].port = drive_sys.membus.mem_side_ports |
| |
| drive_sys.init_param = args.init_param |
| |
| return drive_sys |
| |
| # Add args |
| parser = argparse.ArgumentParser() |
| Options.addCommonOptions(parser) |
| Options.addFSOptions(parser) |
| |
| # Add the ruby specific and protocol specific args |
| if '--ruby' in sys.argv: |
| Ruby.define_options(parser) |
| |
| args = parser.parse_args() |
| |
| # system under test can be any CPU |
| (TestCPUClass, test_mem_mode, FutureClass) = Simulation.setCPUClass(args) |
| |
| # Match the memories with the CPUs, based on the options for the test system |
| TestMemClass = Simulation.setMemClass(args) |
| |
| if args.benchmark: |
| try: |
| bm = Benchmarks[args.benchmark] |
| except KeyError: |
| print("Error benchmark %s has not been defined." % args.benchmark) |
| print("Valid benchmarks are: %s" % DefinedBenchmarks) |
| sys.exit(1) |
| else: |
| if args.dual: |
| bm = [SysConfig(disks=args.disk_image, rootdev=args.root_device, |
| mem=args.mem_size, os_type=args.os_type), |
| SysConfig(disks=args.disk_image, rootdev=args.root_device, |
| mem=args.mem_size, os_type=args.os_type)] |
| else: |
| bm = [SysConfig(disks=args.disk_image, rootdev=args.root_device, |
| mem=args.mem_size, os_type=args.os_type)] |
| |
| np = args.num_cpus |
| |
| test_sys = build_test_system(np) |
| |
| if len(bm) == 2: |
| drive_sys = build_drive_system(np) |
| root = makeDualRoot(True, test_sys, drive_sys, args.etherdump) |
| elif len(bm) == 1 and args.dist: |
| # This system is part of a dist-gem5 simulation |
| root = makeDistRoot(test_sys, |
| args.dist_rank, |
| args.dist_size, |
| args.dist_server_name, |
| args.dist_server_port, |
| args.dist_sync_repeat, |
| args.dist_sync_start, |
| args.ethernet_linkspeed, |
| args.ethernet_linkdelay, |
| args.etherdump); |
| elif len(bm) == 1: |
| root = Root(full_system=True, system=test_sys) |
| else: |
| print("Error I don't know how to create more than 2 systems.") |
| sys.exit(1) |
| |
| if ObjectList.is_kvm_cpu(TestCPUClass) or \ |
| ObjectList.is_kvm_cpu(FutureClass): |
| # Required for running kvm on multiple host cores. |
| # Uses gem5's parallel event queue feature |
| # Note: The simulator is quite picky about this number! |
| root.sim_quantum = int(1e9) # 1 ms |
| |
| if args.timesync: |
| root.time_sync_enable = True |
| |
| if args.frame_capture: |
| VncServer.frame_capture = True |
| |
| if buildEnv['TARGET_ISA'] == "arm" and not args.bare_metal \ |
| and not args.dtb_filename: |
| if args.machine_type not in ["VExpress_GEM5", |
| "VExpress_GEM5_V1", |
| "VExpress_GEM5_V2", |
| "VExpress_GEM5_Foundation"]: |
| warn("Can only correctly generate a dtb for VExpress_GEM5_* " \ |
| "platforms, unless custom hardware models have been equipped "\ |
| "with generation functionality.") |
| |
| # Generate a Device Tree |
| for sysname in ('system', 'testsys', 'drivesys'): |
| if hasattr(root, sysname): |
| sys = getattr(root, sysname) |
| sys.workload.dtb_filename = \ |
| os.path.join(m5.options.outdir, '%s.dtb' % sysname) |
| sys.generateDtb(sys.workload.dtb_filename) |
| |
| if args.wait_gdb: |
| test_sys.workload.wait_for_remote_gdb = True |
| |
| Simulation.setWorkCountOptions(test_sys, args) |
| Simulation.run(args, root, test_sys, FutureClass) |