blob: 6bae08392c703292d95757455f5c919a8bf7aae9 [file] [log] [blame]
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Ali Saidi
* Korey Sewell
*/
#include "arch/mips/process.hh"
#include "arch/mips/isa_traits.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/logging.hh"
#include "cpu/thread_context.hh"
#include "debug/Loader.hh"
#include "mem/page_table.hh"
#include "params/Process.hh"
#include "sim/aux_vector.hh"
#include "sim/process.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_return.hh"
#include "sim/system.hh"
using namespace std;
using namespace MipsISA;
MipsProcess::MipsProcess(ProcessParams *params, ObjectFile *objFile)
: Process(params,
new EmulationPageTable(params->name, params->pid, PageBytes),
objFile)
{
fatal_if(params->useArchPT, "Arch page tables not implemented.");
// Set up stack. On MIPS, stack starts at the top of kuseg
// user address space. MIPS stack grows down from here
Addr stack_base = 0x7FFFFFFF;
Addr max_stack_size = 8 * 1024 * 1024;
// Set pointer for next thread stack. Reserve 8M for main stack.
Addr next_thread_stack_base = stack_base - max_stack_size;
// Set up break point (Top of Heap)
Addr brk_point = objFile->dataBase() + objFile->dataSize() +
objFile->bssSize();
brk_point = roundUp(brk_point, PageBytes);
// Set up region for mmaps. Start it 1GB above the top of the heap.
Addr mmap_end = brk_point + 0x40000000L;
memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
next_thread_stack_base, mmap_end);
}
void
MipsProcess::initState()
{
Process::initState();
argsInit<uint32_t>(PageBytes);
}
template<class IntType>
void
MipsProcess::argsInit(int pageSize)
{
int intSize = sizeof(IntType);
// Patch the ld_bias for dynamic executables.
updateBias();
// load object file into target memory
objFile->loadSections(initVirtMem);
typedef AuxVector<IntType> auxv_t;
std::vector<auxv_t> auxv;
ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
if (elfObject)
{
// Set the system page size
auxv.push_back(auxv_t(M5_AT_PAGESZ, MipsISA::PageBytes));
// Set the frequency at which time() increments
auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
// For statically linked executables, this is the virtual
// address of the program header tables if they appear in the
// executable image.
auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
DPRINTF(Loader, "auxv at PHDR %08p\n", elfObject->programHeaderTable());
// This is the size of a program header entry from the elf file.
auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
// This is the base address of the ELF interpreter; it should be
// zero for static executables or contain the base address for
// dynamic executables.
auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
//The entry point to the program
auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
//Different user and group IDs
auxv.push_back(auxv_t(M5_AT_UID, uid()));
auxv.push_back(auxv_t(M5_AT_EUID, euid()));
auxv.push_back(auxv_t(M5_AT_GID, gid()));
auxv.push_back(auxv_t(M5_AT_EGID, egid()));
}
// Calculate how much space we need for arg & env & auxv arrays.
int argv_array_size = intSize * (argv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int auxv_array_size = intSize * 2 * (auxv.size() + 1);
int arg_data_size = 0;
for (vector<string>::size_type i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
int env_data_size = 0;
for (vector<string>::size_type i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int space_needed =
argv_array_size +
envp_array_size +
auxv_array_size +
arg_data_size +
env_data_size;
// set bottom of stack
memState->setStackMin(memState->getStackBase() - space_needed);
// align it
memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
memState->setStackSize(memState->getStackBase() - memState->getStackMin());
// map memory
allocateMem(memState->getStackMin(), roundUp(memState->getStackSize(),
pageSize));
// map out initial stack contents; leave room for argc
IntType argv_array_base = memState->getStackMin() + intSize;
IntType envp_array_base = argv_array_base + argv_array_size;
IntType auxv_array_base = envp_array_base + envp_array_size;
IntType arg_data_base = auxv_array_base + auxv_array_size;
IntType env_data_base = arg_data_base + arg_data_size;
// write contents to stack
IntType argc = argv.size();
argc = htog((IntType)argc);
initVirtMem.writeBlob(memState->getStackMin(), (uint8_t*)&argc, intSize);
copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
// Copy the aux vector
for (typename vector<auxv_t>::size_type x = 0; x < auxv.size(); x++) {
initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
(uint8_t*)&(auxv[x].getAuxType()), intSize);
initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
(uint8_t*)&(auxv[x].getAuxVal()), intSize);
}
// Write out the terminating zeroed auxilliary vector
for (unsigned i = 0; i < 2; i++) {
const IntType zero = 0;
const Addr addr = auxv_array_base + 2 * intSize * (auxv.size() + i);
initVirtMem.writeBlob(addr, (uint8_t*)&zero, intSize);
}
ThreadContext *tc = system->getThreadContext(contextIds[0]);
setSyscallArg(tc, 0, argc);
setSyscallArg(tc, 1, argv_array_base);
tc->setIntReg(StackPointerReg, memState->getStackMin());
tc->pcState(getStartPC());
}
MipsISA::IntReg
MipsProcess::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < 6);
return tc->readIntReg(FirstArgumentReg + i++);
}
void
MipsProcess::setSyscallArg(ThreadContext *tc, int i, MipsISA::IntReg val)
{
assert(i < 6);
tc->setIntReg(FirstArgumentReg + i, val);
}
void
MipsProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
{
if (sysret.successful()) {
// no error
tc->setIntReg(SyscallSuccessReg, 0);
tc->setIntReg(ReturnValueReg, sysret.returnValue());
} else {
// got an error, return details
tc->setIntReg(SyscallSuccessReg, (uint32_t)(-1));
tc->setIntReg(ReturnValueReg, sysret.errnoValue());
}
}