| /* |
| * Copyright (c) 2020 Advanced Micro Devices, Inc. |
| * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "mem/ruby/network/Topology.hh" |
| |
| #include <cassert> |
| |
| #include "base/trace.hh" |
| #include "debug/RubyNetwork.hh" |
| #include "mem/ruby/common/NetDest.hh" |
| #include "mem/ruby/network/BasicLink.hh" |
| #include "mem/ruby/network/Network.hh" |
| #include "mem/ruby/slicc_interface/AbstractController.hh" |
| |
| namespace gem5 |
| { |
| |
| namespace ruby |
| { |
| |
| const int INFINITE_LATENCY = 10000; // Yes, this is a big hack |
| |
| // Note: In this file, we use the first 2*m_nodes SwitchIDs to |
| // represent the input and output endpoint links. These really are |
| // not 'switches', as they will not have a Switch object allocated for |
| // them. The first m_nodes SwitchIDs are the links into the network, |
| // the second m_nodes set of SwitchIDs represent the the output queues |
| // of the network. |
| |
| Topology::Topology(uint32_t num_nodes, uint32_t num_routers, |
| uint32_t num_vnets, |
| const std::vector<BasicExtLink *> &ext_links, |
| const std::vector<BasicIntLink *> &int_links) |
| : m_nodes(MachineType_base_number(MachineType_NUM)), |
| m_number_of_switches(num_routers), m_vnets(num_vnets), |
| m_ext_link_vector(ext_links), m_int_link_vector(int_links) |
| { |
| // Total nodes/controllers in network |
| assert(m_nodes > 1); |
| |
| // analyze both the internal and external links, create data structures. |
| // The python created external links are bi-directional, |
| // and the python created internal links are uni-directional. |
| // The networks and topology utilize uni-directional links. |
| // Thus each external link is converted to two calls to addLink, |
| // one for each direction. |
| // |
| // External Links |
| for (std::vector<BasicExtLink*>::const_iterator i = ext_links.begin(); |
| i != ext_links.end(); ++i) { |
| BasicExtLink *ext_link = (*i); |
| AbstractController *abs_cntrl = ext_link->params().ext_node; |
| BasicRouter *router = ext_link->params().int_node; |
| |
| int machine_base_idx = MachineType_base_number(abs_cntrl->getType()); |
| int ext_idx1 = machine_base_idx + abs_cntrl->getVersion(); |
| int ext_idx2 = ext_idx1 + m_nodes; |
| int int_idx = router->params().router_id + 2*m_nodes; |
| |
| // create the internal uni-directional links in both directions |
| // ext to int |
| addLink(ext_idx1, int_idx, ext_link); |
| // int to ext |
| addLink(int_idx, ext_idx2, ext_link); |
| } |
| |
| // Internal Links |
| for (std::vector<BasicIntLink*>::const_iterator i = int_links.begin(); |
| i != int_links.end(); ++i) { |
| BasicIntLink *int_link = (*i); |
| BasicRouter *router_src = int_link->params().src_node; |
| BasicRouter *router_dst = int_link->params().dst_node; |
| |
| PortDirection src_outport = int_link->params().src_outport; |
| PortDirection dst_inport = int_link->params().dst_inport; |
| |
| // Store the IntLink pointers for later |
| m_int_link_vector.push_back(int_link); |
| |
| int src = router_src->params().router_id + 2*m_nodes; |
| int dst = router_dst->params().router_id + 2*m_nodes; |
| |
| // create the internal uni-directional link from src to dst |
| addLink(src, dst, int_link, src_outport, dst_inport); |
| } |
| } |
| |
| void |
| Topology::createLinks(Network *net) |
| { |
| // Find maximum switchID |
| SwitchID max_switch_id = 0; |
| for (LinkMap::const_iterator i = m_link_map.begin(); |
| i != m_link_map.end(); ++i) { |
| std::pair<SwitchID, SwitchID> src_dest = (*i).first; |
| max_switch_id = std::max(max_switch_id, src_dest.first); |
| max_switch_id = std::max(max_switch_id, src_dest.second); |
| } |
| |
| // Initialize weight, latency, and inter switched vectors |
| int num_switches = max_switch_id+1; |
| Matrix topology_weights(m_vnets, |
| std::vector<std::vector<int>>(num_switches, |
| std::vector<int>(num_switches, INFINITE_LATENCY))); |
| Matrix component_latencies(num_switches, |
| std::vector<std::vector<int>>(num_switches, |
| std::vector<int>(m_vnets, -1))); |
| Matrix component_inter_switches(num_switches, |
| std::vector<std::vector<int>>(num_switches, |
| std::vector<int>(m_vnets, 0))); |
| |
| // Set identity weights to zero |
| for (int i = 0; i < topology_weights[0].size(); i++) { |
| for (int v = 0; v < m_vnets; v++) { |
| topology_weights[v][i][i] = 0; |
| } |
| } |
| |
| // Fill in the topology weights and bandwidth multipliers |
| for (auto link_group : m_link_map) { |
| std::pair<int, int> src_dest = link_group.first; |
| std::vector<bool> vnet_done(m_vnets, 0); |
| int src = src_dest.first; |
| int dst = src_dest.second; |
| |
| // Iterate over all links for this source and destination |
| std::vector<LinkEntry> link_entries = link_group.second; |
| for (int l = 0; l < link_entries.size(); l++) { |
| BasicLink* link = link_entries[l].link; |
| if (link->mVnets.size() == 0) { |
| for (int v = 0; v < m_vnets; v++) { |
| // Two links connecting same src and destination |
| // cannot carry same vnets. |
| fatal_if(vnet_done[v], "Two links connecting same src" |
| " and destination cannot support same vnets"); |
| |
| component_latencies[src][dst][v] = link->m_latency; |
| topology_weights[v][src][dst] = link->m_weight; |
| vnet_done[v] = true; |
| } |
| } else { |
| for (int v = 0; v < link->mVnets.size(); v++) { |
| int vnet = link->mVnets[v]; |
| fatal_if(vnet >= m_vnets, "Not enough virtual networks " |
| "(setting latency and weight for vnet %d)", vnet); |
| // Two links connecting same src and destination |
| // cannot carry same vnets. |
| fatal_if(vnet_done[vnet], "Two links connecting same src" |
| " and destination cannot support same vnets"); |
| |
| component_latencies[src][dst][vnet] = link->m_latency; |
| topology_weights[vnet][src][dst] = link->m_weight; |
| vnet_done[vnet] = true; |
| } |
| } |
| } |
| } |
| |
| // Walk topology and hookup the links |
| Matrix dist = shortest_path(topology_weights, component_latencies, |
| component_inter_switches); |
| |
| for (int i = 0; i < topology_weights[0].size(); i++) { |
| for (int j = 0; j < topology_weights[0][i].size(); j++) { |
| std::vector<NetDest> routingMap; |
| routingMap.resize(m_vnets); |
| |
| // Not all sources and destinations are connected |
| // by direct links. We only construct the links |
| // which have been configured in topology. |
| bool realLink = false; |
| |
| for (int v = 0; v < m_vnets; v++) { |
| int weight = topology_weights[v][i][j]; |
| if (weight > 0 && weight != INFINITE_LATENCY) { |
| realLink = true; |
| routingMap[v] = |
| shortest_path_to_node(i, j, topology_weights, dist, v); |
| } |
| } |
| // Make one link for each set of vnets between |
| // a given source and destination. We do not |
| // want to create one link for each vnet. |
| if (realLink) { |
| makeLink(net, i, j, routingMap); |
| } |
| } |
| } |
| } |
| |
| void |
| Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link, |
| PortDirection src_outport_dirn, |
| PortDirection dst_inport_dirn) |
| { |
| assert(src <= m_number_of_switches+m_nodes+m_nodes); |
| assert(dest <= m_number_of_switches+m_nodes+m_nodes); |
| |
| std::pair<int, int> src_dest_pair; |
| src_dest_pair.first = src; |
| src_dest_pair.second = dest; |
| LinkEntry link_entry; |
| |
| link_entry.link = link; |
| link_entry.src_outport_dirn = src_outport_dirn; |
| link_entry.dst_inport_dirn = dst_inport_dirn; |
| |
| auto lit = m_link_map.find(src_dest_pair); |
| if (lit != m_link_map.end()) { |
| // HeteroGarnet allows multiple links between |
| // same source-destination pair supporting |
| // different vnets. If there is a link already |
| // between a given pair of source and destination |
| // add this new link to it. |
| lit->second.push_back(link_entry); |
| } else { |
| std::vector<LinkEntry> links; |
| links.push_back(link_entry); |
| m_link_map[src_dest_pair] = links; |
| } |
| } |
| |
| void |
| Topology::makeLink(Network *net, SwitchID src, SwitchID dest, |
| std::vector<NetDest>& routing_table_entry) |
| { |
| // Make sure we're not trying to connect two end-point nodes |
| // directly together |
| assert(src >= 2 * m_nodes || dest >= 2 * m_nodes); |
| |
| std::pair<int, int> src_dest; |
| LinkEntry link_entry; |
| |
| if (src < m_nodes) { |
| src_dest.first = src; |
| src_dest.second = dest; |
| std::vector<LinkEntry> links = m_link_map[src_dest]; |
| for (int l = 0; l < links.size(); l++) { |
| link_entry = links[l]; |
| std::vector<NetDest> linkRoute; |
| linkRoute.resize(m_vnets); |
| BasicLink *link = link_entry.link; |
| if (link->mVnets.size() == 0) { |
| net->makeExtInLink(src, dest - (2 * m_nodes), link, |
| routing_table_entry); |
| } else { |
| for (int v = 0; v< link->mVnets.size(); v++) { |
| int vnet = link->mVnets[v]; |
| linkRoute[vnet] = routing_table_entry[vnet]; |
| } |
| net->makeExtInLink(src, dest - (2 * m_nodes), link, |
| linkRoute); |
| } |
| } |
| } else if (dest < 2*m_nodes) { |
| assert(dest >= m_nodes); |
| NodeID node = dest - m_nodes; |
| src_dest.first = src; |
| src_dest.second = dest; |
| std::vector<LinkEntry> links = m_link_map[src_dest]; |
| for (int l = 0; l < links.size(); l++) { |
| link_entry = links[l]; |
| std::vector<NetDest> linkRoute; |
| linkRoute.resize(m_vnets); |
| BasicLink *link = link_entry.link; |
| if (link->mVnets.size() == 0) { |
| net->makeExtOutLink(src - (2 * m_nodes), node, link, |
| routing_table_entry); |
| } else { |
| for (int v = 0; v< link->mVnets.size(); v++) { |
| int vnet = link->mVnets[v]; |
| linkRoute[vnet] = routing_table_entry[vnet]; |
| } |
| net->makeExtOutLink(src - (2 * m_nodes), node, link, |
| linkRoute); |
| } |
| } |
| } else { |
| assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes)); |
| src_dest.first = src; |
| src_dest.second = dest; |
| std::vector<LinkEntry> links = m_link_map[src_dest]; |
| for (int l = 0; l < links.size(); l++) { |
| link_entry = links[l]; |
| std::vector<NetDest> linkRoute; |
| linkRoute.resize(m_vnets); |
| BasicLink *link = link_entry.link; |
| if (link->mVnets.size() == 0) { |
| net->makeInternalLink(src - (2 * m_nodes), |
| dest - (2 * m_nodes), link, routing_table_entry, |
| link_entry.src_outport_dirn, |
| link_entry.dst_inport_dirn); |
| } else { |
| for (int v = 0; v< link->mVnets.size(); v++) { |
| int vnet = link->mVnets[v]; |
| linkRoute[vnet] = routing_table_entry[vnet]; |
| } |
| net->makeInternalLink(src - (2 * m_nodes), |
| dest - (2 * m_nodes), link, linkRoute, |
| link_entry.src_outport_dirn, |
| link_entry.dst_inport_dirn); |
| } |
| } |
| } |
| } |
| |
| // The following all-pairs shortest path algorithm is based on the |
| // discussion from Cormen et al., Chapter 26.1. |
| void |
| Topology::extend_shortest_path(Matrix ¤t_dist, Matrix &latencies, |
| Matrix &inter_switches) |
| { |
| int nodes = current_dist[0].size(); |
| |
| // We find the shortest path for each vnet for a given pair of |
| // source and destinations. This is done simply by traversing via |
| // all other nodes and finding the minimum distance. |
| for (int v = 0; v < m_vnets; v++) { |
| // There is a different topology for each vnet. Here we try to |
| // build a topology by finding the minimum number of intermediate |
| // switches needed to reach the destination |
| bool change = true; |
| while (change) { |
| change = false; |
| for (int i = 0; i < nodes; i++) { |
| for (int j = 0; j < nodes; j++) { |
| // We follow an iterative process to build the shortest |
| // path tree: |
| // 1. Start from the direct connection (if there is one, |
| // otherwise assume a hypothetical infinite weight link). |
| // 2. Then we iterate through all other nodes considering |
| // new potential intermediate switches. If we find any |
| // lesser weight combination, we set(update) that as the |
| // new weight between the source and destination. |
| // 3. Repeat for all pairs of nodes. |
| // 4. Go to step 1 if there was any new update done in |
| // Step 2. |
| int minimum = current_dist[v][i][j]; |
| int previous_minimum = minimum; |
| int intermediate_switch = -1; |
| for (int k = 0; k < nodes; k++) { |
| minimum = std::min(minimum, |
| current_dist[v][i][k] + current_dist[v][k][j]); |
| if (previous_minimum != minimum) { |
| intermediate_switch = k; |
| inter_switches[i][j][v] = |
| inter_switches[i][k][v] + |
| inter_switches[k][j][v] + 1; |
| } |
| previous_minimum = minimum; |
| } |
| if (current_dist[v][i][j] != minimum) { |
| change = true; |
| current_dist[v][i][j] = minimum; |
| assert(intermediate_switch >= 0); |
| assert(intermediate_switch < latencies[i].size()); |
| latencies[i][j][v] = |
| latencies[i][intermediate_switch][v] + |
| latencies[intermediate_switch][j][v]; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| Matrix |
| Topology::shortest_path(const Matrix &weights, Matrix &latencies, |
| Matrix &inter_switches) |
| { |
| Matrix dist = weights; |
| extend_shortest_path(dist, latencies, inter_switches); |
| return dist; |
| } |
| |
| bool |
| Topology::link_is_shortest_path_to_node(SwitchID src, SwitchID next, |
| SwitchID final, const Matrix &weights, |
| const Matrix &dist, int vnet) |
| { |
| return weights[vnet][src][next] + dist[vnet][next][final] == |
| dist[vnet][src][final]; |
| } |
| |
| NetDest |
| Topology::shortest_path_to_node(SwitchID src, SwitchID next, |
| const Matrix &weights, const Matrix &dist, |
| int vnet) |
| { |
| NetDest result; |
| int d = 0; |
| int machines; |
| int max_machines; |
| |
| machines = MachineType_NUM; |
| max_machines = MachineType_base_number(MachineType_NUM); |
| |
| for (int m = 0; m < machines; m++) { |
| for (NodeID i = 0; i < MachineType_base_count((MachineType)m); i++) { |
| // we use "d+max_machines" below since the "destination" |
| // switches for the machines are numbered |
| // [MachineType_base_number(MachineType_NUM)... |
| // 2*MachineType_base_number(MachineType_NUM)-1] for the |
| // component network |
| if (link_is_shortest_path_to_node(src, next, d + max_machines, |
| weights, dist, vnet)) { |
| MachineID mach = {(MachineType)m, i}; |
| result.add(mach); |
| } |
| d++; |
| } |
| } |
| |
| DPRINTF(RubyNetwork, "Returning shortest path\n" |
| "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, " |
| "src: %d, next: %d, vnet:%d result: %s\n", |
| (src-(2*max_machines)), (next-(2*max_machines)), |
| src, next, vnet, result); |
| |
| return result; |
| } |
| |
| } // namespace ruby |
| } // namespace gem5 |