| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file tests the built-in actions generated by a script. |
| |
| #include "gmock/gmock-generated-actions.h" |
| |
| #include <functional> |
| #include <memory> |
| #include <sstream> |
| #include <string> |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| |
| namespace testing { |
| namespace gmock_generated_actions_test { |
| |
| using ::std::plus; |
| using ::std::string; |
| using testing::_; |
| using testing::Action; |
| using testing::ActionInterface; |
| using testing::ByRef; |
| using testing::DoAll; |
| using testing::Invoke; |
| using testing::Return; |
| using testing::ReturnNew; |
| using testing::SetArgPointee; |
| using testing::StaticAssertTypeEq; |
| using testing::Unused; |
| |
| // For suppressing compiler warnings on conversion possibly losing precision. |
| inline short Short(short n) { return n; } // NOLINT |
| inline char Char(char ch) { return ch; } |
| |
| // Sample functions and functors for testing various actions. |
| int Nullary() { return 1; } |
| |
| bool g_done = false; |
| |
| bool ByConstRef(const std::string& s) { return s == "Hi"; } |
| |
| const double g_double = 0; |
| bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; } |
| |
| struct UnaryFunctor { |
| int operator()(bool x) { return x ? 1 : -1; } |
| }; |
| |
| const char* Binary(const char* input, short n) { return input + n; } // NOLINT |
| |
| int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; } |
| |
| struct SumOf5Functor { |
| int operator()(int a, int b, int c, int d, int e) { |
| return a + b + c + d + e; |
| } |
| }; |
| |
| std::string Concat5(const char* s1, const char* s2, const char* s3, |
| const char* s4, const char* s5) { |
| return std::string(s1) + s2 + s3 + s4 + s5; |
| } |
| |
| int SumOf6(int a, int b, int c, int d, int e, int f) { |
| return a + b + c + d + e + f; |
| } |
| |
| struct SumOf6Functor { |
| int operator()(int a, int b, int c, int d, int e, int f) { |
| return a + b + c + d + e + f; |
| } |
| }; |
| |
| std::string Concat6(const char* s1, const char* s2, const char* s3, |
| const char* s4, const char* s5, const char* s6) { |
| return std::string(s1) + s2 + s3 + s4 + s5 + s6; |
| } |
| |
| std::string Concat7(const char* s1, const char* s2, const char* s3, |
| const char* s4, const char* s5, const char* s6, |
| const char* s7) { |
| return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7; |
| } |
| |
| std::string Concat8(const char* s1, const char* s2, const char* s3, |
| const char* s4, const char* s5, const char* s6, |
| const char* s7, const char* s8) { |
| return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8; |
| } |
| |
| std::string Concat9(const char* s1, const char* s2, const char* s3, |
| const char* s4, const char* s5, const char* s6, |
| const char* s7, const char* s8, const char* s9) { |
| return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9; |
| } |
| |
| std::string Concat10(const char* s1, const char* s2, const char* s3, |
| const char* s4, const char* s5, const char* s6, |
| const char* s7, const char* s8, const char* s9, |
| const char* s10) { |
| return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10; |
| } |
| |
| // A helper that turns the type of a C-string literal from const |
| // char[N] to const char*. |
| inline const char* CharPtr(const char* s) { return s; } |
| |
| // Tests InvokeArgument<N>(...). |
| |
| // Tests using InvokeArgument with a nullary function. |
| TEST(InvokeArgumentTest, Function0) { |
| Action<int(int, int(*)())> a = InvokeArgument<1>(); // NOLINT |
| EXPECT_EQ(1, a.Perform(std::make_tuple(2, &Nullary))); |
| } |
| |
| // Tests using InvokeArgument with a unary function. |
| TEST(InvokeArgumentTest, Functor1) { |
| Action<int(UnaryFunctor)> a = InvokeArgument<0>(true); // NOLINT |
| EXPECT_EQ(1, a.Perform(std::make_tuple(UnaryFunctor()))); |
| } |
| |
| // Tests using InvokeArgument with a 5-ary function. |
| TEST(InvokeArgumentTest, Function5) { |
| Action<int(int(*)(int, int, int, int, int))> a = // NOLINT |
| InvokeArgument<0>(10000, 2000, 300, 40, 5); |
| EXPECT_EQ(12345, a.Perform(std::make_tuple(&SumOf5))); |
| } |
| |
| // Tests using InvokeArgument with a 5-ary functor. |
| TEST(InvokeArgumentTest, Functor5) { |
| Action<int(SumOf5Functor)> a = // NOLINT |
| InvokeArgument<0>(10000, 2000, 300, 40, 5); |
| EXPECT_EQ(12345, a.Perform(std::make_tuple(SumOf5Functor()))); |
| } |
| |
| // Tests using InvokeArgument with a 6-ary function. |
| TEST(InvokeArgumentTest, Function6) { |
| Action<int(int(*)(int, int, int, int, int, int))> a = // NOLINT |
| InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6); |
| EXPECT_EQ(123456, a.Perform(std::make_tuple(&SumOf6))); |
| } |
| |
| // Tests using InvokeArgument with a 6-ary functor. |
| TEST(InvokeArgumentTest, Functor6) { |
| Action<int(SumOf6Functor)> a = // NOLINT |
| InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6); |
| EXPECT_EQ(123456, a.Perform(std::make_tuple(SumOf6Functor()))); |
| } |
| |
| // Tests using InvokeArgument with a 7-ary function. |
| TEST(InvokeArgumentTest, Function7) { |
| Action<std::string(std::string(*)(const char*, const char*, const char*, |
| const char*, const char*, const char*, |
| const char*))> |
| a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7"); |
| EXPECT_EQ("1234567", a.Perform(std::make_tuple(&Concat7))); |
| } |
| |
| // Tests using InvokeArgument with a 8-ary function. |
| TEST(InvokeArgumentTest, Function8) { |
| Action<std::string(std::string(*)(const char*, const char*, const char*, |
| const char*, const char*, const char*, |
| const char*, const char*))> |
| a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8"); |
| EXPECT_EQ("12345678", a.Perform(std::make_tuple(&Concat8))); |
| } |
| |
| // Tests using InvokeArgument with a 9-ary function. |
| TEST(InvokeArgumentTest, Function9) { |
| Action<std::string(std::string(*)(const char*, const char*, const char*, |
| const char*, const char*, const char*, |
| const char*, const char*, const char*))> |
| a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9"); |
| EXPECT_EQ("123456789", a.Perform(std::make_tuple(&Concat9))); |
| } |
| |
| // Tests using InvokeArgument with a 10-ary function. |
| TEST(InvokeArgumentTest, Function10) { |
| Action<std::string(std::string(*)( |
| const char*, const char*, const char*, const char*, const char*, |
| const char*, const char*, const char*, const char*, const char*))> |
| a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9", "0"); |
| EXPECT_EQ("1234567890", a.Perform(std::make_tuple(&Concat10))); |
| } |
| |
| // Tests using InvokeArgument with a function that takes a pointer argument. |
| TEST(InvokeArgumentTest, ByPointerFunction) { |
| Action<const char*(const char*(*)(const char* input, short n))> a = // NOLINT |
| InvokeArgument<0>(static_cast<const char*>("Hi"), Short(1)); |
| EXPECT_STREQ("i", a.Perform(std::make_tuple(&Binary))); |
| } |
| |
| // Tests using InvokeArgument with a function that takes a const char* |
| // by passing it a C-string literal. |
| TEST(InvokeArgumentTest, FunctionWithCStringLiteral) { |
| Action<const char*(const char*(*)(const char* input, short n))> a = // NOLINT |
| InvokeArgument<0>("Hi", Short(1)); |
| EXPECT_STREQ("i", a.Perform(std::make_tuple(&Binary))); |
| } |
| |
| // Tests using InvokeArgument with a function that takes a const reference. |
| TEST(InvokeArgumentTest, ByConstReferenceFunction) { |
| Action<bool(bool (*function)(const std::string& s))> a = // NOLINT |
| InvokeArgument<0>(std::string("Hi")); |
| // When action 'a' is constructed, it makes a copy of the temporary |
| // string object passed to it, so it's OK to use 'a' later, when the |
| // temporary object has already died. |
| EXPECT_TRUE(a.Perform(std::make_tuple(&ByConstRef))); |
| } |
| |
| // Tests using InvokeArgument with ByRef() and a function that takes a |
| // const reference. |
| TEST(InvokeArgumentTest, ByExplicitConstReferenceFunction) { |
| Action<bool(bool(*)(const double& x))> a = // NOLINT |
| InvokeArgument<0>(ByRef(g_double)); |
| // The above line calls ByRef() on a const value. |
| EXPECT_TRUE(a.Perform(std::make_tuple(&ReferencesGlobalDouble))); |
| |
| double x = 0; |
| a = InvokeArgument<0>(ByRef(x)); // This calls ByRef() on a non-const. |
| EXPECT_FALSE(a.Perform(std::make_tuple(&ReferencesGlobalDouble))); |
| } |
| |
| // Tests DoAll(a1, a2). |
| TEST(DoAllTest, TwoActions) { |
| int n = 0; |
| Action<int(int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT |
| Return(2)); |
| EXPECT_EQ(2, a.Perform(std::make_tuple(&n))); |
| EXPECT_EQ(1, n); |
| } |
| |
| // Tests DoAll(a1, a2, a3). |
| TEST(DoAllTest, ThreeActions) { |
| int m = 0, n = 0; |
| Action<int(int*, int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT |
| SetArgPointee<1>(2), |
| Return(3)); |
| EXPECT_EQ(3, a.Perform(std::make_tuple(&m, &n))); |
| EXPECT_EQ(1, m); |
| EXPECT_EQ(2, n); |
| } |
| |
| // Tests DoAll(a1, a2, a3, a4). |
| TEST(DoAllTest, FourActions) { |
| int m = 0, n = 0; |
| char ch = '\0'; |
| Action<int(int*, int*, char*)> a = // NOLINT |
| DoAll(SetArgPointee<0>(1), |
| SetArgPointee<1>(2), |
| SetArgPointee<2>('a'), |
| Return(3)); |
| EXPECT_EQ(3, a.Perform(std::make_tuple(&m, &n, &ch))); |
| EXPECT_EQ(1, m); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('a', ch); |
| } |
| |
| // Tests DoAll(a1, a2, a3, a4, a5). |
| TEST(DoAllTest, FiveActions) { |
| int m = 0, n = 0; |
| char a = '\0', b = '\0'; |
| Action<int(int*, int*, char*, char*)> action = // NOLINT |
| DoAll(SetArgPointee<0>(1), |
| SetArgPointee<1>(2), |
| SetArgPointee<2>('a'), |
| SetArgPointee<3>('b'), |
| Return(3)); |
| EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b))); |
| EXPECT_EQ(1, m); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('a', a); |
| EXPECT_EQ('b', b); |
| } |
| |
| // Tests DoAll(a1, a2, ..., a6). |
| TEST(DoAllTest, SixActions) { |
| int m = 0, n = 0; |
| char a = '\0', b = '\0', c = '\0'; |
| Action<int(int*, int*, char*, char*, char*)> action = // NOLINT |
| DoAll(SetArgPointee<0>(1), |
| SetArgPointee<1>(2), |
| SetArgPointee<2>('a'), |
| SetArgPointee<3>('b'), |
| SetArgPointee<4>('c'), |
| Return(3)); |
| EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c))); |
| EXPECT_EQ(1, m); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('a', a); |
| EXPECT_EQ('b', b); |
| EXPECT_EQ('c', c); |
| } |
| |
| // Tests DoAll(a1, a2, ..., a7). |
| TEST(DoAllTest, SevenActions) { |
| int m = 0, n = 0; |
| char a = '\0', b = '\0', c = '\0', d = '\0'; |
| Action<int(int*, int*, char*, char*, char*, char*)> action = // NOLINT |
| DoAll(SetArgPointee<0>(1), |
| SetArgPointee<1>(2), |
| SetArgPointee<2>('a'), |
| SetArgPointee<3>('b'), |
| SetArgPointee<4>('c'), |
| SetArgPointee<5>('d'), |
| Return(3)); |
| EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d))); |
| EXPECT_EQ(1, m); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('a', a); |
| EXPECT_EQ('b', b); |
| EXPECT_EQ('c', c); |
| EXPECT_EQ('d', d); |
| } |
| |
| // Tests DoAll(a1, a2, ..., a8). |
| TEST(DoAllTest, EightActions) { |
| int m = 0, n = 0; |
| char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0'; |
| Action<int(int*, int*, char*, char*, char*, char*, // NOLINT |
| char*)> action = |
| DoAll(SetArgPointee<0>(1), |
| SetArgPointee<1>(2), |
| SetArgPointee<2>('a'), |
| SetArgPointee<3>('b'), |
| SetArgPointee<4>('c'), |
| SetArgPointee<5>('d'), |
| SetArgPointee<6>('e'), |
| Return(3)); |
| EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e))); |
| EXPECT_EQ(1, m); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('a', a); |
| EXPECT_EQ('b', b); |
| EXPECT_EQ('c', c); |
| EXPECT_EQ('d', d); |
| EXPECT_EQ('e', e); |
| } |
| |
| // Tests DoAll(a1, a2, ..., a9). |
| TEST(DoAllTest, NineActions) { |
| int m = 0, n = 0; |
| char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0', f = '\0'; |
| Action<int(int*, int*, char*, char*, char*, char*, // NOLINT |
| char*, char*)> action = |
| DoAll(SetArgPointee<0>(1), |
| SetArgPointee<1>(2), |
| SetArgPointee<2>('a'), |
| SetArgPointee<3>('b'), |
| SetArgPointee<4>('c'), |
| SetArgPointee<5>('d'), |
| SetArgPointee<6>('e'), |
| SetArgPointee<7>('f'), |
| Return(3)); |
| EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e, &f))); |
| EXPECT_EQ(1, m); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('a', a); |
| EXPECT_EQ('b', b); |
| EXPECT_EQ('c', c); |
| EXPECT_EQ('d', d); |
| EXPECT_EQ('e', e); |
| EXPECT_EQ('f', f); |
| } |
| |
| // Tests DoAll(a1, a2, ..., a10). |
| TEST(DoAllTest, TenActions) { |
| int m = 0, n = 0; |
| char a = '\0', b = '\0', c = '\0', d = '\0'; |
| char e = '\0', f = '\0', g = '\0'; |
| Action<int(int*, int*, char*, char*, char*, char*, // NOLINT |
| char*, char*, char*)> action = |
| DoAll(SetArgPointee<0>(1), |
| SetArgPointee<1>(2), |
| SetArgPointee<2>('a'), |
| SetArgPointee<3>('b'), |
| SetArgPointee<4>('c'), |
| SetArgPointee<5>('d'), |
| SetArgPointee<6>('e'), |
| SetArgPointee<7>('f'), |
| SetArgPointee<8>('g'), |
| Return(3)); |
| EXPECT_EQ( |
| 3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e, &f, &g))); |
| EXPECT_EQ(1, m); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('a', a); |
| EXPECT_EQ('b', b); |
| EXPECT_EQ('c', c); |
| EXPECT_EQ('d', d); |
| EXPECT_EQ('e', e); |
| EXPECT_EQ('f', f); |
| EXPECT_EQ('g', g); |
| } |
| |
| // The ACTION*() macros trigger warning C4100 (unreferenced formal |
| // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in |
| // the macro definition, as the warnings are generated when the macro |
| // is expanded and macro expansion cannot contain #pragma. Therefore |
| // we suppress them here. |
| // Also suppress C4503 decorated name length exceeded, name was truncated |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4100) |
| # pragma warning(disable:4503) |
| #endif |
| // Tests the ACTION*() macro family. |
| |
| // Tests that ACTION() can define an action that doesn't reference the |
| // mock function arguments. |
| ACTION(Return5) { return 5; } |
| |
| TEST(ActionMacroTest, WorksWhenNotReferencingArguments) { |
| Action<double()> a1 = Return5(); |
| EXPECT_DOUBLE_EQ(5, a1.Perform(std::make_tuple())); |
| |
| Action<int(double, bool)> a2 = Return5(); |
| EXPECT_EQ(5, a2.Perform(std::make_tuple(1, true))); |
| } |
| |
| // Tests that ACTION() can define an action that returns void. |
| ACTION(IncrementArg1) { (*arg1)++; } |
| |
| TEST(ActionMacroTest, WorksWhenReturningVoid) { |
| Action<void(int, int*)> a1 = IncrementArg1(); |
| int n = 0; |
| a1.Perform(std::make_tuple(5, &n)); |
| EXPECT_EQ(1, n); |
| } |
| |
| // Tests that the body of ACTION() can reference the type of the |
| // argument. |
| ACTION(IncrementArg2) { |
| StaticAssertTypeEq<int*, arg2_type>(); |
| arg2_type temp = arg2; |
| (*temp)++; |
| } |
| |
| TEST(ActionMacroTest, CanReferenceArgumentType) { |
| Action<void(int, bool, int*)> a1 = IncrementArg2(); |
| int n = 0; |
| a1.Perform(std::make_tuple(5, false, &n)); |
| EXPECT_EQ(1, n); |
| } |
| |
| // Tests that the body of ACTION() can reference the argument tuple |
| // via args_type and args. |
| ACTION(Sum2) { |
| StaticAssertTypeEq<std::tuple<int, char, int*>, args_type>(); |
| args_type args_copy = args; |
| return std::get<0>(args_copy) + std::get<1>(args_copy); |
| } |
| |
| TEST(ActionMacroTest, CanReferenceArgumentTuple) { |
| Action<int(int, char, int*)> a1 = Sum2(); |
| int dummy = 0; |
| EXPECT_EQ(11, a1.Perform(std::make_tuple(5, Char(6), &dummy))); |
| } |
| |
| // Tests that the body of ACTION() can reference the mock function |
| // type. |
| int Dummy(bool flag) { return flag? 1 : 0; } |
| |
| ACTION(InvokeDummy) { |
| StaticAssertTypeEq<int(bool), function_type>(); |
| function_type* fp = &Dummy; |
| return (*fp)(true); |
| } |
| |
| TEST(ActionMacroTest, CanReferenceMockFunctionType) { |
| Action<int(bool)> a1 = InvokeDummy(); |
| EXPECT_EQ(1, a1.Perform(std::make_tuple(true))); |
| EXPECT_EQ(1, a1.Perform(std::make_tuple(false))); |
| } |
| |
| // Tests that the body of ACTION() can reference the mock function's |
| // return type. |
| ACTION(InvokeDummy2) { |
| StaticAssertTypeEq<int, return_type>(); |
| return_type result = Dummy(true); |
| return result; |
| } |
| |
| TEST(ActionMacroTest, CanReferenceMockFunctionReturnType) { |
| Action<int(bool)> a1 = InvokeDummy2(); |
| EXPECT_EQ(1, a1.Perform(std::make_tuple(true))); |
| EXPECT_EQ(1, a1.Perform(std::make_tuple(false))); |
| } |
| |
| // Tests that ACTION() works for arguments passed by const reference. |
| ACTION(ReturnAddrOfConstBoolReferenceArg) { |
| StaticAssertTypeEq<const bool&, arg1_type>(); |
| return &arg1; |
| } |
| |
| TEST(ActionMacroTest, WorksForConstReferenceArg) { |
| Action<const bool*(int, const bool&)> a = ReturnAddrOfConstBoolReferenceArg(); |
| const bool b = false; |
| EXPECT_EQ(&b, a.Perform(std::tuple<int, const bool&>(0, b))); |
| } |
| |
| // Tests that ACTION() works for arguments passed by non-const reference. |
| ACTION(ReturnAddrOfIntReferenceArg) { |
| StaticAssertTypeEq<int&, arg0_type>(); |
| return &arg0; |
| } |
| |
| TEST(ActionMacroTest, WorksForNonConstReferenceArg) { |
| Action<int*(int&, bool, int)> a = ReturnAddrOfIntReferenceArg(); |
| int n = 0; |
| EXPECT_EQ(&n, a.Perform(std::tuple<int&, bool, int>(n, true, 1))); |
| } |
| |
| // Tests that ACTION() can be used in a namespace. |
| namespace action_test { |
| ACTION(Sum) { return arg0 + arg1; } |
| } // namespace action_test |
| |
| TEST(ActionMacroTest, WorksInNamespace) { |
| Action<int(int, int)> a1 = action_test::Sum(); |
| EXPECT_EQ(3, a1.Perform(std::make_tuple(1, 2))); |
| } |
| |
| // Tests that the same ACTION definition works for mock functions with |
| // different argument numbers. |
| ACTION(PlusTwo) { return arg0 + 2; } |
| |
| TEST(ActionMacroTest, WorksForDifferentArgumentNumbers) { |
| Action<int(int)> a1 = PlusTwo(); |
| EXPECT_EQ(4, a1.Perform(std::make_tuple(2))); |
| |
| Action<double(float, void*)> a2 = PlusTwo(); |
| int dummy; |
| EXPECT_DOUBLE_EQ(6, a2.Perform(std::make_tuple(4.0f, &dummy))); |
| } |
| |
| // Tests that ACTION_P can define a parameterized action. |
| ACTION_P(Plus, n) { return arg0 + n; } |
| |
| TEST(ActionPMacroTest, DefinesParameterizedAction) { |
| Action<int(int m, bool t)> a1 = Plus(9); |
| EXPECT_EQ(10, a1.Perform(std::make_tuple(1, true))); |
| } |
| |
| // Tests that the body of ACTION_P can reference the argument types |
| // and the parameter type. |
| ACTION_P(TypedPlus, n) { |
| arg0_type t1 = arg0; |
| n_type t2 = n; |
| return t1 + t2; |
| } |
| |
| TEST(ActionPMacroTest, CanReferenceArgumentAndParameterTypes) { |
| Action<int(char m, bool t)> a1 = TypedPlus(9); |
| EXPECT_EQ(10, a1.Perform(std::make_tuple(Char(1), true))); |
| } |
| |
| // Tests that a parameterized action can be used in any mock function |
| // whose type is compatible. |
| TEST(ActionPMacroTest, WorksInCompatibleMockFunction) { |
| Action<std::string(const std::string& s)> a1 = Plus("tail"); |
| const std::string re = "re"; |
| std::tuple<const std::string> dummy = std::make_tuple(re); |
| EXPECT_EQ("retail", a1.Perform(dummy)); |
| } |
| |
| // Tests that we can use ACTION*() to define actions overloaded on the |
| // number of parameters. |
| |
| ACTION(OverloadedAction) { return arg0 ? arg1 : "hello"; } |
| |
| ACTION_P(OverloadedAction, default_value) { |
| return arg0 ? arg1 : default_value; |
| } |
| |
| ACTION_P2(OverloadedAction, true_value, false_value) { |
| return arg0 ? true_value : false_value; |
| } |
| |
| TEST(ActionMacroTest, CanDefineOverloadedActions) { |
| typedef Action<const char*(bool, const char*)> MyAction; |
| |
| const MyAction a1 = OverloadedAction(); |
| EXPECT_STREQ("hello", a1.Perform(std::make_tuple(false, CharPtr("world")))); |
| EXPECT_STREQ("world", a1.Perform(std::make_tuple(true, CharPtr("world")))); |
| |
| const MyAction a2 = OverloadedAction("hi"); |
| EXPECT_STREQ("hi", a2.Perform(std::make_tuple(false, CharPtr("world")))); |
| EXPECT_STREQ("world", a2.Perform(std::make_tuple(true, CharPtr("world")))); |
| |
| const MyAction a3 = OverloadedAction("hi", "you"); |
| EXPECT_STREQ("hi", a3.Perform(std::make_tuple(true, CharPtr("world")))); |
| EXPECT_STREQ("you", a3.Perform(std::make_tuple(false, CharPtr("world")))); |
| } |
| |
| // Tests ACTION_Pn where n >= 3. |
| |
| ACTION_P3(Plus, m, n, k) { return arg0 + m + n + k; } |
| |
| TEST(ActionPnMacroTest, WorksFor3Parameters) { |
| Action<double(int m, bool t)> a1 = Plus(100, 20, 3.4); |
| EXPECT_DOUBLE_EQ(3123.4, a1.Perform(std::make_tuple(3000, true))); |
| |
| Action<std::string(const std::string& s)> a2 = Plus("tail", "-", ">"); |
| const std::string re = "re"; |
| std::tuple<const std::string> dummy = std::make_tuple(re); |
| EXPECT_EQ("retail->", a2.Perform(dummy)); |
| } |
| |
| ACTION_P4(Plus, p0, p1, p2, p3) { return arg0 + p0 + p1 + p2 + p3; } |
| |
| TEST(ActionPnMacroTest, WorksFor4Parameters) { |
| Action<int(int)> a1 = Plus(1, 2, 3, 4); |
| EXPECT_EQ(10 + 1 + 2 + 3 + 4, a1.Perform(std::make_tuple(10))); |
| } |
| |
| ACTION_P5(Plus, p0, p1, p2, p3, p4) { return arg0 + p0 + p1 + p2 + p3 + p4; } |
| |
| TEST(ActionPnMacroTest, WorksFor5Parameters) { |
| Action<int(int)> a1 = Plus(1, 2, 3, 4, 5); |
| EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5, a1.Perform(std::make_tuple(10))); |
| } |
| |
| ACTION_P6(Plus, p0, p1, p2, p3, p4, p5) { |
| return arg0 + p0 + p1 + p2 + p3 + p4 + p5; |
| } |
| |
| TEST(ActionPnMacroTest, WorksFor6Parameters) { |
| Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6); |
| EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6, a1.Perform(std::make_tuple(10))); |
| } |
| |
| ACTION_P7(Plus, p0, p1, p2, p3, p4, p5, p6) { |
| return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6; |
| } |
| |
| TEST(ActionPnMacroTest, WorksFor7Parameters) { |
| Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7); |
| EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7, a1.Perform(std::make_tuple(10))); |
| } |
| |
| ACTION_P8(Plus, p0, p1, p2, p3, p4, p5, p6, p7) { |
| return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7; |
| } |
| |
| TEST(ActionPnMacroTest, WorksFor8Parameters) { |
| Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8); |
| EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, |
| a1.Perform(std::make_tuple(10))); |
| } |
| |
| ACTION_P9(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8) { |
| return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8; |
| } |
| |
| TEST(ActionPnMacroTest, WorksFor9Parameters) { |
| Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9); |
| EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, |
| a1.Perform(std::make_tuple(10))); |
| } |
| |
| ACTION_P10(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8, last_param) { |
| arg0_type t0 = arg0; |
| last_param_type t9 = last_param; |
| return t0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + t9; |
| } |
| |
| TEST(ActionPnMacroTest, WorksFor10Parameters) { |
| Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); |
| EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, |
| a1.Perform(std::make_tuple(10))); |
| } |
| |
| // Tests that the action body can promote the parameter types. |
| |
| ACTION_P2(PadArgument, prefix, suffix) { |
| // The following lines promote the two parameters to desired types. |
| std::string prefix_str(prefix); |
| char suffix_char = static_cast<char>(suffix); |
| return prefix_str + arg0 + suffix_char; |
| } |
| |
| TEST(ActionPnMacroTest, SimpleTypePromotion) { |
| Action<std::string(const char*)> no_promo = |
| PadArgument(std::string("foo"), 'r'); |
| Action<std::string(const char*)> promo = |
| PadArgument("foo", static_cast<int>('r')); |
| EXPECT_EQ("foobar", no_promo.Perform(std::make_tuple(CharPtr("ba")))); |
| EXPECT_EQ("foobar", promo.Perform(std::make_tuple(CharPtr("ba")))); |
| } |
| |
| // Tests that we can partially restrict parameter types using a |
| // straight-forward pattern. |
| |
| // Defines a generic action that doesn't restrict the types of its |
| // parameters. |
| ACTION_P3(ConcatImpl, a, b, c) { |
| std::stringstream ss; |
| ss << a << b << c; |
| return ss.str(); |
| } |
| |
| // Next, we try to restrict that either the first parameter is a |
| // string, or the second parameter is an int. |
| |
| // Defines a partially specialized wrapper that restricts the first |
| // parameter to std::string. |
| template <typename T1, typename T2> |
| // ConcatImplActionP3 is the class template ACTION_P3 uses to |
| // implement ConcatImpl. We shouldn't change the name as this |
| // pattern requires the user to use it directly. |
| ConcatImplActionP3<std::string, T1, T2> |
| Concat(const std::string& a, T1 b, T2 c) { |
| GTEST_INTENTIONAL_CONST_COND_PUSH_() |
| if (true) { |
| GTEST_INTENTIONAL_CONST_COND_POP_() |
| // This branch verifies that ConcatImpl() can be invoked without |
| // explicit template arguments. |
| return ConcatImpl(a, b, c); |
| } else { |
| // This branch verifies that ConcatImpl() can also be invoked with |
| // explicit template arguments. It doesn't really need to be |
| // executed as this is a compile-time verification. |
| return ConcatImpl<std::string, T1, T2>(a, b, c); |
| } |
| } |
| |
| // Defines another partially specialized wrapper that restricts the |
| // second parameter to int. |
| template <typename T1, typename T2> |
| ConcatImplActionP3<T1, int, T2> |
| Concat(T1 a, int b, T2 c) { |
| return ConcatImpl(a, b, c); |
| } |
| |
| TEST(ActionPnMacroTest, CanPartiallyRestrictParameterTypes) { |
| Action<const std::string()> a1 = Concat("Hello", "1", 2); |
| EXPECT_EQ("Hello12", a1.Perform(std::make_tuple())); |
| |
| a1 = Concat(1, 2, 3); |
| EXPECT_EQ("123", a1.Perform(std::make_tuple())); |
| } |
| |
| // Verifies the type of an ACTION*. |
| |
| ACTION(DoFoo) {} |
| ACTION_P(DoFoo, p) {} |
| ACTION_P2(DoFoo, p0, p1) {} |
| |
| TEST(ActionPnMacroTest, TypesAreCorrect) { |
| // DoFoo() must be assignable to a DoFooAction variable. |
| DoFooAction a0 = DoFoo(); |
| |
| // DoFoo(1) must be assignable to a DoFooActionP variable. |
| DoFooActionP<int> a1 = DoFoo(1); |
| |
| // DoFoo(p1, ..., pk) must be assignable to a DoFooActionPk |
| // variable, and so on. |
| DoFooActionP2<int, char> a2 = DoFoo(1, '2'); |
| PlusActionP3<int, int, char> a3 = Plus(1, 2, '3'); |
| PlusActionP4<int, int, int, char> a4 = Plus(1, 2, 3, '4'); |
| PlusActionP5<int, int, int, int, char> a5 = Plus(1, 2, 3, 4, '5'); |
| PlusActionP6<int, int, int, int, int, char> a6 = Plus(1, 2, 3, 4, 5, '6'); |
| PlusActionP7<int, int, int, int, int, int, char> a7 = |
| Plus(1, 2, 3, 4, 5, 6, '7'); |
| PlusActionP8<int, int, int, int, int, int, int, char> a8 = |
| Plus(1, 2, 3, 4, 5, 6, 7, '8'); |
| PlusActionP9<int, int, int, int, int, int, int, int, char> a9 = |
| Plus(1, 2, 3, 4, 5, 6, 7, 8, '9'); |
| PlusActionP10<int, int, int, int, int, int, int, int, int, char> a10 = |
| Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); |
| |
| // Avoid "unused variable" warnings. |
| (void)a0; |
| (void)a1; |
| (void)a2; |
| (void)a3; |
| (void)a4; |
| (void)a5; |
| (void)a6; |
| (void)a7; |
| (void)a8; |
| (void)a9; |
| (void)a10; |
| } |
| |
| // Tests that an ACTION_P*() action can be explicitly instantiated |
| // with reference-typed parameters. |
| |
| ACTION_P(Plus1, x) { return x; } |
| ACTION_P2(Plus2, x, y) { return x + y; } |
| ACTION_P3(Plus3, x, y, z) { return x + y + z; } |
| ACTION_P10(Plus10, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) { |
| return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9; |
| } |
| |
| TEST(ActionPnMacroTest, CanExplicitlyInstantiateWithReferenceTypes) { |
| int x = 1, y = 2, z = 3; |
| const std::tuple<> empty = std::make_tuple(); |
| |
| Action<int()> a = Plus1<int&>(x); |
| EXPECT_EQ(1, a.Perform(empty)); |
| |
| a = Plus2<const int&, int&>(x, y); |
| EXPECT_EQ(3, a.Perform(empty)); |
| |
| a = Plus3<int&, const int&, int&>(x, y, z); |
| EXPECT_EQ(6, a.Perform(empty)); |
| |
| int n[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
| a = Plus10<const int&, int&, const int&, int&, const int&, int&, const int&, |
| int&, const int&, int&>(n[0], n[1], n[2], n[3], n[4], n[5], n[6], n[7], |
| n[8], n[9]); |
| EXPECT_EQ(55, a.Perform(empty)); |
| } |
| |
| class NullaryConstructorClass { |
| public: |
| NullaryConstructorClass() : value_(123) {} |
| int value_; |
| }; |
| |
| // Tests using ReturnNew() with a nullary constructor. |
| TEST(ReturnNewTest, NoArgs) { |
| Action<NullaryConstructorClass*()> a = ReturnNew<NullaryConstructorClass>(); |
| NullaryConstructorClass* c = a.Perform(std::make_tuple()); |
| EXPECT_EQ(123, c->value_); |
| delete c; |
| } |
| |
| class UnaryConstructorClass { |
| public: |
| explicit UnaryConstructorClass(int value) : value_(value) {} |
| int value_; |
| }; |
| |
| // Tests using ReturnNew() with a unary constructor. |
| TEST(ReturnNewTest, Unary) { |
| Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000); |
| UnaryConstructorClass* c = a.Perform(std::make_tuple()); |
| EXPECT_EQ(4000, c->value_); |
| delete c; |
| } |
| |
| TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) { |
| Action<UnaryConstructorClass*(bool, int)> a = |
| ReturnNew<UnaryConstructorClass>(4000); |
| UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5)); |
| EXPECT_EQ(4000, c->value_); |
| delete c; |
| } |
| |
| TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) { |
| Action<const UnaryConstructorClass*()> a = |
| ReturnNew<UnaryConstructorClass>(4000); |
| const UnaryConstructorClass* c = a.Perform(std::make_tuple()); |
| EXPECT_EQ(4000, c->value_); |
| delete c; |
| } |
| |
| class TenArgConstructorClass { |
| public: |
| TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, |
| int a6, int a7, int a8, int a9, int a10) |
| : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) { |
| } |
| int value_; |
| }; |
| |
| // Tests using ReturnNew() with a 10-argument constructor. |
| TEST(ReturnNewTest, ConstructorThatTakes10Arguments) { |
| Action<TenArgConstructorClass*()> a = |
| ReturnNew<TenArgConstructorClass>(1000000000, 200000000, 30000000, |
| 4000000, 500000, 60000, |
| 7000, 800, 90, 0); |
| TenArgConstructorClass* c = a.Perform(std::make_tuple()); |
| EXPECT_EQ(1234567890, c->value_); |
| delete c; |
| } |
| |
| // Tests that ACTION_TEMPLATE works when there is no value parameter. |
| ACTION_TEMPLATE(CreateNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_0_VALUE_PARAMS()) { |
| return new T; |
| } |
| |
| TEST(ActionTemplateTest, WorksWithoutValueParam) { |
| const Action<int*()> a = CreateNew<int>(); |
| int* p = a.Perform(std::make_tuple()); |
| delete p; |
| } |
| |
| // Tests that ACTION_TEMPLATE works when there are value parameters. |
| ACTION_TEMPLATE(CreateNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_1_VALUE_PARAMS(a0)) { |
| return new T(a0); |
| } |
| |
| TEST(ActionTemplateTest, WorksWithValueParams) { |
| const Action<int*()> a = CreateNew<int>(42); |
| int* p = a.Perform(std::make_tuple()); |
| EXPECT_EQ(42, *p); |
| delete p; |
| } |
| |
| // Tests that ACTION_TEMPLATE works for integral template parameters. |
| ACTION_TEMPLATE(MyDeleteArg, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_0_VALUE_PARAMS()) { |
| delete std::get<k>(args); |
| } |
| |
| // Resets a bool variable in the destructor. |
| class BoolResetter { |
| public: |
| explicit BoolResetter(bool* value) : value_(value) {} |
| ~BoolResetter() { *value_ = false; } |
| private: |
| bool* value_; |
| }; |
| |
| TEST(ActionTemplateTest, WorksForIntegralTemplateParams) { |
| const Action<void(int*, BoolResetter*)> a = MyDeleteArg<1>(); |
| int n = 0; |
| bool b = true; |
| BoolResetter* resetter = new BoolResetter(&b); |
| a.Perform(std::make_tuple(&n, resetter)); |
| EXPECT_FALSE(b); // Verifies that resetter is deleted. |
| } |
| |
| // Tests that ACTION_TEMPLATES works for template template parameters. |
| ACTION_TEMPLATE(ReturnSmartPointer, |
| HAS_1_TEMPLATE_PARAMS(template <typename Pointee> class, |
| Pointer), |
| AND_1_VALUE_PARAMS(pointee)) { |
| return Pointer<pointee_type>(new pointee_type(pointee)); |
| } |
| |
| TEST(ActionTemplateTest, WorksForTemplateTemplateParameters) { |
| const Action<std::shared_ptr<int>()> a = |
| ReturnSmartPointer<std::shared_ptr>(42); |
| std::shared_ptr<int> p = a.Perform(std::make_tuple()); |
| EXPECT_EQ(42, *p); |
| } |
| |
| // Tests that ACTION_TEMPLATE works for 10 template parameters. |
| template <typename T1, typename T2, typename T3, int k4, bool k5, |
| unsigned int k6, typename T7, typename T8, typename T9> |
| struct GiantTemplate { |
| public: |
| explicit GiantTemplate(int a_value) : value(a_value) {} |
| int value; |
| }; |
| |
| ACTION_TEMPLATE(ReturnGiant, |
| HAS_10_TEMPLATE_PARAMS( |
| typename, T1, |
| typename, T2, |
| typename, T3, |
| int, k4, |
| bool, k5, |
| unsigned int, k6, |
| class, T7, |
| class, T8, |
| class, T9, |
| template <typename T> class, T10), |
| AND_1_VALUE_PARAMS(value)) { |
| return GiantTemplate<T10<T1>, T2, T3, k4, k5, k6, T7, T8, T9>(value); |
| } |
| |
| TEST(ActionTemplateTest, WorksFor10TemplateParameters) { |
| using Giant = GiantTemplate<std::shared_ptr<int>, bool, double, 5, true, 6, |
| char, unsigned, int>; |
| const Action<Giant()> a = ReturnGiant<int, bool, double, 5, true, 6, char, |
| unsigned, int, std::shared_ptr>(42); |
| Giant giant = a.Perform(std::make_tuple()); |
| EXPECT_EQ(42, giant.value); |
| } |
| |
| // Tests that ACTION_TEMPLATE works for 10 value parameters. |
| ACTION_TEMPLATE(ReturnSum, |
| HAS_1_TEMPLATE_PARAMS(typename, Number), |
| AND_10_VALUE_PARAMS(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)) { |
| return static_cast<Number>(v1) + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10; |
| } |
| |
| TEST(ActionTemplateTest, WorksFor10ValueParameters) { |
| const Action<int()> a = ReturnSum<int>(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); |
| EXPECT_EQ(55, a.Perform(std::make_tuple())); |
| } |
| |
| // Tests that ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded |
| // on the number of value parameters. |
| |
| ACTION(ReturnSum) { return 0; } |
| |
| ACTION_P(ReturnSum, x) { return x; } |
| |
| ACTION_TEMPLATE(ReturnSum, |
| HAS_1_TEMPLATE_PARAMS(typename, Number), |
| AND_2_VALUE_PARAMS(v1, v2)) { |
| return static_cast<Number>(v1) + v2; |
| } |
| |
| ACTION_TEMPLATE(ReturnSum, |
| HAS_1_TEMPLATE_PARAMS(typename, Number), |
| AND_3_VALUE_PARAMS(v1, v2, v3)) { |
| return static_cast<Number>(v1) + v2 + v3; |
| } |
| |
| ACTION_TEMPLATE(ReturnSum, |
| HAS_2_TEMPLATE_PARAMS(typename, Number, int, k), |
| AND_4_VALUE_PARAMS(v1, v2, v3, v4)) { |
| return static_cast<Number>(v1) + v2 + v3 + v4 + k; |
| } |
| |
| TEST(ActionTemplateTest, CanBeOverloadedOnNumberOfValueParameters) { |
| const Action<int()> a0 = ReturnSum(); |
| const Action<int()> a1 = ReturnSum(1); |
| const Action<int()> a2 = ReturnSum<int>(1, 2); |
| const Action<int()> a3 = ReturnSum<int>(1, 2, 3); |
| const Action<int()> a4 = ReturnSum<int, 10000>(2000, 300, 40, 5); |
| EXPECT_EQ(0, a0.Perform(std::make_tuple())); |
| EXPECT_EQ(1, a1.Perform(std::make_tuple())); |
| EXPECT_EQ(3, a2.Perform(std::make_tuple())); |
| EXPECT_EQ(6, a3.Perform(std::make_tuple())); |
| EXPECT_EQ(12345, a4.Perform(std::make_tuple())); |
| } |
| |
| |
| } // namespace gmock_generated_actions_test |
| } // namespace testing |