| /* Copyright (c) 2012 Massachusetts Institute of Technology |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "model/std_cells/NAND2.h" |
| |
| #include <cmath> |
| |
| #include "model/PortInfo.h" |
| #include "model/TransitionInfo.h" |
| #include "model/EventInfo.h" |
| #include "model/std_cells/StdCellLib.h" |
| #include "model/std_cells/CellMacros.h" |
| #include "model/timing_graph/ElectricalNet.h" |
| #include "model/timing_graph/ElectricalDriver.h" |
| #include "model/timing_graph/ElectricalLoad.h" |
| #include "model/timing_graph/ElectricalDelay.h" |
| |
| namespace DSENT |
| { |
| using std::ceil; |
| using std::max; |
| |
| NAND2::NAND2(const String& instance_name_, const TechModel* tech_model_) |
| : StdCell(instance_name_, tech_model_) |
| { |
| initProperties(); |
| } |
| |
| NAND2::~NAND2() |
| {} |
| |
| void NAND2::initProperties() |
| { |
| return; |
| } |
| |
| void NAND2::constructModel() |
| { |
| // All constructModel should do is create Area/NDDPower/Energy Results as |
| // well as instantiate any sub-instances using only the hard parameters |
| |
| createInputPort("A"); |
| createInputPort("B"); |
| createOutputPort("Y"); |
| |
| createLoad("A_Cap"); |
| createLoad("B_Cap"); |
| createDelay("A_to_Y_delay"); |
| createDelay("B_to_Y_delay"); |
| createDriver("Y_Ron", true); |
| |
| ElectricalLoad* a_cap = getLoad("A_Cap"); |
| ElectricalLoad* b_cap = getLoad("A_Cap"); |
| ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay"); |
| ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay"); |
| ElectricalDriver* y_ron = getDriver("Y_Ron"); |
| |
| getNet("A")->addDownstreamNode(a_cap); |
| getNet("B")->addDownstreamNode(b_cap); |
| a_cap->addDownstreamNode(a_to_y_delay); |
| b_cap->addDownstreamNode(b_to_y_delay); |
| a_to_y_delay->addDownstreamNode(y_ron); |
| b_to_y_delay->addDownstreamNode(y_ron); |
| y_ron->addDownstreamNode(getNet("Y")); |
| |
| // Create Area result |
| // Create NDD Power result |
| createElectricalAtomicResults(); |
| // Create NAND Event Energy Result |
| createElectricalEventAtomicResult("NAND2"); |
| |
| getEventInfo("Idle")->setStaticTransitionInfos(); |
| |
| return; |
| } |
| |
| void NAND2::updateModel() |
| { |
| // All updateModel should do is calculate numbers for the Area/NDDPower/Energy |
| // Results as anything else that needs to be done using either soft or hard parameters |
| |
| // Get parameters |
| double drive_strength = getDrivingStrength(); |
| Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); |
| |
| // Standard cell cache string |
| String cell_name = "NAND2_X" + (String) drive_strength; |
| |
| // Get timing parameters |
| getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); |
| getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); |
| getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y")); |
| getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y")); |
| getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y")); |
| |
| // Set the cell area |
| getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active")); |
| getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Active")); |
| |
| return; |
| } |
| |
| void NAND2::useModel() |
| { |
| // Get parameters |
| double drive_strength = getDrivingStrength(); |
| Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); |
| |
| // Standard cell cache string |
| String cell_name = "NAND2_X" + (String) drive_strength; |
| |
| // Propagate the transition info and get the 0->1 transtion count |
| propagateTransitionInfo(); |
| double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); |
| double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); |
| double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01(); |
| |
| // Calculate leakage |
| double leakage = 0; |
| leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B); |
| leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B; |
| leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B); |
| leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B; |
| getNddPowerResult("Leakage")->setValue(leakage); |
| |
| // Get capacitances |
| double y_cap = cache->get(cell_name + "->Cap->Y"); |
| double y_load_cap = getNet("Y")->getTotalDownstreamCap(); |
| |
| // Get VDD |
| double vdd = getTechModel()->get("Vdd"); |
| |
| // Calculate NAND2Event energy |
| double energy_per_trans_01 = (y_cap + y_load_cap) * vdd * vdd; |
| getEventResult("NAND2")->setValue(energy_per_trans_01 * Y_num_trans_01); |
| |
| return; |
| } |
| |
| void NAND2::propagateTransitionInfo() |
| { |
| // Get input signal transition info |
| const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); |
| const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); |
| |
| double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()); |
| const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); |
| const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); |
| |
| double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; |
| double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; |
| double A_prob_10 = A_prob_01; |
| double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; |
| double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; |
| double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; |
| double B_prob_10 = B_prob_01; |
| double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; |
| |
| // Set output transition info |
| double Y_prob_00 = A_prob_11 * B_prob_11; |
| double Y_prob_01 = A_prob_11 * B_prob_10 + |
| A_prob_10 * (B_prob_11 + B_prob_10); |
| double Y_prob_11 = A_prob_00 + |
| A_prob_01 * (B_prob_00 + B_prob_10) + |
| A_prob_10 * (B_prob_00 + B_prob_01) + |
| A_prob_11 * B_prob_00; |
| |
| // Check that probabilities add up to 1.0 with some finite tolerance |
| ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), |
| "[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" + |
| (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!"); |
| |
| // Turn probability of transitions per cycle into number of transitions per time unit |
| TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult); |
| getOutputPort("Y")->setTransitionInfo(trans_Y); |
| return; |
| } |
| |
| void NAND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) |
| { |
| // Standard cell cache string |
| String cell_name = "NAND2_X" + (String) drive_strength_; |
| |
| Log::printLine("=== " + cell_name + " ==="); |
| |
| // Get parameters |
| double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); |
| Map<double>* cache = cell_lib_->getStdCellCache(); |
| |
| // Now actually build the full standard cell model |
| // Create the two input ports |
| createInputPort("A"); |
| createInputPort("B"); |
| createOutputPort("Y"); |
| |
| // Adds macros |
| CellMacros::addNand2(this, "NAND", true, true, true, "A", "B", "Y"); |
| CellMacros::updateNand2(this, "NAND", drive_strength_); |
| |
| // Cache area result |
| double area = gate_pitch * getTotalHeight() * (1 + getGenProperties()->get("NAND_GatePitches").toDouble()); |
| cache->set(cell_name + "->Area->Active", area); |
| Log::printLine(cell_name + "->Area->Active=" + (String) area); |
| |
| // -------------------------------------------------------------------- |
| // Leakage Model Calculation |
| // -------------------------------------------------------------------- |
| double leakage_00 = getGenProperties()->get("NAND_LeakagePower_00").toDouble(); |
| double leakage_01 = getGenProperties()->get("NAND_LeakagePower_01").toDouble(); |
| double leakage_10 = getGenProperties()->get("NAND_LeakagePower_10").toDouble(); |
| double leakage_11 = getGenProperties()->get("NAND_LeakagePower_11").toDouble(); |
| cache->set(cell_name + "->Leakage->!A!B", leakage_00); |
| cache->set(cell_name + "->Leakage->!AB", leakage_01); |
| cache->set(cell_name + "->Leakage->A!B", leakage_10); |
| cache->set(cell_name + "->Leakage->AB", leakage_11); |
| Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00); |
| Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01); |
| Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10); |
| Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11); |
| // -------------------------------------------------------------------- |
| |
| // Cache event energy results |
| /* |
| double event_a_flip = getGenProperties()->get("NAND_A1_Flip").toDouble(); |
| double event_b_flip = getGenProperties()->get("NAND_A2_Flip").toDouble(); |
| double event_y_flip = getGenProperties()->get("NAND_ZN_Flip").toDouble(); |
| |
| cache->set(cell_name + "->Event_A_Flip", event_a_flip); |
| cache->set(cell_name + "->Event_B_Flip", event_b_flip); |
| cache->set(cell_name + "->Event_Y_Flip", event_y_flip); |
| Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip); |
| Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip); |
| Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip); |
| */ |
| // -------------------------------------------------------------------- |
| // Get Node Capacitances |
| // -------------------------------------------------------------------- |
| double a_cap = getNet("A")->getTotalDownstreamCap(); |
| double b_cap = getNet("B")->getTotalDownstreamCap(); |
| double y_cap = getNet("Y")->getTotalDownstreamCap(); |
| |
| cache->set(cell_name + "->Cap->A", a_cap); |
| cache->set(cell_name + "->Cap->B", b_cap); |
| cache->set(cell_name + "->Cap->Y", y_cap); |
| Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); |
| Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); |
| Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap); |
| // -------------------------------------------------------------------- |
| |
| // -------------------------------------------------------------------- |
| // Build Internal Delay Model |
| // -------------------------------------------------------------------- |
| double y_ron = getDriver("NAND_RonZN")->getOutputRes(); |
| double a_to_y_delay = getDriver("NAND_RonZN")->calculateDelay(); |
| double b_to_y_delay = getDriver("NAND_RonZN")->calculateDelay(); |
| |
| cache->set(cell_name + "->DriveRes->Y", y_ron); |
| cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay); |
| cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay); |
| Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron); |
| Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay); |
| Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay); |
| // -------------------------------------------------------------------- |
| |
| return; |
| |
| } |
| |
| } // namespace DSENT |
| |