blob: 4cedb6e57051dba3841e72585a88667f30d31b88 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <gtest/gtest.h>
#include "arch/generic/vec_pred_reg.hh"
#include "base/str.hh"
using namespace gem5;
TEST(VecPredReg, reset)
{
constexpr size_t size = 4;
VecPredRegContainer<size, false> vec;
vec.reset();
for (auto idx = 0; idx < size; idx++) {
ASSERT_FALSE(vec[idx]);
}
}
TEST(VecPredReg, set)
{
constexpr size_t size = 4;
VecPredRegContainer<size, false> vec;
vec.set();
for (auto idx = 0; idx < size; idx++) {
ASSERT_TRUE(vec[idx]);
}
}
template <bool T>
class TwoDifferentVecPredRegsBase : public testing::Test
{
protected:
static constexpr ssize_t size = 4;
VecPredRegContainer<size, T> pred1;
VecPredRegContainer<size, T> pred2;
void
SetUp() override
{
// Initializing with:
// 0,1,0,1
for (auto idx = 0; idx < size; idx++) {
pred1[idx] = (idx % 2);
}
// Initializing with:
// 1,0,1,0
for (auto idx = 0; idx < size; idx++) {
pred2[idx] = !(idx % 2);
}
}
};
using TwoDifferentVecPredRegs = TwoDifferentVecPredRegsBase<false>;
using TwoPackedDifferentVecPredRegs = TwoDifferentVecPredRegsBase<true>;
// Testing operator=
TEST_F(TwoDifferentVecPredRegs, Assignment)
{
pred2 = pred1;
for (auto idx = 0; idx < size; idx++) {
ASSERT_EQ(pred2[idx], idx % 2);
}
}
// Testing operator==
TEST_F(TwoDifferentVecPredRegs, Equality)
{
// Equality check
ASSERT_TRUE(pred1 == pred1);
ASSERT_TRUE(pred2 == pred2);
ASSERT_FALSE(pred1 == pred2);
}
// Testing operator!=
TEST_F(TwoDifferentVecPredRegs, Inequality)
{
// Inequality check
ASSERT_FALSE(pred1 != pred1);
ASSERT_FALSE(pred2 != pred2);
ASSERT_TRUE(pred1 != pred2);
}
// Testing operator<<
TEST_F(TwoDifferentVecPredRegs, Printing)
{
{
std::ostringstream stream;
stream << pred1;
ASSERT_EQ(stream.str(), "[0 1 0 1]");
}
{
std::ostringstream stream;
stream << pred2;
ASSERT_EQ(stream.str(), "[1 0 1 0]");
}
}
// Testing ParseParam
TEST_F(TwoDifferentVecPredRegs, ParseParam)
{
ParseParam<decltype(pred1)> parser;
parser.parse("1111", pred1);
parser.parse("0000", pred2);
for (auto idx = 0; idx < size; idx++) {
ASSERT_EQ(pred1[idx], 1);
ASSERT_EQ(pred2[idx], 0);
}
}
// Testing ShowParam
TEST_F(TwoDifferentVecPredRegs, ShowParam)
{
ShowParam<decltype(pred1)> parser;
{
std::stringstream ss;
parser.show(ss, pred1);
ASSERT_EQ(ss.str(), "0101");
}
{
std::stringstream ss;
parser.show(ss, pred2);
ASSERT_EQ(ss.str(), "1010");
}
}
// Testing VecPredReg view as uint8_t
// pred1 is 0101
// -> pred1_view[0] = false
// -> pred1_view[1] = true
// -> pred1_view[2] = false
// -> pred1_view[3] = true
// pred2 is 1010
// -> pred2_view[0] = true
// -> pred2_view[1] = false
// -> pred2_view[2] = true
// -> pred2_view[3] = false
TEST_F(TwoDifferentVecPredRegs, View8bit)
{
auto pred1_view = pred1.as<uint8_t>();
auto pred2_view = pred2.as<uint8_t>();
for (auto idx = 0; idx < size; idx++) {
ASSERT_EQ(pred1_view[idx], idx % 2);
ASSERT_EQ(pred2_view[idx], !(idx % 2));
}
}
// Testing VecPredReg view as uint16_t
// pred1 is 0101
// -> pred1_view[0] = false
// -> pred1_view[1] = false
// pred2 is 1010
// -> pred2_view[0] = true
// -> pred2_view[1] = true
TEST_F(TwoDifferentVecPredRegs, View16bit)
{
auto pred1_view = pred1.as<uint16_t>();
auto pred2_view = pred2.as<uint16_t>();
for (auto idx = 0; idx < size / sizeof(uint16_t); idx++) {
ASSERT_FALSE(pred1_view[idx]);
ASSERT_TRUE(pred2_view[idx]);
}
}
// Testing VecPredReg view as uint32_t
// pred1 is 0101
// -> pred1_view[0] = false
// pred2 is 1010
// -> pred2_view[0] = true
TEST_F(TwoDifferentVecPredRegs, View32bit)
{
auto pred1_view = pred1.as<uint32_t>();
auto pred2_view = pred2.as<uint32_t>();
ASSERT_FALSE(pred1_view[0]);
ASSERT_TRUE(pred2_view[0]);
}
// Testing VecPredReg view as uint8_t
// pred1 is 0101
// -> pred1_view[0] = false
// -> pred1_view[1] = true
// -> pred1_view[2] = false
// -> pred1_view[3] = true
// pred2 is 1010
// -> pred2_view[0] = true
// -> pred2_view[1] = false
// -> pred2_view[2] = true
// -> pred2_view[3] = false
TEST_F(TwoPackedDifferentVecPredRegs, View8bit)
{
auto pred1_view = pred1.as<uint8_t>();
auto pred2_view = pred2.as<uint8_t>();
for (auto idx = 0; idx < size; idx++) {
ASSERT_EQ(pred1_view[idx], idx % 2);
ASSERT_EQ(pred2_view[idx], !(idx % 2));
}
}
// Testing VecPredReg view as uint16_t
// pred1 is 0101
// -> pred1_view[0] = false
// -> pred1_view[1] = true
// -> pred1_view[2] = false
// -> pred1_view[3] = true
// pred2 is 1010
// -> pred2_view[0] = true
// -> pred2_view[1] = false
// -> pred2_view[2] = true
// -> pred2_view[3] = false
TEST_F(TwoPackedDifferentVecPredRegs, View16bit)
{
auto pred1_view = pred1.as<uint16_t>();
auto pred2_view = pred2.as<uint16_t>();
for (auto idx = 0; idx < size; idx++) {
ASSERT_EQ(pred1_view[idx], idx % 2);
ASSERT_EQ(pred2_view[idx], !(idx % 2));
}
}
// Testing VecPredReg view as uint32_t
// pred1 is 0101
// -> pred1_view[0] = false
// -> pred1_view[1] = true
// -> pred1_view[2] = false
// -> pred1_view[3] = true
// pred2 is 1010
// -> pred2_view[0] = true
// -> pred2_view[1] = false
// -> pred2_view[2] = true
// -> pred2_view[3] = false
TEST_F(TwoPackedDifferentVecPredRegs, View32bit)
{
auto pred1_view = pred1.as<uint32_t>();
auto pred2_view = pred2.as<uint32_t>();
for (auto idx = 0; idx < size; idx++) {
ASSERT_EQ(pred1_view[idx], idx % 2);
ASSERT_EQ(pred2_view[idx], !(idx % 2));
}
}